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Abstract
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general
strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the
quantum symmetries of the halved cube graph, the folded cube graph, and the Hamming graphs.

1. Introduction

The adjective quantum in the title of this article refers to non-commutative geometry. In 1987,
Woronowicz introduced the notion of compact quantum groups [32] (following earlier work of Drinfeld
and Jimbo) as the generalization of compact groups in the non-commutative geometry. This allowed
to study symmetries of different objects not only in terms of the classical theory of symmetry groups
but also in terms of quantum groups. A remarkable property of graphs is that although they are classi-
cal objects, they often possess not only classical symmetries but also the quantum ones. This was first
noticed by Wang [30], who defined free quantum symmetric group S+N as the quantum group of sym-
metries of a finite space of N points. This quantum group is much larger than the classical group SN if
N ≥ 4.

Studying quantum symmetries of graphs started with the work of Bichon [8] and later Banica [5],
who gave the definition of the quantum automorphism group of a graph. Since then, many authors
worked on determining the quantum automorphism groups of different graphs. Worth mentioning is the
joint publication of the mentioned two authors [6] determining quantum symmetries of vertex-transitive
graphs up to 11 vertices and a recent extensive work of Schmidt, which is summarized in his PhD
thesis [26].

An important tool for studying compact quantum groups was introduced again by Woronowicz in
[33]—the monoidal ∗-category of representations and intertwiners. Woronowicz formulated a general-
ization of the so-called Tannaka–Krein duality: He proved that a compact quantum group is uniquely
determined by its representation category. A very useful result then came with the work of Banica and
Speicher [12], who showed how to model those intertwiners using combinatorial objects—partitions.

This formalism can also be used when working with quantum automorphisms of graphs. Given a
graph X, its quantum automorphism group can be defined as the unique compact matrix quantum group
G, whose representation category is generated by the intertwiners T (N)

� , T (N ) and AX , where AX is the
adjacency matrix of X.

In this paper, we study Cayley graphs of abelian groups. We use the intertwiner formalism to formu-
late a general algorithm for determining the quantum automorphism groups of such graphs. The result is
presented in Section 4 as Algorithm 1. It is based on the idea, which was already used in [7] to determine
the quantum symmetries of the hypercube graph, namely that the Fourier transform on the underlying
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group � diagonalizes the adjacency matrix of the Cayley graph of this group. The case of the hypercube
graph is presented in Section 3 as a motivating example.

As a side remark, let us mention the work of Chassaniol [13], who uses the intertwiner approach to
determine quantum symmetries of some circulant graphs, that is Cayley graphs of the cyclic groups. But
apart from using the intertwiners, his techniques are different from ours.

Subsequently, we use our algorithm to determine the quantum automorphism groups of certain
Cayley graphs, which were not known before. This constitutes the main result of this article, which
can be summarized as follows:

Theorem. We determine the quantum automorphism groups of the following graphs.

(a) [Theorem 5.1] For n �= 1, 3, the quantum symmetries of the halved hypercube graph 1
2
Qn+1 are

described by the anticommutative special orthogonal group SO−1
n+1.

(b) [Theorem 6.1] For n �= 1, 3, the quantum symmetries of the folded hypercube graph FQn+1 are
described by the projective anticommutative orthogonal group PO−1

n+1.
(c) [Theorem 7.1] For m �= 1, 2, the quantum symmetries of the Hamming graph H(n, m) are

described by the wreath product S+m � Sn.

Note that quantum symmetries of the folded hypercube and the Hamming graphs were already studied
before [25, 27], but determining the quantum automorphism group for a general value of the parameters
was left open.

2. Preliminaries

In this section, we recall the basic notions of compact matrix quantum groups and Tannaka–Krein
duality. For a more detailed introduction, we refer to the monographs [28, 24].

2.1. Notation

In this work, we will often work with operators between some tensor powers of some vector spaces.
Therefore, we adopt the “physics notation” with upper and lower indices for entries of these “tensors.”
That is, given T : V⊗k → V⊗l for some V =CN , we denote

T(ei1 ⊗ · · · ⊗ eik )=
N∑

j1,...,jl=1

Tj1 ···jl
i1···ik (ej1 ⊗ · · · ⊗ ejl )

We will sometimes shorten the notation and write T j
i using multi-indices i= (i1, . . . , ik), j= (j1, . . . , jl).

2.2. Compact matrix quantum groups

A compact matrix quantum group is a pair G= (A, u), where A is a ∗-algebra and u= (ui
j) ∈MN(A) is a

matrix with values in A such that

1. the elements ui
j, i, j= 1, . . . , N generate A,

2. the matrices u and ut (u transposed) are similar to unitary matrices,
3. the map � : A→ A⊗ A defined as �(ui

j) := ∑N
k=1 ui

k ⊗ uk
j extends to a ∗-homomorphism.

Compact matrix quantum groups introduced by Woronowicz [32] are generalizations of compact
matrix groups in the following sense. For a matrix group G⊆MN(C), we define ui

j : G→C to be the
coordinate functions ui

j(g) := gi
j. Then we define the coordinate algebra A := O(G) to be the algebra gen-

erated by ui
j. The pair (A, u) then forms a compact matrix quantum group. The so-called comultiplication
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� : O(G)→O(G)⊗O(G) dualizes matrix multiplication on G: �(f )(g, h)= f (gh) for f ∈O(G) and
g, h ∈G.

Therefore, for a general compact matrix quantum group G= (A, u), the algebra A should be seen
as the algebra of non-commutative functions defined on some non-commutative compact underlying
space. For this reason, we often denote A=O(G) even if A is not commutative. Actually, A also has
the structure of a Hopf ∗-algebra. In addition, we can also define the C∗-algebra C(G) as the universal
C∗-completion of A, which can be interpreted as the algebra of continuous functions of G. The matrix
u is called the fundamental representation of G.

A compact matrix quantum group H = (O(H), v) is a quantum subgroup of G= (O(G), u), denoted
as H ⊆G, if u and v have the same size and there is a surjective ∗-homomorphism ϕ : O(G)→O(H)
sending ui

j �→ vi
j. We say that G and H are equal if there exists such a ∗-isomorphism (i.e. if G⊂H and

H ⊂G). We say that G and H are isomorphic if there exists a ∗-isomorphism ϕ : O(G)→O(H) such
that (ϕ ⊗ ϕ) ◦�G =�H ◦ ϕ. We will often use the notation H ⊆G also if H is isomorphic to a quantum
subgroup of G.

One of the most important examples is the quantum generalization of the orthogonal group—the free
orthogonal quantum group O+

N defined by Wang in [29] through the universal ∗-algebra

O(O+
N ) := ∗-alg (ui

j, i, j= 1, . . . , N | ui
j = ui∗

j , uut = utu= idCN ).

Note that this example was then further generalized by Banica [2] into the universal free orthogonal
quantum group O+(F), where F ∈MN(C) such that FF̄ =±idCN and

O(O+(F)) := ∗-alg (ui
j, i, j= 1, . . . , N | u is unitary, u= FūF−1),

where [ū]i
j = ui∗

j .

2.3. Representation categories and Tannaka–Krein reconstruction

For a compact matrix quantum group G= (O(G), u), we say that v ∈Mn(O(G)) is a representation of
G if �(vi

j)=
∑

k vi
k ⊗ vk

j , where � is the comultiplication. The representation v is called unitary if it
is unitary as a matrix, that is

∑
k vi

kv
j∗
k =

∑
k vk∗

i vk
j = δij. In particular, an element a ∈O(G) is a one-

dimensional representation if �(a)= a⊗ a. Another example of a quantum group representation is the
fundamental representation u.

We say that a representation v of G is non-degenerate if v is invertible as a matrix (in the classi-
cal group theory, we typically consider only non-degenerate representations). It is faithful if O(G) is
generated by the entries of v. The meaning of this notion is the same as with classical groups: Given
a non-degenerate faithful representation v, the pair G′ = (O(G), v) is also a compact matrix quantum
group, which is isomorphic to the original G.

A subspace W ⊂Cn is called an invariant subspace of v if the projection P : Cn →Cn onto W com-
mutes with v, that is, Pv= vP. This then defines the subrepresentation w:= vP= Pv. However, w as a
representation is degenerate. If we need to express the subrepresentation as a non-degenerate represen-
tation, we had better consider a better consider a coisometry U : Cn →Cm with P=U∗U and define
w′ := UvU∗. A representation v is called irreducible if it has no non-trivial subrepresentations.

For two representations v ∈Mn(O(G)), w ∈Mm(O(G)) of G we define the space of intertwiners

Mor(v, w)= {T : Cn →Cm | Tv=wT}.
The set of all representations of a given quantum group together with those intertwiner spaces forms a
rigid monoidal ∗-category, which will be denoted by Rep G.

Nevertheless, since we are working with compact matrix quantum groups, it is more convenient to
restrict our attention only to certain representations related to the fundamental representation. If we work
with orthogonal quantum groups G⊂O+

n (or G⊂O+(F) in general), then it is enough to focus on the
tensor powers u⊗k since the entries of those representations already linearly span the whole O(G).
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Considering G= (O(G), u)⊂O+(F), F ∈MN(C), we define

CG(k, l) := Mor(u⊗k, u⊗l)= {T : (CN)⊗k → (CN)⊗l | Tu⊗k = u⊗lT}.
The collection of such linear spaces forms a rigid monoidal ∗-category with the monoid of objects

being the natural numbers with zero N0.

Remark 2.1. The term rigidity means that there exists a duality morphism R ∈ C(0, 2) such that (R∗ ⊗
idCN )(idCN ⊗ R)= idCN . For quantum groups G⊂O+(F), the duality morphism is given by Rij = Fj

i .
An important feature of rigidity is the so-called Frobenius reciprocity, which basically means that

the whole category C is determined by the spaces C(0, k), k ∈N0 since C is closed under certain
rotations.

Conversely, we can reconstruct any compact matrix quantum group from its representation category
[33, 22].

Theorem 2.2 (Woronowicz–Tannaka–Krein). Let C be a rigid monoidal ∗-category with N0 being the
set of self-dual objects and C(k, l)⊂L((CN)⊗k, (CN)⊗l). Then there exists a unique orthogonal compact
matrix quantum group G such that C= CG. We have G⊂O+(F) with Fj

i = Rij, where R is the duality
morphism of C.

We can write down the associated quantum group very concretely. The relations satisfied in the
algebra O(G) will be exactly the intertwining relations:

O(G)=∗-alg (ui
j, i, j= 1, . . . , N | u= FūF−1, Tu⊗k = u⊗lT ∀T ∈ C(k, l)).

We say that S is a generating set for a representation category C if C is the smallest monoidal ∗-
category satisfying the assumptions of Theorem 2.2 that contains S. We use the notation C= 〈S〉N (it is
important to specify the dimension N of the vector space V =CN associated to the object 1). If we know
such a generating set, it is enough to use the generators for our relations:

O(G)=∗-alg (ui
j, i, j= 1, . . . , N | u= FūF−1, Tu⊗k = u⊗lT ∀T ∈ S(k, l)).

2.4. Partitions

Representation categories of homogeneous orthogonal quantum groups, that is, those G such that SN ⊂
G⊂O+

N are conveniently described using partitions. A partition p ∈P(k, l) is a decomposition of k
upper and l lower points into non-empty disjoint subsets called blocks. For instance,

p = q =
Given any partition p ∈P(k, l), we define a linear map T (N)

p : (CN)⊗k → (CN)⊗l whose entries are
given as “blockwise Kronecker delta”—we label the k upper points by indices i1, . . . , ik and the l lower
points by indices j1, . . . , jl and define [T (N)

p ]j1,...,jl
i1,...,ik to be one if and only if for any given block of p all the

corresponding indices are equal. For instance, working with the example above, we may write

[T (N)
p ]j1j2j3j4

i1i2i3 = δi1i2i3j2j3 , [T (N)
q ]j1j2j3j4

i1i2i3i4 = δi2j3j4δi3j2 .

Theorem 2.3 ([18]). It holds that CSN (k, l)= span{T (N)
p | p ∈P(k, l)} for every N ∈N.

We define PartN(k, l) := spanP(k, l) the space of formal linear combinations of partitions. On this
collection of linear spaces, we may define the structure of a monoidal ∗-category in terms of simple
pictorial manipulations (see e.g. [16] for details) such that they respect the category structure in CSn .
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In other words, the mapping T (N) : Partn → CSn is a monoidal unitary functor. (Note that passing to the
linear spaces is often omitted, but in this article, we need them.)

