ON A CONVERGENCE TEST OF HARDY-LITTLEWOOD'S TYPE FOR FOURIER SERIES

FU CHENG HSIANG*
(received 28 December 1961, revised 27 March 1963)

1

Let $\varphi(t)$ be an even function integrable in the Lebesgue sense and periodic with period 2π. Let

$$
\varphi(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t .
$$

Write

$$
\Phi(t)=\int_{0}^{t} \varphi(u) d u .
$$

By an indirect method based on the method of Riesz summability for the Fourier series, the author has established the following convergence test for the oscillating series $\sum a_{n}$. The theorem is as follows:

Theorem A [1]. If, for some $\Delta>0$

$$
\begin{equation*}
\Phi(t)=o\left\{t\left(\log \frac{1}{t}\right)^{-\Delta}\right\} \tag{i}
\end{equation*}
$$

as $t \rightarrow+0$ and

$$
\begin{equation*}
a_{n}>-K n^{-1}(\log n)^{\Delta} \tag{ii}
\end{equation*}
$$

then $\sum a_{n}$ converges to the sum $s=0$. Here K is an absolute constant independent of n.

In this note, we intend to show that it is essential to use the same Δ in the conditions (i) and (ii) of the theorem; i.e., we prove the following

Theorem. For each $\Delta>0$ and each $\eta>0$, there exists an even function $\varphi(t)$ satisfying (i), with its Fourier series diverging at $t=0$, and such that

$$
\begin{equation*}
a_{n}=o\left\{\frac{(\log n)^{4+\eta}}{n}\right\} \tag{iii}
\end{equation*}
$$

* The author expresses his hearty thanks to the referee for his elaborate help in simplifying the calculations of this paper and rewriting it in the present compact form.

2

Let $\left\{\lambda_{i}\right\}$ be a strictly increasing sequence of positive integers such that:
(a) $\lambda_{i} \rightarrow \infty$ as $i \rightarrow \infty$; and
(b) there exists a constant k and an i with

$$
\frac{\lambda_{i}}{\lambda_{i+1}}<k<1
$$

for all $i \geqq i_{0}$.
Then

$$
\frac{\lambda_{i}}{\lambda_{n}}<k^{n-i}
$$

for all $i_{0} \leqq i<n$.
Let $\Delta>0$ and define

$$
\alpha_{i}=\frac{\left(\log \lambda_{i}\right)^{4}}{\lambda_{i}}
$$

It can easily be seen that there exists an i^{\prime} such that $\alpha_{i^{\prime}}<\pi, \alpha_{i}<\alpha_{i-1}$ for all $i \geqq i^{\prime}+1$ and

$$
\frac{\lambda_{i}}{\lambda_{i+1}}<k
$$

for all $i \geqq i^{\prime}-1$.
Let $\left\{c_{i}\right\}$ be a sequence of non-negative real numbers tending to zero as limit. Next, we define an even function:

$$
\varphi(t)= \begin{cases}c_{i} \sin \lambda_{i} t & \left(\alpha_{i} \leqq t<\alpha_{i-1} ; i \geqq i^{\prime}+1\right) \\ 0 & \left(\alpha_{i}<t \leqq \pi\right)\end{cases}
$$

We are going to prove that the Fourier series of $\varphi(t)$ diverges at the point $t=0$ though $\varphi(t)$ and its Fourier coefficients (a_{n}) satisfy (i) and (iii) respectively. Denote by $S_{\lambda_{n}}$ the λ_{n}-th partial sum of the series $a_{0} / 2+\sum_{1}^{\infty} a_{n}$, then

$$
S_{\lambda_{n}}=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{\sin \lambda_{n} t}{t} d t+o(1)
$$

Substitute the function $\varphi(t)$ defined above into this integral and write it in the form:

$$
\begin{aligned}
S_{\lambda_{n}} & =\frac{2}{\pi}\left\{\sum_{i^{\prime}+1 \leqq i<n}+\sum_{i>n}\right\} c_{i} \int_{\alpha_{6}}^{\alpha_{i-1}} \frac{\sin \lambda_{i} t \sin \lambda_{n} t}{t} d t+\frac{2}{\pi} c_{n} \int_{\alpha_{n}}^{\alpha_{n-1}} \frac{\sin ^{2} \lambda_{n} t}{t} d t+o(1) \\
& =\frac{2}{\pi}\left\{\sum_{1}+\sum_{2}\right\}+\frac{2}{\pi} I+o(1) .
\end{aligned}
$$

We require a number of lemmas.