As a consequence, any homogeneous quantum group O+
N ⊃G⊃ SN can be described using some

diagrammatic category of partitions. Thanks to the Tannaka–Krein duality, we also have the converse—
any category of partitions defines a some homogeneous compact matrix quantum group [12]. For more
information, see the survey [31] or the author’s PhD thesis [14].

Finally, let us mention that when working with anticommutative deformations of groups (see the
next section), then it might (although sometimes might not) be convenient to use a deformed functor.
Let p ∈P(k, l) be a partition that does not contain any block of odd size. Then we define a linear operator
T̆ (N)

p by

[T̆ (N)
p ]j

i = σiσj[T
(N)
p ]j

i ,

where σi is a certain sign function: Given a multi-index i= (i1, . . . , ik), we count the number of
pairs (k, l) such that k < l, but ik > il. If this number is odd, then σi =−1; otherwise σi = 1. See [17,
Section 7].

2.5. Anticommutative deformations

In this work, we will often work with certain anticommutative deformations of classical groups. We say
that a matrix u has anticommutative entries if the following relations hold

ui
ku

j
k =−uj

ku
i
k, uk

i u
k
j =−uk

j u
k
i , ui

ku
j
l = uj

lu
i
k

assuming i �= j and k �= l.
As an example, let us mention the anticommutative orthogonal quantum group

O(O−1
N )=∗-alg (ui

j | u= ū, u orthogonal, u anticommutative).

There is a whole theory about q-deformations of classical groups, where taking q= 1 gives the
classical case and q=−1 gives usually the anticommutative one, see [19] for more details.

2.6. Exterior products: classical case

In this section, we would like to recall the definition of exterior products in connection with the
representation theory of classical groups.

Let V be a vector space. We define the exterior product V ∧ V and, more generally, the exterior
powers �k(V)= V∧k as follows. V∧k is the vector subspace of V⊗k generated by the elements

v1 ∧ · · · ∧ vk = 1

k!
∑
σ∈Sk

sgn(σ )vσ (1) ⊗ · · · ⊗ vσ (k)

We denote by Ak : V⊗k → V∧k the coisometry mapping v1 ⊗ · · · ⊗ vk �→ v1 ∧ · · · ∧ vk and call it the
antisymmetrizer. (That is, A∗

kAk : V⊗k → V⊗k is the projection onto V∧k taken as a subspace of V⊗k.)
The motivation for such a definition is the following.

Proposition 2.4. Let G be any group and V some G-module. Then V∧k is always a submodule of V⊗k.

In particular, we can consider G=On acting on V =Cn by standard matrix multiplication. Let us
prove this statement from a quantum group point of view.
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Proof. Let u ∈C(G)⊗GL(V) be the representation of G on V . We need to prove that u⊗kA∗
kAk =

A∗
kAku⊗k. Let us express both sides in coordinates.

[u⊗kA∗
kAk]

i
j =

1

k!
∑
σ∈Sk

sgn(σ )ui1
σ−1(j1) · · · uik

σ−1(jk)

[A∗
kAku

⊗k]i
j =

1

k!
∑
σ∈Sk

sgn(σ )uσ (i1)
j1 · · · uσ (ik)

jk

The terms ui1
σ−1(j1) · · · uik

σ−1(jk) and uσ (i1)
j1 · · · uσ (ik)

jk differ just by reordering of the factors. Since we assume
that G is a classical group, the entries of u are commutative, so the terms must be equal.

We denote by

u∧k := Aku
⊗kA∗

k

the corresponding subrepresentation.
The dimension of the kth exterior power V∧k equals

(
n
k

)
, where n= dim V . The highest non-zero

power is therefore the nth, which is one-dimensional. Given a representation u of some group G, the nth
exterior power of u equals to the determinant u∧n = det u.

2.7. Exterior products: anticommutative case

The concept of exterior product does not work in general for quantum groups. Let us revise it here for
the case of anticommutative deformations.

For this purpose, we need to introduce some sort of “anticommutative antisymmetrization.” This
should be basically the same thing as the usual symmetrization, but, in addition, we have to “throw out
the diagonal” again. (Recall that classically we have v1 ∧ · · · ∧ vk = 0 whenever va = vb for some a, b.)

We define V ∧̆ k to be the vector subspace of V⊗k generated by the elements

v1 ∧̆ · · · ∧̆ vk =
⎧⎨
⎩

0 if va = vb for some a �= b

1
k!
∑

σ∈Sk
vσ (1) ⊗ · · · ⊗ vσ (k) otherwise

We denote by Ăk : V⊗k → V ∧̆ k the coisometry mapping v1 ⊗ · · · ⊗ vk �→ v1 ∧̆ · · · ∧̆ vk.

Remark 2.5. If we view anticommutative deformations as 2-cocycle twists of usual groups, then this
procedure amounts to twisting the intertwiner A∗

kAk of u. In this sense, the rest of this subsection might
be considered as obvious, but it does not harm to recall the facts explicitly.

Proposition 2.6. Consider G⊂O−1
n and denote by u its fundamental representation. Then u⊗kĂ∗

kĂk =
Ă∗

kĂku⊗k.

In other words, this means that (Cn)∧̆ k is an invariant space of the representation u⊗k. We denote the
corresponding subrepresentation by

u∧̆ k := Ăku
⊗kĂ∗

k .

Proof. Let us write both sides of the equation entrywise.

[u⊗kĂ∗
kĂk]

i
j =

⎧⎨
⎩

0 if ja = jb for some a �= b

1
k!
∑

σ∈Sk
ui1

σ−1(j1) · · · uik
σ−1(jk) otherwise

(2.1)
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[Ă∗
kĂku

⊗k]i
j =

⎧⎨
⎩

0 if ia = ib for some a �= b

1
k!
∑

σ∈Sk
uσ (i1)

j1 · · · uσ (ik)
jk otherwise

(2.2)

Notice again that ui1
σ−1(j1) · · · uik

σ−1(jk) and uσ (i1)
j1 · · · uσ (ik)

jk coincide up to ordering of the factors. If both i and
j consist of mutually distinct indices, then the factors commute, and hence, the terms are equal. If ja = jb

for some a �= b, then the factors uσ (ia)
ja and uσ (ib)

jb mutually anticommute. Consequently, the symmetrization∑
σ

uσ (i1)
j1 · · · uσ (ik)

jk equals to zero. The same applies in the case when ia = ib for some a �= b.

The dimension of the anticommutative exterior powers is again given by the binomial coefficients.
So, taking the nth power, we can define the anticommutative determinant as follows

(

det u := u∧̆ n =
σ∈Sn

u1
σ (1) · · · un

σ (n) =
σ∈Sn

uπ (1)
σ (1) · · · uπ (n)

σ (n)

=
π∈Sn

uπ (1)
1 · · · uπ (n)

n =
π∈Sn

uπ (1)
σ (1) · · · uπ (n)

σ (n) .

Since we assume the anticommutativity, all the factors of the terms always mutually commute. From
this, the different ways to write down the determinant follow. The definition is very similar to the one of
classical determinant—we are only missing the sign of the permutation in the sum. Such an object
is sometimes considered also in the classical theory of matrices, where it is called the permanent.
Since

(

det u is a one-dimensional representation of O−1
n , it defines a quantum subgroup SO−1

n called
the anticommutative special orthogonal quantum group

(SO −1
n ) = ∗-alg(ui

j | u = ū, u orthogonal, u anticommutative,

(

det u = 1).

Note that the relation

(

det u= 1 can be seen also as an intertwiner relation Ănu⊗n = Ăn. In other
words SO−1

n is a quantum subgroup of O−1
n that was created by adding the intertwiner Ăn ∈Mor(u⊗n, 1)

to its representation category. Similarly, SOn can be created from On by imposing the intertwiner An ∈
Mor(u⊗n, 1).

2.8. Projective versions

Let G⊂O+
N be an orthogonal compact matrix quantum group and denote by u its fundamental represen-

tation. Then u⊗ u is surely its representation, but its matrix entries may not generate the whole algebra
O(G). Denote by O(PG) the ∗-subalgebra of O(G) generated by entries of u⊗ u, that is elements of the
form ui

ju
k
l . Then PG := (O(PG), u⊗ u) is a compact matrix quantum group called the projective version

of G.

Proposition 2.7. Consider N ∈N odd. Then POq
N � SOq

N .

For our work, we need only q=+1 (classical case) and q=−1 (anticommutative case). Nevertheless,
the statement and its proof actually does not depend on q and we could take any deformation of the
orthogonal group here.

Proof. Denote by u the fundamental representation of Oq
N , so that u⊗ u is the fundamental represen-

tation of POq
N . Denote by v the fundamental representation of SOq

N .
We claim that there is a ∗-homomorphism α : O(SOq

N)→O(POq
N) mapping

vi
j �→ ui

j detq u

First, note that ui
j detq u is a polynomial of even degree in the entries of u (since N is odd, so the deter-

minant is of odd degree), and hence, ui
j detq u is indeed an element of O(POq

N). Secondly, it is easy to
check that all relations of SOq

N are satisfied by the image. In particular the determinant equals to one
since detq(ui

j detq u)i,j = (detq u)2 = 1.
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On the other hand, there is surely a ∗-homomorphism β : O(POq
N)→O(SOq

N) mapping ui
ju

k
l �→ vi

jv
k
l

since this is nothing but the restriction of the quotient map O(Oq
N)→O(SOq

N). Finally, it is easy to check
that both β ◦ α and α ◦ β equal to the identity, so the maps must actually be isomorphisms.

3. Warm-up: quantum symmetries of the classical hypercube

In this section, we would like to revisit the result [7, Theorem 4.2] saying that the quantum automorphism
group of the n-dimensional hypercube graph is the anticommutative orthogonal group O−1

n . Our aim is
to explain the proof in slightly more detail and provide more explicit computations to make everything
clear.

Throughout the whole paper, we are going to rely heavily on the theory of representation categories
and we will express everything in terms of intertwiners. This may seem a bit clumsy in this particular
case (in comparison with the approach of [7] for instance), but it will become very handy in the following
sections, where we are going to study quantum symmetries of some other graphs. Using intertwiners,
we will be able to formulate our approach in a very general way for arbitrary Cayley graphs of abelian
groups.

3.1. Quantum automorphism group of a graph

We define the free symmetric quantum group [30] S+N = (C(S+N ), u), where

O(S+N )=∗-alg (ui
j, i, j= 1, . . . , N | (ui

j)
2 = ui

j = ui∗
j ,
∑

k

ui
k = 1).

It holds that S+N describes all quantum symmetries of the space of N discrete points. What we mean
by this is that S+N is the largest quantum group that faithfully acts on the space of N points. Let us look
on this property in even more detail.

Denote by XN = {1, . . . , N} the set of N points. We can associate to XN the algebra of all functions
C(XN), which has a basis δ1, . . . , δN of the canonical projections, that is, functions δi(j)= δij. An action
of a quantum group G on XN is described by a coaction of the associated Hopf ∗-algebra, that is, a
∗-homomorphism C(XN)→C(XN)⊗O(G) satisfying some axioms.

Now, note that since (δi) is a linear basis of C(XN), the action of any compact quantum group on XN

must be of the form δj �→∑N
i=1 δi ⊗ vi

j. The axioms of a coaction are now equivalent to the fact that v is
a representation of the acting quantum group G. The algebra C(XN) can be defined as the universal C∗-
algebra generated by δi satisfying the relations δ2

i = δi = δ∗i and
∑

i δi = 1. Now, it is easy to check that
the requirement of the coaction being a ∗-homomorphism exactly corresponds to the defining relations
of C(S+N ).

Alternatively, one can see the homomorphism condition also as some kind of an intertwiner relation.
S+N can be seen as a quantum subgroup of O+

N with respect to the relation uT (N ) = T (N ) (u⊗u) , that

is, requiring T (N ) ∈ Mor(u⊗u, u). Here T (N ) is a tensor CN →CN ⊗CN defined by [T (N ) ]kij = ijkδ . See
also [3, 4].

Actually, it is easy to check that the partition� defining O+
N together with defining S+N ⊂O+

N generate
all non-crossing partitions, that is, partitions where the strings do not cross. Let us denote by NC(k, l)
the set of all partitions p ∈P(k, l), which are non-crossing. This provides a “free quantum analogue” to
Theorem 2.3 of Jones.

Proposition 3.1 ([12]). It holds that CS+N (k, l)= span{T (N)
p | p ∈NC(k, l)} for every N ∈N.

Now let X be a finite graph, so it has a finite set of vertices V := V(X). Let us number those vertices,
so we can write V = {1, . . . , N}. The adjacency matrix of X is then an N ×N matrix AX with entries
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consisting of zeros and ones such that [AX]j
i = 1 if and only if (i, j) is an edge in X. If X is undirected,

then AX should be symmetric, otherwise it need not. If we have [AX]i
i = 1, we say that X has a loop at the

vertex i. All concrete examples of graphs mentioned in this paper will be simple, that is undirected and
without loops, but the general considerations will hold also for the directed case with loops.

We say that a quantum group G acts on the graph X through the coaction α : δi �→∑
j δj ⊗ uj

i if the
coaction α commutes with the adjacency matrix, that is, α ◦ A= (A⊗ id) ◦ α. Equivalently, this means
the uA= Au. The quantum automorphism group of X is defined to be the universal quantum group acting
on X.

Definition 3.2 ([5]). Let X be a graph on N vertices. We define the quantum automorphism group of X
to be the compact matrix quantum group Aut+X = (O(Aut+X), u) with

O( Aut+ X)=∗-alg (ui
j, i, j= 1, . . . , N | (ui

j)
2 = ui

j = ui∗
j ,
∑

k

ui
k = 1, Au= uA).

Equivalently, it is determined by its representation category

CAut X = T (N ) , T (N )
X N = T (N ) (N )

X N ,+ , T ,A,A

where ↑∈P(0, 1) is the singleton partition. The equivalence of the two generating sets can be easily
seen by noticing that T (N ) = T (N ) ∗T (N ) on one hand and T (N ) = T (N )T (N ) on the other hand. See
also [13].

3.2. The n-dimensional hypercube

Consider a natural number n ∈N. The n-dimensional hypercube graph Qn is determined by the vertices
and edges of an n-dimensional hypercube. It can be parametrized as follows.

The set of N := 2n vertices can be identified with the elements of the groupZn
2. We are going to denote

these group elements by Greek letters α = (α1, . . . , αn) ∈Zn
2 with αi ∈ {0, 1} �Z2. We will denote the

group operation as addition. We also denote the canonical generators by εi = (0, . . . , 0, 1, 0, . . . , 0).
Two vertices α, β ∈ V(Qn) are connected by an edge if and only if they differ in exactly one of the

n indices, that is, if β = α + εi for some i ∈ {1, . . . , n}. Equivalently, we can say that Qn is the Cayley
graph of Zn

2 with respect to the generating set ε1, . . . , εn. We can also express the edges via the adjacency
matrix

[AQn ]α

β
=
⎧⎨
⎩

1 if β = α + εi for some i,

0 otherwise.

Example 3.3 (n= 3). We mention the example of the ordinary three-dimensional cube and its
parametrization using triples of zero/one indices. Note that shifting the vertex by εi, that is, flipping
the ith index, we move in the direction of the ith dimension.

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

ε1

ε2

ε3

Below, we show the corresponding adjacency matrix. Since it is not clear, how the elements of Zn
2

should be ordered, we also labeled the rows with the corresponding tuples (the columns are ordered the
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same way). We also indicated the division of the matrix into blocks with respect to the number of ones
in the tuple (essentially the distance from the (0, 0, 0)-vertex).

AQ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0 (0,0,0)

1 0 0 0 0 1 1 0 (1,0,0)

1 0 0 0 1 0 1 0 (0,1,0)

1 0 0 0 1 1 0 0 (0,0,1)

0 0 1 1 0 0 0 1 (0,1,1)

0 1 0 1 0 0 0 1 (1,0,1)

0 1 1 0 0 0 0 1 (1,1,0)

0 0 0 0 1 1 1 0 (1,1,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.3. Functions on the hypercube and Fourier transform

We denote by C(Qn) the algebra of functions on the vertex set V(Qn)=Zn
2. It has the canonical basis of

δ-functions δα defined by δα(β)= δαβ .
We can also define the structure of a Hilbert space l2(Qn) on the vector space of functions simply by

putting 〈f , g〉 =∑
α

f (α)g(α). The basis (δα) is then orthonormal with respect to this inner product.
There is another important basis on l2(Qn) given by functions of the form

τμ = τ
μ1
1 · · · τμn

n , where μ= (μ1, . . . , μn) ∈Zn
2

and

τi(α)= (−1)αi ,

so

τμ(α)= (−1)α1μ1+···+αnμn = (−1)α·μ.

First, note that the elements τμ form a presentation of the group Zn
2 itself or, alternatively, of the group

algebra CZn
2. That is, we have τμτν = τμ+ν ; indeed,

(τμτν)(α)= (−1)α·μ(−1)α·ν = (−1)α·(μ+ν) = τμ+ν .

Secondly, note that the basis (τμ) is orthogonal:

〈τμ, τν〉 =
∑

α

(−1)α·(μ+ν) =
⎧⎨
⎩

2n if μ+ ν = 0, i.e. μ= ν,

0 otherwise.

Let us explain more in detail the last equality, which will actually be useful also in subsequent
computations.

Lemma 3.4. For β ∈Zn
2, it holds that

∑
α∈Zn

2

(−1)α·β =
⎧⎨
⎩

2n if β = 0,

0 otherwise.

Proof. If β = 0, then (−1)α·β = (−1)0 = 1, so in the sum we are summing over 2n ones. Hence the
result. If β has some non-zero entry, say βi = 1, then for every α, we can flip the ith entry of α in
order to flip the sign of (−1)α·β . Thus, there is an equal amount of +1 as −1 in the sum, so they
cancel out.
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We define the transformation matrix F : l2(Qn)→ l2(Qn) by Fα
μ
= (−1)α·μ called the Fourier trans-

form. It provides a transformation between the two bases: τμ =∑α
δαFα

μ
. Thanks to the orthogonality

property above, we have that F is, up to scaling, orthogonal. More precisely F−1 = 1
2n F ∗.

Example 3.5 (n= 3). Let us again look on the case n= 3. The matrix F consists only of ±1 elements.
For easier reading, we write only + or − in the matrix instead of +1 and −1. The order for the bases
(δα) and (τμ) or, better to say, the order of the tuples α ∈Z3

2 are again indicated behind the matrix.

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,0)

+ + + + + + + +
+ − + + + − − −
+ + − + − + − −
+ + + − − − + −
+ + − − + − − +
+ − + − − + − +
+ − − + − − + +
+ − − − + + + − (1,1,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.4. Applying Fourier transform to the intertwiners

Recall that the quantum automorphism group of the hypercube Aut+Qn should be the quantum subgroup
of S+N with respect to the intertwiner relation uA= Au, where we denote for short A := AQn . Equivalently,
it is the quantum subgroup of O+

N with respect to relations uT (N ) = T (N ) (u⊗u) and uA= Au.
On the first sight, it is not clear, which quantum group these relations define. In order to see this, we

first apply the Fourier transform to the intertwiners. (Recall that F is up to scaling orthogonal, so O+
N is

invariant under F .) Let us look on an example first.

Example 3.6 (n= 3). The most important intertwiner seems to be the adjacency matrix of the graph as
only this carries the data of the graph itself. A straightforward computation gives us a diagonal matrix

Â := F−1AF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 (0,0,0)

1 (1,0,0)

1 (0,1,0)

1 (0,0,1)

−1 (0,1,1)

−1 (1,0,1)

−1 (1,1,0)

−3 (1,1,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Writing some explicit matrices for T (N ) would be slightly complicated, so we will get back to this
tensor later. So, let us now do the computations for general n. For the adjacency matrix, we have

[F−1AF]μ

ν
= 1

2n

∑
α,β

(−1)α·μAα

β
(−1)β·ν = 1

2n

∑
α

n∑
i=1

(−1)α·μ(−1)(α+εi)·ν

= 1

2n

(∑
α

(−1)α·(μ+ν)

)(
n∑

i=1

(−1)νi

)
= δμν(n− 2 deg ν),
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where deg ν is the number of ones in ν, which we will subsequently call the degree of ν. So, we can say
that the Fourier image of the adjacency matrix is a direct sum of identities with some scalar factors

Â := F−1AF =
n⊕

k=0

(n− 2k)I(n
k

) (3.1)

Imposing Â to be an intertwiner is equivalent to saying that every subspace of l2(Qn) consisting
of elements with a given degree d (w.r.t. the basis (τμ)) is invariant. So, let us denote the invariant
subspaces by

Vk := {f ∈ l2(Qn) | deg f = k}.
Note that dim Vk =

(
n
k

)
. Note also that those spaces do not define a grading, but only a filtration on the

algebra C(Qn).
So, denote by û := F−1uF the Fourier transform of the fundamental representation of the quantum

automorphism group of the hypercube and by û= û(0) ⊕ û(1) ⊕ · · · ⊕ û(n) the decomposition according
to the invariant subspaces Vk.

This was only how the adjacency matrix A transforms under F . But we also need to trans-
form the intertwiners defining the free symmetric quantum group S+N . Let us consider the tensor
T (N ) : CN ⊗ CN → CN ⊗Cn defined by [T (N )]αβγδ = δαβγδ (This is indeed an intertwiner of S+N since

T (N ) = T (N ) ∗T (N ).)
Thanks to the fact that u must be block diagonal (as we just derived), we can study such intertwin-

ers restricted to such blocks. So, denote by Pk the (Fourier transform composed with the) orthogonal
projection l2(Qn)→ Vk and define the tensor T̂ (N )

1 1

1 1

:= (P ⊗ P)−1T (N)(P ⊗ P), which must be an

intertwiner of û(1). We can compute its entries:

[T̂ (N )
1 1

1 1

]ijkl = [(F ⊗ F ) −1T (N ) (F ⊗ F )]ε i ,ε jεk ,ε l
= 1

22n

∑
α,β,γ,δ

(−1)α i + β j + γ k + δ l δα,β,γ,δ

= 1
22n

∑
α

(−1)α i + α j + α k + α l =

⎧⎪⎪⎨
⎪⎪⎩

1/ 2n if in the tuple (i, j, k, l),
two and two indices are
the same

0 otherwise

One can write down this result also using the partition notation as

2n T̂ (N )
1 1

1 1

= T (n) + T (n) + T (n) − 2T (n)

This is well known to be the intertwiner defining the quantum group O−1
n . (See e.g. [17, Section 7]).

Now, we may already see, where is this heading toward.
As a side remark, note that one might also want to directly compute the projection of T (N ) to the

subspace V1. This is of course possible by doing a very similar computation. However, this intertwiner
turns out to be equal to zero (since one can never “pair” a triple of indices).

3.5. Quantum automorphism group of the hypercube

In this section, we prove that the quantum automorphism group of the hypercube graph is the O−1
n —a

result originally obtained in [7, Theorem 4.2].

Theorem 3.7. The quantum automorphism group of the n-dimensional hypercube graph is the anticom-
mutative orthogonal quantum group O−1

n with the representation

F(1⊕ v⊕ (v ∧̆ v)⊕ · · · ⊕ v∧̆ n
)F−1,

where v is the standard fundamental representation of O−1
n .
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Proof. Denote by u the fundamental representation of the quantum automorphism group of the hyper-
cube Aut+Qn. Denote by û := F−1uF the Fourier transform of u. We prove the theorem by a series of
lemmata. We start with results derived in the previous section.

Lemma 3.8. The representation û decomposes as û= û(0) ⊕ û(1) ⊕ · · · ⊕ û(n).

Proof. Follows from the form of the Fourier transform of the adjacency matrix (3.1).

Lemma 3.9. The subrepresentation û(1) satisfies the defining relation for O−1
n .

Proof. Follows from T̂ (N )
1 1

1 1

being an intertwiner of û(1).

Lemma 3.10. The subrepresentation û(1) is a faithful representation of Aut+Qn.

Proof. The representation û acts on Qn through the coaction τμ �→∑
ν
τν ⊗ uν

μ
. Since the algebra

C(Qn) is generated by the invariant subspace V1 = span{τi}n
i=1, this coaction is uniquely determined by

the coaction of û(1) on this invariant subspace. In particular, the entries of û must be generated by the
entries of û(1).

Consequently, Aut+Qn is a quantum subgroup of O−1
n . Now it remains to prove the opposite inclusion.

Lemma 3.11. The mapping τi �→∑n
j=1 τj ⊗ vj

i extends to a ∗-homomorphism α : C(Qn)→C(Qn)⊗
O(O−1

n ). The subspaces Vl are invariant subspaces of this action for every l= 0, . . . , n.

Proof. We have to check that the images of the generators τi satisfy the generating relations. That is:

α(τi)
∗ = α(τi), α(τi)

2 = 1, α(τi)α(τj)= α(τj)α(τi).

The first one is obvious as both τi and vj
i are self-adjoint. For the second, we have α(τi)2 =∑j,k τjτk ⊗ uj

iu
k
i .

While τj commutes with τk, we have that uj
i anticommutes with uk

i unless j= k. So, the entries for j �= k
subtract to zero and we are left with

∑
j τjτj ⊗ uj

iu
j
i = 1. Finally, the last one (assuming i �= j) is again

easy as we have α(τi)α(τj)=∑k,l τkτl ⊗ uk
i u

l
j, where everything commutes (unless k= l, but for those

summands we have
∑

k τkτk ⊗ uk
i u

k
j = 0).

It remains to show that Vl are invariant subspaces. Take arbitrary element τi1 · · · τil ∈ Vl (assuming
i1 < · · ·< il) and write explicitly

α(τi1 · · · τil )=
n∑

j1,...,jl=1

τj1 · · · τjl ⊗ ui1
j1 · · · uil

jl . (3.2)

In the cases, where ja = jb for some a, b, the contribution of the sum must equal to zero since the corre-
sponding τja and τjb commute, while uia

ja and uib
jb anticommute. So, we are actually summing over elements

τj1 · · · τjl ∈ Vl only, which is what we wanted to prove.

This means that O−1
n is a quantum subgroup of Aut+Qn, which finishes the proof that Aut+Qn �O−1

n .
Finally, from the explicit expression (3.2), it is clear that O−1

n acts on the invariant subspaces Vl indeed
through the representations û(l) = v∧̆ l.

4. Cayley graphs of abelian groups: general picture

The fact that the Fourier transform diagonalizes the adjacency matrix of the hypercube graph is not a
coincidence. In the graph theory, it is a well-known fact, which holds for any Cayley graph of an abelian
group. (See [21] for a nice survey on the spectral theory of Cayley graphs.)
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Let � be a finite abelian group. We denote by Irr � ⊂C(�) the set of all irreducible characters (i.e.
one-dimensional representations; since � is abelian, all irreducible representations are in fact one-
dimensional). Note that Irr � forms a basis of C(�) and expressing a function in this basis is exactly
the Fourier transform on �.

Let S⊂ � be a set of generators of �. As in the last section, we are going to denote the elements of
� by Greek letters and the operation on � as addition. The Cayley graph of the group � with respect to
the generating set S denoted by Cay(�, S) is a directed graph defined on the vertex set � with an edge
(α, β) for every pair of elements such that β = α + ϑ for some ϑ ∈ S. If S is closed under the group
inversion, then the Cayley graph is actually undirected (for every edge, one also has the opposite one).
So, the adjacency matrix of Cay(�, S) is of the form

[A]β

α
=
⎧⎨
⎩

1 if β = α+ ϑ for some ϑ ∈ S,

0 otherwise.

Proposition 4.1 ([20, 1]). Let � be a finite abelian group and S its generating set. Denote by A the
adjacency matrix associated to the Cayley graph Cay(�, S). Then Irr � forms the eigenbasis of A. Given
χ ∈ Irr �, its eigenvalue is given by

λχ =
∑
ϑ∈S

χ (−ϑ). (4.1)

Proof. This is just a straightforward check. Take any χ ∈ Irr � then we have

[Aχ ]α =
∑
β∈�

Aα

β
χ (β)=

∑
ϑ∈S

χ (α− ϑ)=
∑
ϑ∈S

χ (−ϑ)χ (α)= λχχ (α).

This result suggests the strategy for determining the quantum automorphism group for any Cayley
graph corresponding to an abelian group: express everything in the basis of irreducible characters. Since
this diagonalizes the adjacency matrix, the meaning of it as an intertwiner becomes obvious. On the other
hand, it might be slightly more complicated to discover the meaning of the intertwiner T (N )

Algorithm 1. Determining Aut+Cay(�, S). Let � be an abelian group and S its generating set. We are
trying to determine the quantum automorphism group Aut+Cay(�, S) with fundamental representation
u. In order to do so, we perform the following steps:

1. Determine the irreducible characters of �. Suppose that � =Zm1 × · · · ×Zmn . Then Irr � =
{τμ}μ∈� with τμ(α)=∏n

i=1 γ
αiμi

i , where γi is some primitive mi-th root of unity for every i.
2. Determine the spectrum of A� using equation (4.1).
3. Denoting by λ0 > λ1 > . . . > λd the mutually distinct eigenvalues of A�, determine the corre-

sponding eigenspaces V0, V1, . . . , Vd. (Note that we will always have V0 = span{τ0}, where 0 is
the group identity.)

4. The eigenspaces are invariant subspaces of u. To formulate it slightly differently: We may define
the Fourier transform F as the matrix corresponding to the change of basis (δα) �→ (τμ), that
is Fα

μ
= τμ(α). Then we can define û=F−1uF , which decomposes as a direct sum û= û(0) ⊕

û(1) ⊕ · · · ⊕ û(d).
5. Choose some of the spaces and define W := Vi1 ⊕ Vi2 ⊕ · · · in such a way that W generates

C(�) as an algebra. (In our examples below, it will be enough to take W := V1, but it does not
always have to be like this.) This means that v := û(i1) ⊕ û(i2) ⊕ · · · is a faithful representation
of Aut+ Cay (�, S). (Since the coaction of u or û restricted to W must then again uniquely extend
to the whole space C(X) and hence we can recover the whole u this way.)

6. Any non-crossing partition p ∈NC(k, l) defines an intertwiner T (N)
p ∈Mor(u⊗k, u⊗l), where N =

|�|. We define T̂ (N)
p := F−1⊗lT (N)

p F⊗k, which has to be an intertwiner T̂ (N)
p ∈Mor(û⊗k, û⊗l). It is
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actually enough to study the intertwiners corresponding to the block partitions bk,l ∈P(k, l)—
partitions, where all the k upper and l lower points are in a single block, so [T (N)

bk,l
]β1,...,βl
α1,...,αk

=
δα1,...,αk ,β1,...,βl . The entries of the Fourier transformed intertwiner are easily computed as

[T̂bk,l ]
ν1,...,νl
μ1,...,μk

=N1−lδμ1+···+μk ,ν1+···+νl . (4.2)

In particular, we can focus on the subspace W and study the relations T̂ (W)
p v⊗k = v⊗lT̂ (W)

p , where
T̂ (W)

p =U⊗lT̂ (N)
p U∗⊗k, where U is the coisometry V0 ⊕ · · · ⊕ Vd →W.

5. Halved hypercube

The hypercube graph is bipartite, and hence, we can create a new graph of it by the procedure of
halving—taking one of the two components of the associated distance-two graph. Taking a natural num-
ber n ∈N, we define the (n+ 1)-dimensional halved hypercube graph 1

2
Qn+1 obtained by halving the

ordinary hypercube Qn+1. That is, we take all the even vertices in Qn+1 (equivalently, all odd vertices)
and connect by an edge every pair of vertices that were in the distance two in the original hypercube
Qn+1.

There is also a simpler definition of 1
2
Qn+1. Take the n-dimensional hypercube Qn and add an addi-

tional edge for every pair of vertices in distance two. This is also known as squaring the graph. It holds
that Q2

n = 1
2
Qn+1. Using this description, we can write the adjacency matrix as follows

[A]α

β
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if β = α + εi for some i

1 β = α + εi + εj for some i �= j

0 otherwise

Consequently, we see that 1
2
Qn+1 =Q2

n is a Cayley graph corresponding to the group � =Zn
2 with

respect to the generating set S= {εi}n
i=1 ∪ {εi + εj}i<j. In particular, the number of vertices is N := 2n.

Now we would like to determine the quantum automorphism group of the halved hypercube graph
1
2
Qn+1. Let us first summarize some known results. For n≤ 2, the graph is actually the full graph on

N = 2n vertices, so the quantum automorphism group is the free symmetric quantum group S+N (for
n= 0, 1, i.e. N = 1, 2, this actually coincides with the classical one SN). For n= 3, the graph is the
complement of the graph consisting of four isolated segments. Hence, its quantum automorphism group
is the free hyperoctahedral quantum group H+

4 =Z2 �∗ S+4 . (Here �∗ denotes the free wreath product,
which describes the quantum automorphism group of n copies of a given graph [9].)

So, the question is what is the quantum automorphism group of 1
2
Qn+1 for n > 3. The classical

automorphism group is known to be Zn
2 � Sn+1. More precisely, it is the index two subgroup of the

hyperoctahedral group Hn+1 =Z2 � Sn+1 =Zn+1
2 � Sn+1 (the symmetry group of the hypercube) imposing

that the product of all the Z2-signs is equal to one. This group is also known as the Coxeter group of
type D. Since the quantum automorphism group of Qn+1 is O−1

n+1, we may expect that the answer for the
halved hypercube 1

2
Qn+1 should be the anticommutative special orthogonal group SO−1

n+1.

5.1. Determining Aut+ 1
2
Qn+1

We follow Algorithm 1. We start by computing the spectrum using equation (4.1):

λμ =
n∑

i=1

τμ(εi)+
∑

i<j

τμ(εi + εj)=
∑

i

(−1)μi +
∑

i<j

(−1)μi+μj = lμ + 1

2
l2
μ
− n

2
,

where lμ =∑i (−1)μi = n− 2 deg μ. Note that the eigenvalue depends again only on the degree of μ

(the number of non-zero entries). So, denote λd := λμ for d = deg μ. So, λd = 1
2
(l2

d + 2ld − n) with ld =
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n− 2d. After some computation, one can find out that

λd = 1

2

(
(2d − n− 1)2 − n− 1

)
In contrast with the computation for the hypercube Qn, the eigenvalues λ0, . . . , λn are not distinct.
Instead, λd = λn+1−d. Consequently, the matrix Â as an intertwiner does not imply that the subspaces
Vi := span{τμ | deg μ= i} are invariant. Instead, we have the following invariant subspaces: Ṽ0 := V0,
Ṽ1 := V1 + Vn, Ṽ2 := V2 + Vn+1 and so on. In general, Ṽi = Vi + Vn+1−i is an invariant subspace for every
i= 0, . . . , � n+1

2
� (using the convention Vn+1 = {0}).

In order to describe the invariant spaces, define τn+1 := τ1 · · · τn. Then τ1, . . . , τn, τn+1 is the basis
of Ṽ1. The basis of each Ṽi is exactly the set {τα} with α ∈Zn+1

2 , deg α = i. Denote by u the funda-
mental representation of Aut+ 1

2
Qn+1 and by û(i) the block of û=F−1uF corresponding to the invariant

subspace Ṽi.
Obviously, τ1, . . . , τn+1 are also generators of C( 1

2
Qn+1)=C(Zn

2) (since already τ1, . . . , τn are gener-
ators) and we can write the algebra by generators and relations as

C

(
1

2
Qn+1

)
=C∗(τ1, . . . , τn+1 | τ 2

i = 1, τiτj = τjτi, τ ∗
i = τi, τ1 · · · τn+1 = 1).

Theorem 5.1. Consider n ∈N \ {1, 3}. The quantum automorphism group of the halved hypercube
graph 1

2
Qn+1 is isomorphic to the anticommutative special orthogonal group SO−1

n+1. It acts through the
fundamental representation u with û(i) = v∧̆ i, where v is the fundamental representation of SO−1

n+1.

Proof. We follow the proof of Theorem 3.7. Let us first prove that SO−1
n+1 ⊂Aut+ 1

2
Qn+1, that is, SO−1

n+1

really acts on the halved hypercube. To do this, we are going to show that the mapping

τj �→
n+1∑
i=1

τi ⊗ ui
j

extends to a ∗-homomorphism. Most of the work was already done in Lemma 3.11. It only remains to
prove that the extra relation we have here τ1 · · · τn+1 = 1 is also preserved under this action. That is, we
need to show that

1=
n+1∑

i1,...,in+1=1

τi1 · · · τin+1 ⊗ ui11 · · · uin+1,n+1

This is indeed true thanks to the anticommutative determinant relation

(

det u= 1.
Now for the converse direction, consider again the intertwiner T̂ (N ) and compute its restriction to Ṽ1.

It is easy to check that we obtain the same formula

[T̂ (N ) ]ijkl =

⎧⎪⎪⎨
⎪⎪⎩

1/ 2n if in the tuple (i, j, k, l),
two and two indices are
the same

0 otherwise

even on the “extended” space Ṽ1 = V1 ⊕ Vn (this is the point, where the assumption n �= 1, 3 is needed).
Consequently, we have proven that O−1

n+1 ⊃Aut+ 1
2
Qn+1.

Finally, it remains to find some intertwiner that would push us to the SO−1
n+1. Consider the

block partition bn +1 = · · · ∈ (n + 1 , 0). The corresponding intertwiner is then of the form
[T (N )

· · · ]α1 ,...,αn +1 = δα1 ,...,αn +1. We are interested in restriction of its Fourier transform on Ṽ1 (more
precisely, Ṽ⊗(n+1)

1 ):
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[T̂ (N )· · · ]i 1 , . . . , in +1 =
{

1 if (i1 , . . . , in +1) is a permutation of (1 , . . . , n + 1)

0 otherwise

This is exactly the antisymmetrizer Ăn ∈Mor((û(1))⊗n, 1), which exactly corresponds to the relation

(

det
û(1) = 1.

5.2. Open problem

Let us finish this section with links to some open questions and related research. Note that there are free
quantum analogues of the Coxeter groups of series A (i.e. the symmetric groups Sn) and series B or C
(i.e. the hyperoctahedral groups Hn), but so far we do not have any really free analogue of the Coxeter
series D (recall that series D consists exactly of the symmetry groups of halved hypercubes 1

2
Qn). The

series of the anticommutative special orthogonal groups SO−1
n is a liberation of the Coxeter groups of

type D, but we should not call them free as they obey some sort of commutativity laws (namely the
anticommutativity).

Question 5.2. Is there a free analogue for the Coxeter groups of series D?

One particular candidate was recently discovered in [15] for n= 4. For general n, the question is still
open. If some candidates appear, then the natural follow-up question would be: Is there some graph,
whose quantum symmetry is this?

6. Folded hypercube

Folded hypercube is another graph that can be derived from the hypercube graph. Consider again n ∈N.
The (n+ 1)-dimensional folded hypercube graph FQn+1 is a quotient of the hypercube Qn+1 obtained by
identifying the opposite corners, so α≡ α + ι, where ι= (1, . . . , 1)= ε1 + · · · + εn. By this, we end up
with a graph having only half of the vertices, that is, N = 2n.

Also here, there is a more convenient description. The (n+ 1)-dimensional folded hypercube can
be obtained from the n-dimensional ordinary hypercube by connecting all the opposite corners by an
additional edge. So, the adjacency matrix can be written as

[A]α

β
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if β = α+ εi for some i,

1 if β = α+ ι,

0 otherwise.

In other words, it is the Cayley graph of Zn
2 with respect to the generating set {ε1, . . . , εn, ι}.

Now, let us again review, what is known about its classical and quantum symmetries. For n≤ 2, the
folded hypercube FQn+1 is just the complete graph on N = 2n vertices, so its quantum automorphism
group is S+N . For n= 3, it is the complete bipartite graph on 4+ 4 vertices, which is the complement
of the disjoint union K4  K4, so its quantum automorphism group is S+4 �∗ Z2 (again, we refer to [9] for
explanation of the free wreath product). So, the interesting area is n > 3.

The classical automorphism group of FQn+1 for n > 3 is of the formZn
2 � Sn+1 [23], but it is a different

semidirect product than in the case of the halved cube. Here, we take the quotient group of Hn+1 =
Zn+1

2 � Sn+1 by identifying the (n+ 1)-tuple of signs with the opposite ones. In other words, it is the
projective version PHn+1. Therefore, we expect PO−1

n+1 to be the quantum automorphism group.
In [27], it was proven for n even that the quantum automorphism group is actually SO−1

n+1, which
matches our guess since it is isomorphic with PO−1

n+1 according to Proposition 2.7.
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6.1. Determining Aut+FQn+1

Let us now compute the eigenvalues of the adjacency matrix:

λμ =
n∑

i=1

τμ(εi)+ τμ(ι)=
n∑

i=1

(−1)μi + (−1)μ1+···+μn

= n− 2 deg μ+ (−1)deg μ = n+ 1− 4"1/2 deg μ#
Again, the eigenvalue depends only on the degree of μ, but again the values of λd := λμ with deg μ=

d are not mutually distinct. In this case, we have λ2d−1 = λ2d. So, we have invariant subspaces Ṽ0 := V0,
Ṽ2 := V1 ⊕ V2 and so on. That is, Ṽ2i = V2i−1 ⊕ V2i, i= 0, 1, . . . , "n/2# (with Ṽn+1 = Vn if n is odd).
Denoting by u the fundamental representation of Aut+FQn+1, we denote by

û= û(0) ⊕ û(2) ⊕ u(4) ⊕ · · ·
the decomposition of its Fourier transform according to the invariant subspaces.

Denote τn+1 := 1, so the elements τij := τji := τiτj with 1≤ i < j≤ n+ 1 form a basis of Ṽ2. In gen-
eral, the basis of Ṽ2i is (τα) with α ∈Zn+1

2 , deg α = 2i. We can use the basis of Ṽ2 as a generating set of
C(Zn

2)=C(FQn+1):

C(FQn+1)=C∗
(

τij, 1≤ i < j≤ n+ 1

∣∣∣∣∣
τ 2

ij = 1, τ ∗
ij = τij,

τijτkl = τklτij, τijτik = τjk

)
.

Alternatively, one can view C(FQn+1) as the subalgebra of C(Zn+1
2 )=C(Qn+1)

C(Qn+1)=C∗(τ1, . . . , τn+1 | τ 2
i = 1, τ ∗

i = τi, τiτj = τjτi)

generated by the elements τij = τji = τiτj. This exactly corresponds to the fact that FQn+1 is a quotient
graph of Qn+1.

Theorem 6.1. Consider n ∈N \ {1, 3}. The quantum automorphism group of the folded hypercube graph
FQn+1 is isomorphic to the anticommutative projective orthogonal group PO−1

n+1. It acts through the
fundamental representation u with û(i) = v∧̆ 2i, where v is the fundamental representation of O−1

n+1.

Before proving this theorem, we need to do some preparatory work first. At this point, it is not even
clear whether the prescribed representation

⊕
v∧̆ 2i is a faithful representation of PO−1

n+1. We are actually
going to prove that v ∧̆ v is a faithful representation. As a second step, we need to characterize O(PO−1

n+1)
by generators and relations in terms of this representation v ∧̆ v. Equivalently, we need to find suitable
generators of the representation category C associated to v ∧̆ v. Only this allows us to use our standard
machinery and prove Theorem 6.1.

This preparatory work is done in Section 6.2. The proof of Theorem 6.1 itself is then formulated in
Section 6.3.

6.2. Projective version represented by exterior product

In Section 2.8, we defined the projective version of a compact matrix quantum group again as a compact
matrix quantum group with the fundamental representation of the form u⊗ u. In the classical case, we
have also another faithful representation at our disposal.

Proposition 6.2. Consider G⊂On, n > 1. Denote by u its fundamental representation. Then u∧ u is a
faithful representation of PG.

Before formulating the proof, let us clarify the definition of projective groups. Our definition from
Section 2.8 works for orthogonal groups only. For a general matrix group G⊂GLn, one typically
defines its projective version to be the quotient PG=G/λI, λ ∈C \ {0} (thus, in particular, PGLn =
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GLn/Z(GLn)). Note that if G is orthogonal, then λI ∈G only for λ=±1. Therefore, assuming G⊂On,
our definition PG= {A⊗ A | A ∈G} is compatible with the general one (since we can reconstruct A from
A⊗ A up to a global sign).

Finally, let us mention that over C, we obviously have PGLn = PSLn, which is known to be a simple
group, that is, it has no non-trivial normal subgroups.

Proof.1 Denote V := Cn, so that GLn =GL(V). Consider the homomorphism ϕ : GL(V)→GL(V ∧
V) mapping A �→ A∧ A. Since it maps multiples of identity to multiples of identity, it induces a homo-
morphism ϕ̃ : PGL(V)→ PGL(V ∧ V). Since the PGL(V) is simple (and the mapping ϕ̃ is obviously
non-trivial), we must have that ϕ̃ is injective. Consequently, the kernel of ϕ is contained in scalar
matrices.

Now, we can restrict ϕ to any subgroup G⊂GLn. Note that we can factor ϕ as ϕ : G
ϕ1→G′ ϕ2→G′ ′,

where G′ = {A⊗ A | A ∈G} and G′ ′ = {A∧ A | A ∈G}. We need to prove that ϕ2 : G′ →G′ ′ is an iso-
morphism for G⊂On as we have G′ � PG in this case. Recall that we have the property ker ϕ ⊂ {λI}.
If G⊂On, we must actually have ker ϕ ⊂ {±I}. But we know that ker ϕ1 = {±I}, and hence, ϕ2 must
indeed be an isomorphism.

It is known that the anticommutative orthogonal group can be obtained from the ordinary one by
a 2-cocycle twist. Consequently, the two quantum groups are monoidally equivalent. More precisely,
there exists a monoidal isomorphism of the corresponding representation categories Rep On →Rep O−1

n

mapping the fundamental representations one to another (i.e. there is also a monoidal isomorphism
COn → CO−1

n
). See for example [7, 17]. This implies the following corollary.

Corollary 6.3. Denote by ŭ the fundamental representation of O−1
n , n > 1. Then ŭ ∧̆ ŭ is a faithful

representation of PO−1
n .

Proof. Denote by u the fundamental representation of On. As mentioned above, there is a monoidal
equivalence Rep On →Rep O−1

n mapping u �→ ŭ. It is easy to check that this monoidal equivalence
also maps A∗

2A2 ∈Mor(u⊗ u, u⊗ u) to Ă∗
2Ă2 ∈Mor(ŭ⊗ ŭ, ŭ⊗ ŭ). Consequently, it must map u∧ u to

ŭ ∧̆ ŭ. Since the former is a faithful representation of POn, the latter must be a faithful representation of
PO−1

n .

In the following text, we will denote the projective orthogonal group represented by the matrix u∧ u
by P̂On = (O(POn), u∧ u). (The hat should remind us about the wedge product ∧.) Expressing the rep-
resentation category CP̂On

in terms of the representation category COn is easy: We only have to compose
all the intertwiners with the antisymmetrizer A2 : x⊗ y �→ x∧ y. That is,

CP̂On
(k, l)= {A⊗l

(2)TA∗⊗k
(2) | T ∈ COn (2k, 2l)}

= {A⊗l
(2)TpA∗⊗k

(2) | p ∈Pairn(2k, 2l)},
where Pairn = 〈 , 〉n = span {p | p is a pairing}. (Pairing is a partition, where all blocks have size
two. By an old result of Brauer [11], this is exactly the category corresponding to the orthogonal group.
See also e.g. [12, 31, 14].) However, the question is, what is the generating set of this category. Finding
some small set of generators is actually not so easy as it may seem on the first sight.

In order to understand the following text, one needs to familiarize the category operations on linear
categories of partitions (or at least the linear category of all pairings Pairn). The rough idea is that in
order to perform the composition of two pairings, one should simply follow the lines and, if needed,
replace all loops by the factor n. We refer to [16, Section 3] for more details.

In the following computations, we are going to treat the antisymmetrizer as a projection rather than a
coisometry, soA∗

2 =A2. In this sense, it can be expressed in terms of partitions as 1
2 ( − ). However,

1 Credit for this proof goes to a math.StackExchange user Joshua Mundinger https://math.stackexchange.com/a/4049085/359512
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we are going to use a more convenient notation: In the diagrams, we will denote the antisymmetrizer
by . So, for example, the antisymmetrization of will be denoted by , the antisymmetriza-
tion of the identity is 1

2 . For any partition p ∈P(2k, 2l), we are going to denote its

antisymmetrization by p̊ = ⊗ l · p · ⊗k . Consequently, we can write

CP̂On
(k, l)= {Tp◦ | p ∈Pairn(2k, 2l)}, (6.1)

so CP̂On
is modeled by a diagrammatic category Pair◦n := {p◦ | p ∈Pairn}.

Theorem 6.4. Consider n �= 2, 4, 6, 8. Then the category Pair◦n is generated by the set { , }.

Before proving the theorem, let us mention two important Corollaries:

Corollary 6.5. Consider n �= 2, 4, 6, 8. Then the representation category CP̂On
is generated by

{T (n ) , T (n ) }.

Proof. Follows directly from Theorem 6.4 and equation (6.1).

Corollary 6.6. Consider n �= 2, 4, 6, 8. Then the representation category CP̂O−1
n

is generated by
{T̆ (n ) , T̆ (n ) }.

Proof. As we mentioned earlier, On is monoidally equivalent with O−1
n , the monoidal equivalence

maps the fundamental representation u of On to the fundamental representation ŭ of O−1
n . As for the

intertwiners, it maps Tp ∈Mor(u⊗k, u⊗l) for p ∈Pairn to T̆p ∈Mor(ŭ⊗k, ŭ⊗l) defined at the end of Section
2.4. The Corollary then follows by restricting the monoidal equivalence to the full subcategory CPOn ⊂
COn and applying to Corollary 6.5.

Now, we focus on the proof of Theorem 6.4. To make it easier to follow, we split it into several
lemmata.

First, let us do a small remark on rotations in the category Pair◦n. This category (as well as the cat-
egory CPOn) is rigid and the duality morphism looks like this: . This again allows to do rotations
in the category, but those rotations look a bit different than in the original category Pairn. Consider
some p ∈P(2k, 2l). Let us call each pair of some (2i+ 1)-st and (2i+ 2)-nd point on either lower or
upper row in p a two-point. When drawing p

◦ , those two points are highlighted by the ellipse The
element then allows to rotate those two points in p

◦ as a whole, not separately. For instance, rotating
, we may obtain , but we cannot obtain . (The latter would actually equal to zero due to the

antisymmetrization:
1
2 0

Lemma 6.7. Consider n �= 2. Then the category Pair◦n is generated by the set
.

Proof. Denote by C the category generated by the given generators. Notice that we have the duality
morphism among the generators, so C is a rigid category and we can consider everything up to
rotation now. For instance, we could equivalently consider instead of or instead of

in the generating set.
As the first step, we prove that p

◦
k ∈C for every k ∈N \ {1}, where · · · ∈ NC2 (0, 2k). That

is, pk is the rotation of �⊗k. We do this by induction. The p
◦
k for k= 2, 3, 4, 5 are among the genera-

tors, so we have the initial step and a couple of others already by assumption. We construct any p
◦
k by

precomposing p
◦
k−1 with :
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= 1
4

(
− − +

)
= n − 2

4
p̊k +

1
4

p̊3 ⊗ p̊k − 2

As the second step, we prove that p
◦ ∈C for every pairing p ∈P2(0, 2k). We use the element ,

which allows to permute the two points in p
◦ . We claim that any p ∈P2(0, 2k) can be obtained by such

two-point permutations from some p
◦
i1
⊗ · · · ⊗ p

◦
il
. Since we already proved that p

◦
i ∈C for every i > 1

and ∈ , this will finish the proof of the theorem. Note that thanks to the antisymmetrization, the
order of the two points in a two-point is irrelevant (only affecting the ± sign).

So consider any p ∈P2(0, 2k). Take the first two-point and denote the corresponding points by pt1

and pt2. Take the point which is paired with pt2 and denote it by pt3. We denote by pt4 its neighbor
that form a two-point with pt3. Perform a two-point permutation of p such that (pt3, pt4) is the second
two-point. Call pt5 the point, which is paired with pt4 and continue in this manner until we find some
pt2i1

, which is paired with pt1. At this point, we have that p
◦ is a two-point permutation of p

◦
i1
⊗ q

◦ , where
q ∈P2(0, 2k− 2i1). If we use mathematical induction, we may assume that q is already a two-point
permutation of pi2 ⊗ · · · ⊗ pil .

Lemma 6.8. Suppose n �= 4, 6, 8. Then both and are generated by .

Proof. Denote by C the category generated by . Recall that is a rotation of . So,
we can do the following computation in C:

=
1
2

(
−

)
=

1
2

( − )

By rotation, this means that C contains the linear combinations and . Now, we
can do the following (we leave out the detailed computation now):

4( )2 = (n − 4) −2 −2 + + +

Subtracting 2( − ), 2( − ), , —those all being elements of C—we get that C must

contain (n − 8) . Finally, squaring this element, we get

(n − 8) +
)2

=
(n − 8)2(n − 2)

4
+

(n − 8)2

4
+ 2( n − 8) +

Doing all the possible subtractions and multiplying by 4, we get that C contains , where

α= (n− 8)2(n− 2)+ 8(n− 8)= (n− 4)(n− 6)(n− 8)

Consequently, ∈ unless n= 4, 6, 8. Since we also proved that (n − 8) + ∈ , we now
have that ∈ .

Lemma 6.9. Suppose n �= 4. Then is generated by , , , .

Proof. First, we generate the following two elements of C:

∈2 ,= − (6.2)

∈2 = .− (6.3)

Now, take the second element and permute the third and fourth two-point to obtain − .
Adding the element (6.2), we get

− ∈ . (6.4)
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Now we go another way: Start with the element (6.2) and precompose it with .
We obtain 1

4 (n −3) − 1
4 . Multiplying by four and adding (6.4), we finally get

(n − 4) ∈ .

Proof of Theorem 6.4. Follows directly from the lemmata above. Lemma 6.8 tells us that and
generate and . Lemma 6.9 shows that those together generate . Finally, Lemma 6.7
shows that all those together already generate the whole category Pair◦n.

In the formulation of Theorem 6.4, we needed to make the assumption n �= 2, 4, 6, 8. We can eas-
ily repair the formulation to include the cases n= 6, 8 as well. Notice that the only place, where we
needed the assumption n �= 6, 8 was Lemma 6.8. So, we can modify the formulation of the theorem as
follows:

Proposition 6.10. Consider n �= 2, 4. Then the category Pair◦n is generated by the set
{ , , , }. .

We will actually need a slightly more technical result in the sequel.

Proposition 6.11. Consider n �= 2, 4. Then the category Pair◦n is generated by the set { , , p},
where

p = − − + + + . (6.5)

Proof. We only need to show that the given intertwiners generate and . We do this by
modifying the proof of Lemma 6.8.

In Lemma 6.8, we showed that { , } actually generate the following elements (for which we
did not yet need the assumption n �= 6, 8): The element − A rotation of this one is the
element − . We also construct the element (n−8) + , which can be rotated into
(n−8) + .

Subtracting those together with , ∈ from the element (6.5), we get that C contains
(n− 7) . Consequently, it must contain both and (For n= 7, we can use Lemma 6.8
directly.)

Finally, let us reveal the meaning of the mysterious linear combination p from equation (6.5). One
can easily check that given a tuple of indices i1, j1, i2, j2, i3, j3, i4, j4 such that ik �= jk, we have

[T̆ (n)
p ](i1,j1),(i2,j2),(i3,j3),(i4,j4) =

⎧⎨
⎩

1 if the indices can be paired

0 otherwise
(6.6)

Indeed, the individual partitions just depict the ways of how the indices can be paired. (The minus
signs are there because of the crossings to compensate the minus sign given by the deformed functor
T̆ (n).)

Thus, we have the following Corollary.

Corollary 6.12. Consider n �= 2, 4. Then the representation category CP̂O−1
n

is generated by

{T̆ (n) , T̆ (n) , T̆ (n)
p }, where T̆ (n)

p is given by equation (6.6).
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6.3. Proof of Theorem 6.1

Denote by v the fundamental representation of O−1
n+1. Theorem 6.1 says that Aut+FQn is isomorphic with

PO−1
n+1 acting through u with û=⊕ v∧̆ 2i. First step of the proof was provided by Corollary 6.3, where we

showed that v ∧̆ v is a faithful representation of PO−1
n+1, and hence, the whole

⊕
v∧̆ 2i must be a faithful

representation.
Secondly, we show that PO−1

n+1 acts on FQn+1, which then implies that PO−1
n+1 ⊂Aut+FQn+1. But there

is no work to be done here as this is just a restriction of the action of O−1
n+1 on Qn+1. Indeed, recall

that we have the coaction α : C(Qn+1)→C(Qn+1)⊗O(O−1
n+1) by τj �→∑n

i=1 τivi
j and that C(FQn+1) is the

subalgebra of C(Qn+1) generated by even polynomials in τj. Restricting to this subalgebra, we get exactly
the desired coaction C(FQn+1)→C(FQn+1)⊗O(PO−1

n+1).
Finally, we need to prove the converse inclusion Aut+FQn+1 ⊂ PO−1

n+1. So, we need to show that û(2)

is a representation of PO−1
n+1. Assume for a moment that n+ 1 �= 2, 4, 6, 8. Thanks to Corollary 6.6, we

only need to show that T̆ (n+1) and T̆ (n+1) are intertwiners of û(1). The first one is just the orthogonality,

which is automatic as Fourier transform preserves orthogonality. The second one is easy to obtain by
looking at the Fourier transform of T (N ) ∈ Mor(u, u⊗2) projected to Ṽ2. Its entries are then

[T (N )]( i1 , 1) ,( i2 2)
( i3 3) = 1 if (i1 , j 1 , i2 , j 2 , i3 , j 3) can be paired,

0 otherwise.
j

, j
, j

Note that due to the antisymetrization, we need to also assume i1 �= j1, i2 �= j2, and i3 �= j3. We
claim that this exactly matches the intertwiner T̆ (n+1) . Indeed, the latter is just a symmetrization of

T̆ (n +1) = T (n +1). It is clear that the only way how to pair a tuple of indices i1 �= j1, i2 �= j2, i3 �= j3 is
according to the partition (up to symmetrization, i.e. permuting neighboring pairs of points). This
finishes the proof for the case n �= 6, 8.

For the cases n= 6, 8, consider the intertwiner of û(1) induced by Again, the entries of T
2 2 2 2

are zeros and ones depending on whether the indices can be paired or not. That is, T
2 2 2 2

= NT̆ (n+1)
p ,

where T̆ (n+1)
p is given by equation (6.6). Thus, the result follows from Corollary 6.12.

6.4. Open problem

Let us again finish with some open problem. The hyperoctahedral group Hn can be seen not only as
the symmetry group of the hypercube Qn but also as the symmetry group of n copies of a segment
K2  · · ·  K2. While the quantum symmetry of the former is O−1

n , the quantum symmetry of the latter
is H+

n , which are two distinct quantum groups. We have just proven that PO−1
n is the quantum symmetry

of the folded hypercube FQn. This result suggests the following question:

Question 6.13. Is there some graph, whose quantum symmetry is described by the quantum group PH+
n

for some n? Does PH+
n act on the set of N points for some N at all? (That is, do we have PH+

n ⊂ S+N for
some N?)

This is related to a big question on whether there is a quantum analogue of the Frucht theorem, which
was discussed recently in [10].

7. Hamming graphs

Hamming graph H(n, m) is the Cayley graph of the group � =Zn
m with respect to the generating set S=

{aεi | i= 1, . . . , n, a= 1, . . . , m− 1}, where εi = (0, . . . , 0, 1, 0, . . . , 0) is the generator of the ith copy
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ofZm. In other words, vertices of H(n, m) are n-tuples of numbers a= 0, . . . , m− 1 (i.e. indeed, V =Zn
m)

and two such tuples are connected with an edge if and only if they differ in exactly one coordinate.
Another possible description is using the Cartesian product of graphs (see Section 7.3): Hamming

graph H(n, m) is the n-fold Cartesian product of the full graph Km, that is, H(n, m)=Km � · · ·� Km.
The classical automorphism group of H(n, m) is known to be the wreath product Sm � Sn. About the

quantum automorphism group, only partial results are known so far:

• n= 1: H(1, m) is the full graph Km, so Aut+H(1, m)= S+m .
• m= 1: H(n, 1) contains just a single vertex.
• m= 2: H(n, 2) is the hypercube Qn, so Aut+H(n, 2)=O−1

n .
• m= 3: H(n, 3) was proven to have no quantum symmetries [25], so Aut+H(n, 3)=

Aut H(n, 3)= S3 � Sn.
• m > 3: H(n, m) was proven to have some quantum symmetries [25], but the explicit quantum

group was not known.

We are going to answer the question about the quantum automorphism group of Hamming graphs in
full generality in the following theorem (by which we also answer Question 8.2(i) of Simon Schmidt’s
PhD thesis [26]):

Theorem 7.1. Consider m ∈N \ {1, 2}. Then Aut+H(n, m)� S+m � Sn.

Before formulating the proof itself, we would like to explain some important ingredients more in
detail.

7.1. Full graph

As we just mentioned, a special case for n= 1 is the full graph Km. Of course, we know that the quantum
symmetry group of the full graph is the free symmetric quantum group S+m . Nevertheless, we would like
to use this simple example to point out a certain subtlety that one needs to keep in mind when working
with cyclic groups Zm for m �= 2.

So, the full graph Km is the Cayley graph corresponding to the group Zm and the generating set
consisting of all elements of the group except for identity, so Km =Cay(Zm, Zm \ {0}). We denote simply
by a= 0, . . . , m− 1 the elements of Zm and by τa ∈ IrrZm the characters τa(b)= γ ab, where γ is some
primitive mth root of unity. The spectrum of Km is hence computed as

λa =
m−1∑
b=1

τa(b)=
m−1∑
b=1

γ ab =
⎧⎨
⎩

m− 1 a= 0,

−1 otherwise.

Now comes the important point we wanted to make in this subsection: The Fourier transform F on
Zm, that is, the transformation of the bases (δa)→ (τa) is unitary, but not orthogonal! Its entries are
[F]a

b = γ ab, so they are obviously not real (unless m= 2). To be more concrete, the basis elements τa,
which are the columns of F are not self-adjoint, but satisfy τ ∗

a = τm−a.
Consequently, if we denote Ŝm := F−1SmF and Ŝ+m := F−1S+mF the symmetric group and the free

symmetric quantum group represented by the Fourier transform of the standard permutation matrices,
then those matrix (quantum) groups are not orthogonal. Instead, they satisfy Ŝm ⊂ Ŝ+m ⊂O+(F)⊂U+

m

with F ∈Mm(C) defined by Fa
b = δa+b,m (indices modulo m). That is, ua ∗

b = um−a
m−b. (Here, U+

n denotes the
free unitary quantum group [29].)

Therefore, if we study the intertwiners of Ŝm �Aut+Km in this basis, then instead of the familiar maps
such as T (m)

� , T (m) , T (m), we discover their Fourier transforms, which may look rather exotic.
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Observation 7.2. The category CŜm
is generated by T̂ (m)

� and T̂ (m), where

[T̂ (m )]ab = δa+b,m , [T̂ (m) ]cab = δa+b,c.

7.2. Wreath product of quantum groups

We should also explain, what does the � sign in the formulation of Theorem 7.1 means. It is not the
free wreath product of quantum groups, but the classical one. Before specifying, what we mean by a
classical wreath product of quantum groups, let us recall the free definition by Bichon [9].

Definition 7.3. Let G⊂U+
m be a quantum group with fundamental representation v= (va

b) and let H ⊂
S+n be a quantum permutation group with fundamental representation w= (wi

j). Then we define the free
wreath product of G and H to be the quantum group

G �∗ H := (O(G)∗n ∗O(H), u), where uai
bj = vai

b wi
j,

where we denote by vi = (vai
b )a,b the fundamental representations of the n copies of G occurring in the

definition of G �∗ H.

Remark 7.4. Let us state a few important remarks to this definition.

a. Although we defined the free wreath product G �∗ H for compact matrix quantum groups using
their fundamental representations, the original definition of Bichon is formulated for arbitrary
compact quantum group G not depending on its particular fundamental representation (see
[9] for details). In particular, if we take some other matrix realization G′ �G of the quantum
group G, then G′ �∗ H is isomorphic to G �∗ H.

b. As in the classical case, the free wreath product G �∗ H has a sort of a (free) semidirect product
structure. What we mean by this is the following:

c. The matrix w is a representation of G �∗ H. Therefore, H can be seen as a quotient of G �∗ H.
d. On the other hand, the matrices vi are not representations of G �∗ H —the coproduct is mixing

(quantum-permuting) the indices i non-trivially:

�(vai
b )=

∑
c,k

vai
c wi

k ⊗ vck
b .

e. We can express

wi
j =
∑

b

uai∗
bj uai

bj =
∑

a

uai∗
bj uai

bj, vai
b =

∑
j

uai
bj

That is, the entries uai
bj indeed generate the whole algebra O(G)⊗n ⊗O(H). This remark is essen-

tial to notice that the definition above is a good definition of G �H as a compact matrix quantum
group.

Now the classical wreath product is supposed to be given by passing from the free product to the
tensor product. So, define O(G �H) := O(G)⊗n ⊗O(H).

Lemma 7.5. Consider a quantum group G⊂U+
m and a classical permutation group H ⊂ Sn. Then the

comultiplication � : O(G �∗ H)→O(G �∗ H)⊗O(G �∗ H) passes to the quotient O(G �H)

Proof. Denote �′ := (q⊗ q) ◦�, where q is the projection O(G �∗ H)→O(G �H). We only need
to prove that �′(vai

b )�′(vcj
d )=�′(vcj

d )�′(vai
b ) whenever i �= j and �′(vai

b )�′(wk
l )=�′(wk

l )�
′(vai

b ). Both are
quite straightforward. Let’s have a look on the first one:
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�′(vai
b )�′(vcj

d )=
∑
x,k,y,l

vai
x wi

kv
cj
y wj

l ⊗ vxk
b vyl

d

Now, notice that the factors in the left ⊗-factor can be arbitrarily permuted. Assuming k �= l, the
same holds for the right ⊗-factor. For k= l, we have wi

kw
j
l = 0, so the left ⊗-factor equals to zero.

Consequently, we see that the coproducts indeed commute as we needed. The second condition is proven
the same way using the fact that �(wi

j)=
∑

k wi
k ⊗wk

j .

Definition 7.6. For a quantum group G⊂U+
m and a classical permutation group H ⊂ Sn, we define

their wreath product G �H to be the quantum subgroup of G �∗ H corresponding to the quotient algebra
O(G �H)=O(G)⊗n ⊗O(H).

7.3. Cartesian product of graphs

Given two graphs X1 and X2, we define their Cartesian product to be the graph X1 � X2 with the vertex set
V(X1 � X2)= V(X1)× V(X2) and with an edge ((v1, v2), (w1, w2)) ∈ E(X1 � X2) if and only if (v1, w1) ∈
E(X1) and v2 =w2 or if (v2, w2) ∈ E(X2) and v1 =w1. Alternatively, we can describe the Cartesian product
by its adjacency matrix AX1�X2 = AX1 ⊗ IX2 + IX1 ⊗ AX2 , where IXi denotes the identity matrix.

The Cartesian product of graphs is associative and we can conveniently describe the product of n
given graphs by the adjacency matrix

AX1�···�Xn = AX1 ⊗ IX2 ⊗ IX3 ⊗ · · · ⊗ IXn + IX1 ⊗ AX2 ⊗ IX3 ⊗ · · · ⊗ IXn + · · ·
It is well known that if G acts on a finite space or a graph X by δa �→∑

b δb ⊗ vb
a, then G � Sn acts on

the n-fold disjoint union X  · · ·  X by δai �→∑
b,j δbj ⊗ ubj

ai. (Notice that C(X  · · ·  X)=C(X)⊕ · · · ⊕
C(X); the indices i, j are indexing the n copies of X or C(X) here.)

Now, consider the Cartesian product X � · · ·� X. In this case, we have C(X � · · ·� X)=C(X)⊗
· · · ⊗C(X). Consider a basis (xi)

m−1
i=0 of C(X) such that x0 = 1C(X) (if X is a regular graph, then we can

consider the basis of eigenvectors of AX). Denote by v̂a
b the entries of the action of G on X in this basis,

so xa �→∑
b xb ⊗ v̂b

a. Denote xai := 1C(X) ⊗ · · · ⊗ 1C(X) ⊗ xa ⊗ 1C(X) ⊗ · · · ⊗ 1C(X), where the xa is on the
ith place. In the following we are going to prove that xai �→∑

b,j xbj ⊗ ûbj
ai extends to an action of G � Sn

on X � · · ·� X, where ûbj
ai = v̂bj

a wj
i.

First, assume for a moment that this action really exists. Then it is easy to determine, how it must act
on the basis xa1,...,an := xa1 ⊗ · · · ⊗ xan of C(X � · · ·� X):

xa1,...,an �→
m−1∑

b1,...,bn=0

n∑
k1,...,kn=1

xb1k1 · · · xbnkn ⊗ ûb1k1
a11 · · · ûbnkn

ann

=
m−1∑

b1,...,bn=0

∑
σ∈Sn

xb1σ (1) · · · xbnσ (n) ⊗ ûb1σ (1)
a11 · · · ûbnσ (n)

ann

=
m−1∑

b1,...,bn=0

∑
σ∈Sn

xb
σ−1(1)1

· · · xb
σ−1(n)n

⊗ ûb1σ (1)
a11 · · · ûbnσ (n)

ann

=
m−1∑

b1,...,bn=0

∑
σ∈Sn

xb11 · · · xbnn ⊗ û
bσ (1)σ (1)
a11 · · · ûbσ (n)σ (n)

ann

=
m−1∑

b1,...,bn=0

xb1,...,bn ⊗ ˆ̃ub1,...,bn
a1,...,an

,
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where ˆ̃ub1,...,bn
a1,...,an

=∑
σ∈Sn

û
bσ (1)σ (1)
a11 · · · û

bσ (n)σ (n)
ann . We can also change the basis to the standard one and obtain

δa1,...,an �→
∑

b1,...,bn
δb1,...,bn ⊗ ũb1,...,bn

a1,...,an
, where ũ is given by a formula analogous to the one for ˆ̃u.

Lemma 7.7. Let G be a compact matrix quantum group with fundamental representation v. Then

ũb1,...,bn
a1,...,an

:=
∑
σ∈Sn

u
bσ (1)σ (1)
a11 · · · ubσ (n)σ (n)

ann =
n∑

k1,...,kn=1

u
bk1 k1

a11 · · · ubkn kn
ann

is a representation of G � Sn. If G⊂ S+m , then ũ is faithful.

Proof. First, we should prove the second equality in the formula. To see this, it is enough to notice
that the product u

bk1 k1

a11 · · · u
bkn kn
ann equals to zero whenever ki = kj for some i �= j (since wki

i w
kj
j = 0).

Proving that ũ is a representation of G � Sn is a straightforward computation:

�(ub1,...,bn
a1,...,an

)=
∑
σ∈Sn

�(u
bσ (1)σ (1)
a11 ) · · ·�(ubσ (n)n

ann )

=
∑
σ∈Sn

∑
c1,...,cn
k1,...,kn

u
bσ (1)σ (1)
c1k1

· · · u
bσ (n)σ (n)
cnkn

⊗ uc1k1
a11 · · · ucnkn

ann

=
∑

d1,...,dn

∑
π ,ρ∈Sn

u
bρ(1)ρ(1)
d11 · · · u

bρ(n)ρ(n)
dnkn

⊗ ud1π (1)
a11 · · · udnπ (n)

ann

=
∑

d1,...,dn

ub1,...,bn
d1,...,dn

⊗ ud1,...,dn
a1,...,an

To get from the second to the third line, we need to notice several things: First, as we already mentioned,
the product uc1k1

a11 · · · ucnkn
ann equals to zero unless k1, . . . , kn is a permutation of 1, . . . , n. Hence, we can

denote this permutation by π , so ki = π (i). Secondly, the terms of the product mutually commute, so
we can reorder the first product as u

bσ (1)σ (1)
c1k1

· · · u
bσ (n)σ (n)
cnkn

= u
b
σ (π−1(1))σ (π−1(1))

c
π−1(1)1

· · · u
b
σ (π−1(n))σ (π−1(n))

c
π−1(n)n

. Finally, we
denote ρ := σ ◦ π−1 and di := cπ−1(i).

Assume now that G⊂ Sm for some m. The proof of the last statement—that ũ is faithful—gets a bit
easier if we work in the basis (xa)

m−1
a=0 of C(X) such that x0 = 1C(X) since x0 is an invariant vector of v.

So denote by v̂a
b the entries of v in the basis (xa) and similarly ûai

bj := v̂ai
b wi

j. We have then v̂0
0 = 1 and

v̂0
b = 0= v̂a

0 for every a, b. We need to show that the entries of ˆ̃u already generate the whole algebra
O(G � Sn). Of course, it is enough to show that it generates the generators v̂ai

b and wi
j. We claim that

ˆ̃u0,...,0,a,0,...,0
0,...,0,b,0,...,0 = ûai

bj, where the a is on the ith position and the b is on the jth position on the left-hand side.
Indeed, we get

ˆ̃u0,...,0,a,0,...,0
0,...,0,b,0,...,0 =

n∑
k1,...,kn=1

except for kj := i

v̂ai
b wk1

1 · · ·wkn
n = v̂ai

b wi
j = ûai

bj. (7.1)

Proposition 7.8. Let � be a graph. Then Aut+(� � · · ·� �)⊃ (Aut+�) � Sn. More precisely, G � Sn acts
faithfully on the n-fold product � � · · ·� � by δa1,...,an �→

∑
b1,...,bn

δb1,...,bn ⊗ ũb1,...,bn
a1,...,an

.

Proof. Notice that we can express ũ in a more “matricial way”

ũ=
∑
σ∈Sn

Tσ (vσ (1) ⊗ · · · ⊗ vσ (n))δσ ,
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where Tσ : (Cm)⊗n → (Cm)⊗n is the linear operator permuting the tensor factors according to σ and δσ :=
wσ (1)

1 · · ·wσ (n)
n (it is actually indeed the delta the delta function Sn →C mapping δσ (π )= δσπ ). We will

use this matrix approach throughout the proof, but one could of course also rewrite the computation in
terms of the matrix entries.

We want to show that (Aut+�) � Sn represented by the faithful representation ũ is a quantum subgroup
of Aut+(� � · · ·� �). To do this, we need to show that the representation category associated to ũ con-
tains the generators of the category CAut+(��···��), which are T (mn)

↑ , T (mn ), and Ã, where Ã is the adjacency
matrix of � � · · ·� �.

We start with the singleton T (mn)
↑ , which is the easiest one. Notice first that T (mn)

↑ = T (m)
↑ ⊗ · · · ⊗ T (m)

↑ .
Consequently,

ũT (mn)
↑ =

∑
σ∈Sn

Tσ (vσ (1) ⊗ · · · ⊗ vσ (n))T (mn)
↑ δσ

=
∑
σ∈Sn

Tσ (vσ (1)T (m)
↑ ⊗ · · · ⊗ vσ (n)T (m)

↑ )δσ

=
∑
σ∈Sn

Tσ (T (m)
↑ ⊗ · · · ⊗ T (m)

↑ )δσ = T (mn)
↑ ,

where we used the fact that
∑

σ∈Sn
δσ = 1C(Sn).

To show the second intertwiner relation, denote by R the natural “disentangling operator”
(Cm ⊗Cm)⊗n → (Cm)⊗n ⊗ (Cm)⊗n mapping (x1 ⊗ y1)⊗ · · · ⊗ (xn ⊗ yn) �→ (x1 ⊗ · · · ⊗ xn)⊗ (y1 ⊗ · · · ⊗
yn). Then we can write T (m n ) = (T (m) ⊗ · · · ⊗ T (m) )R. So,

ũT (m n) =
σ∈S n

Tσ (vσ (1) ⊗ · · · ⊗ vσ (n) )T (m n )
δσ

=
σ∈Sn

Tσ (vσ (1) T (m ) ⊗ · · · ⊗ vσ (n )T (m ) )Rδσ

=
σ∈Sn

Tσ (T (m) (vσ (1) ⊗ vσ (1) ) ⊗ · · · ⊗ T (m) (vσ (n) ⊗ vσ (n) ))Rδσ

=
σ∈Sn

TσT
(m n ) ((vσ (1) ⊗ · · · ⊗ vσ (n ) ) ⊗ (vσ (1) ⊗ · · · ⊗ vσ (n ) ))δσ

=
σ∈Sn

T (m n) (Tσ ⊗ Tσ )(( vσ (1) ⊗ · · · ⊗ vσ (n ) ) ⊗ (vσ (1) ⊗ · · · ⊗ vσ (n ) ))δσ

= T (m n) (ũ ⊗ ũ).

Finally, we prove that ũ commutes with Ã := ∑n
i=1 id⊗ · · · ⊗ id⊗ A⊗ id⊗ · · · ⊗ id, where A is the

adjacency matrix of � and in each summand it appears at the ith factor of the tensor product.

ũÃ=
∑
σ∈Sn

n∑
i=1

Tσ (vσ (1) ⊗ · · · ⊗ vσ (i)A⊗ · · · ⊗ vσ (n))

=
∑
σ∈Sn

n∑
i=1

Tσ (vσ (1) ⊗ · · · ⊗ Avσ (i) ⊗ · · · ⊗ vσ (n))= Ãũ

Remark 7.9. The inclusion in Proposition 7.8 may and may not be strict. Hamming graphs H(n, m)
provide examples for both. Taking m= 2 and n≥ 2, we have Aut+(K2 � · · ·� K2)=O−1

n � S2 � Sn =
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(Aut+K2) � Sn. By [25], we have equality for m= 3: Aut+(K3 � · · ·� K3)= S3 � Sn = (Aut+K3) � Sn. We
are going to prove the equality for any m > 2 in the case of Hamming graphs.

Remark 7.10. Let (xa)
m−1
a=0 be a basis of C(X) such that x0 = 1C(X) and denote xai = 1C(X) ⊗ · · · ⊗ 1C(X) ⊗

xa ⊗ 1C(X) ⊗ · · · ⊗ 1C(X) as we already did once. Equation (7.1) shows that the action from Proposition
7.8 indeed maps xai �→∑

b,j xbjû
bj
ai.

7.4. Proof of Theorem 7.1

Recall that H(n, m) is the Cayley graph of Zn
m with respect to the generating set {aεi | i= 1, . . . , n, a=

1, . . . , m− 1}. We denote by τμ, μ ∈Zn
m the irreducible characters ofZn

m defined by τμ(α)= γ α1μ1+···+αnμn ,
where γ is some primitive mth root of unity.

As usual, we start with determining the spectrum using Proposition 4.1:

λμ =
n∑

i=1

m−1∑
a=1

γ μia =mlμ − n,

where lμ = #{i |μi = 0}. So, the spectrum contains n+ 1 distinct eigenvalues n(m− 1), n(m− 2), . . . ,
−n. Denote by V0, . . . , Vn+1 the corresponding eigenspaces Vi = span{τμ | lμ = n− i}. So, for instance
V0 = span{τ0,...,0}, V1 = span{τai | i= 1, . . . , n, a= 1, . . . , m− 1}, where we denote τai := τ a

i = τμ for
μ= (0, . . . , 0, a, 0, . . . , 0)—the a being on the ith place. Those must be invariant subspaces of the
fundamental representation of Aut+H(n, m).

In Proposition 7.8, we showed that S+m � Sn acts on H(n, m)=Km � · · ·� Km via τai �→∑
b,j τbj ⊗ ûbj

ai

(see Remark 7.10), so Aut+H(n, m)⊃ S+m � Sn. It remains to show the opposite inclusion.
Denote by u the fundamental representation of Aut+H(n, m). Denote by û := F−1uF the Fourier

transform of u, that is, the matrix u expressed in the basis of τμ. This matrix decomposes into a direct
sum with respect to the invariant subspaces V0, V1, . . . , Vn as û= û(0) ⊕ û(1) ⊕ · · · ⊕ û(n). We denote by
ûai

bj the entries of û(1). It is enough to show that this matrix û(1) satisfies the relations of the fundamental
representation of Ŝ+m � Sn. So let us study its intertwiners.

Recall the formula (4.2) for computing the Fourier transform of intertwiners corresponding to block
partitions [T̂bk,l ]

ν1,...,νl
μ1,...,μk

=N1−kδμ1+···+μk ,ν1+···+νl . We start by taking p = and focus on the entries of T̂ (N )

corresponding to the invariant subspace V1 and see that [ T̂ (N ) ]bj
a1 i1 ,a2 i 2

= δi 1 i 2 j δa 1 +a 2 ,b. . Let us denote

R := T̂ ( N )
1 1

1

∈ Mor(û(1) ⊗ û (1) , û (1)) the restriction/projection of T̂ (N ) onto V1. Let us also denote

R := R∗ R ∈ Mor(û (1) ⊗2 , û (1) ⊗2) , so that R ]b1 j 1 ,b2 j 2
a 1 i 1 ,a 2 i 2

= δi 1 i 2 j 1 j 2 δa 1 +a 2 ,b1 +b2.

Next, let us study the intertwiner T̂ (N ) . Its projection onto V1 can be expressed as

N T̂ (N )
1 1

1 1

= R + R + R + R .

Here, we use the following notation

[R ] b1 j 1 ,b2 j 2
a 1 i 1 ,a 2 i 2

= δa 1 +a 2 ,0δb1 +b2 ,0δi 1 =i 2 =j 1 =j 2 ,

[R ] b1 j 1 ,b2 j 2
a 1 i 1 ,a 2 i 2

= δa 1 ,b2 δa 2 b1 δi 1 =j 2 =i 2 =j 1 ,

[R ] b1 j 1 ,b2 j 2
a 1 i 1 ,a 2 i 2

= δa 1 b1 δa 2 b2 δi 1 =j 1 =i 2 =j 2 ,

where we use slightly more general notation for the deltas, which is hopefully self-descriptive: For
instance, δi1=j1 �=i2=j2 equals to one if i1 = j1 �= i2 = j2 and otherwise it equals to zero. The idea behind the
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diagrams is that the dashed and dotted blocks indicate the fact that the i, j indices corresponding to the
different blocks must not coincide.

We already know that the map R is an intertwiner, which implies that also the sum
R + R + R must be an intertwiner. We are going to show that actually each term of this sum
is an intertwiner:

First, compute the square of the sum. Obviously, R R = 0 = R R , so it
is actually quite easy: (R + R + R )2 = 2(m − 1)R + 2R + 2R . Here,
[R ]a 1 i 1 ,a 2 ,i2

b1 j 1 ,b2 j2
= δa 1 + a 2 ,m δb1 + b2 ,m δa1 a2 b1 b2 (both blocks are dashed so all of the a1, a2, b1, b2 do

have to coincide). That was not very helpful actually, but in a similar manner, we can compute the third
power: (R + R + R )3 = 4(m − 1)2 R + 4R + 4R . Subtracting four times the original
sum, we get 4m (m − 2) R , so R is an intertwiner unless m= 2. But now R is just a rotation of
R , so it must also be an intertwiner. Consequently, also R must be an intertwiner and also R must
be an intertwiner.

Those are all intertwiners we need. Now, we just look at the relations they imply. First, the intertwiner
R implies the following relation:

m−1∑
c=1

ûa1 i1
cj1 ûa2i2

m−c,j2δj1j2δb1+b2,m =
m−1∑
d=1

ûdi1
b1 j1

ûm−d,i2
b2 j2

δi1i2δa1+a2,m (7.2)

So, we can define wi
j := ∑

c ûai
cj û

ai
m−c,j =

∑
d ûdi

bju
m−d,i
bj (thanks to the relation above, all the sums are equal

regardless of the choice of a, b). Let us also define v̂ai
b := ∑

j uai
bj (compare with Remark 7.4(e)).

Now it remains to derive the following relations:
(7.3)j wi

j = 1

(7.4)wi
j wk

l δjl = wi
j wk

l δik

(7.5)wi
j wk

l = wk
l wi

j

w satisfies the relations of Sn (we use the inter-
twiner relations of T (m ) , T (m ) , and T (m ) ),

(7.6)vak
b wi

j = wi
j vak

b wi
j commute with everything,

(7.7)va 1 i
b va 2 i

b = va 1 i
b δa 1 + a 2 ,n

vi satisfy the relations of Ŝ m (we use the inter-

twiner relation of T (n ) ),

(7.8)vai
b vcj

d = vcj
d vai

b entries of vi commute with entries of vj for i = j ,

(7.9)uai
bj = vai

b wi
j u indeed has the correct structure.

The twisted orthogonality relation corresponding to the intertwiner T̂ (N)
� looks as follows:∑

b,j

ua1 i1
bj ua2i2

m−b,j = δa1+a2,mδi1i2

This, in particular, implies Relation (7.3).
We write down the relation corresponding to R :

ua1 i1
b2 j2

ua2 i2
b1 j1

δj1 �=j2 = ua2 i2
b1 j1

ua1 i1
b2 j2

δi1 �=i2

This implies two things. First,

uai
bju

ck
dl = uck

dl u
ai
bj whenever i �= k or j �= l. (7.10)

Secondly, (and for this we might as well use the relation corresponding to R ),

uai
bju

ck
dj = 0 for i �= k, uai

bju
ci
dl = 0 for j �= l. (7.11)
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The latter remark allows us to check Relation (7.4). Assume j �= l, then

wi
jw

i
l =

∑
c,d

ûai
cj û

ai
m−c,jû

ai
dlû

ai
m−d,l = 0.

Similarly, we derive that wi
jw

k
j = 0 for i �= k.

Relation (7.10) then implies Relation (7.5), that is the commutativity wi
jw

k
l =wk

l w
i
j. Indeed, notice that

wi
j obviously commutes with itself, so we can assume that i �= k or j �= l and then it is a direct application

of (7.10).
We can also use Relation (7.11) to check (7.9):

vai
b wi

j =
∑

k

uai
bk

∑
c

uai
cju

ai
m−c,j = uai

bj

∑
c,l

uai
clu

ai
m−c,l = uai

bj.

Similarly, we can derive uai
bj =wi

jv
ai
b , which proves part of Relation (7.6). To finish the proof of this

relation, assume that j �= k and compute

vak
b wi

j =
∑

l

uak
bl

∑
c

uai
cju

ai
m−c,j =

∑
l

uak
bl

∑
c

uai
cju

ai
m−c,j =wi

jv
ak
b .

Relation (7.8) goes the same way.
Finally, Relation (7.7) follows directly from the relation corresponding to R , which reads

ua1i1
bj ua2 i2

bj = ua1+a2,i1
bj δb1b2 .
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