2.1 Lemma. We have

$$
\Sigma_{1} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Proof. Since, for every $i^{\prime} \leqq i<n, \lambda_{i} / \lambda_{n}<k^{n-i}<k<1$, thus we have

$$
\Sigma_{1}=\frac{1}{\lambda_{n}} O\left\{\sum_{i^{\prime}<i<n} \frac{c_{i}}{\alpha_{i}}\right\} .
$$

Take $\varepsilon>0$, and choose p sufficiently large that $p>i^{\prime}+1$ and $c_{i}<\varepsilon$ for all $i>p$. Then

$$
\begin{aligned}
\sum_{i^{\prime}<i<n} \frac{c_{i}}{\alpha_{i}} & =\sum_{i^{\prime}<i \leq p} \frac{c_{i}}{\alpha_{i}}+\sum_{p<i<n} \frac{c_{i}}{\alpha_{i}} \\
& \leqq O(1)+\varepsilon \sum_{p<i<n} \frac{\lambda_{i}}{\left(\log \lambda_{i}\right)^{4}} \\
& \leqq O(1)+\varepsilon \lambda_{n} \sum_{p<i<n} \frac{\lambda_{i}}{\lambda_{n}} \\
& \leqq O(1)+\varepsilon \lambda_{n} \sum_{r=1}^{\infty} k^{r} .
\end{aligned}
$$

Thus $\sum_{1} \rightarrow 0$ as $n \rightarrow \infty$.
2.2. Lemma. We have

$$
\Sigma_{2} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Proof. Integrating by parts,

$$
\begin{array}{rl}
\int_{a_{i}}^{a_{i-1} \sin \lambda_{i} t \sin \lambda_{n} t} \\
t & d t= \\
& -\left[\frac{\cos \lambda_{i} t}{\lambda_{i}} \cdot \frac{\sin \lambda_{n} t}{t}\right]_{\alpha_{i}}^{\alpha_{i-1}} \\
& +\frac{\lambda_{n}}{\lambda_{i}} \int_{\alpha_{i}}^{a_{i-1}}\left(\cos \lambda_{n} t-\frac{\sin \lambda_{n} t}{\lambda_{n} t}\right) \frac{\cos \lambda_{i} t}{t} d t
\end{array}
$$

and noticing that the integrand in the second term of the right side is $O\left(\alpha_{i}^{-1}\right)$, we obtain immediately

$$
\begin{aligned}
\sum_{2} & =\lambda_{n} O\left\{\sum_{i>n} \frac{c_{i} \alpha_{i-1}}{\alpha_{i} \lambda_{i}}\right\} \\
& =\lambda_{n} O\left\{\sum_{i>n} \frac{1}{\lambda_{i-1}}\right\} \\
& =o(1) .
\end{aligned}
$$

2.3. Lemma. If $\alpha_{n-1} / \alpha_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\underset{n \rightarrow \infty}{\lim \sup } I=\frac{1}{2} \limsup _{n \rightarrow \infty} c_{n} \log \frac{\alpha_{n-1}}{\alpha_{n}}
$$

Proof. We have

$$
\int_{\alpha_{n}}^{\alpha_{n-1}} \frac{\sin ^{2} \lambda_{n} t}{t} d t=\int_{\alpha_{n}}^{\alpha_{n-1}} \frac{1-\cos 2 \lambda_{n} t}{2 t} d t
$$

and substitute $t=\alpha_{n} u$, we obtain

$$
\begin{aligned}
\int_{a_{n}}^{\alpha_{n-1}} \frac{\cos 2 \lambda_{n} t}{t} d t & =\int_{1}^{\alpha_{n-1} / \alpha_{n}} \frac{\cos 2 \lambda_{n} \alpha_{n} u}{u} d u \\
& =\int_{1}^{D_{n}} \frac{\cos q_{n} u}{u} d u
\end{aligned}
$$

$\left(\right.$ where $p_{n} \rightarrow \infty, q_{n}=\left(\log \lambda_{n}\right)^{4} \rightarrow \infty$ as $n \rightarrow \infty$)

$$
=\int_{1}^{r_{n}} \cos q_{n} u d u
$$

(by the second mean-value theorem, where $1<r_{n}<p_{n}$)

$$
=\frac{1}{q_{n}}\left\{\sin q_{n} r_{n}-\sin q_{n}\right\} \rightarrow 0
$$

as $n \rightarrow \infty$, since $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Thus,

$$
\underset{n \rightarrow \infty}{\lim \sup } I=\lim _{n \rightarrow \infty} c_{n} \int_{\alpha_{n}}^{\alpha_{n-1}} \frac{1}{2 t} d t=\frac{1}{2} \lim \sup c_{n} \log \frac{\alpha_{n-1}}{\alpha_{n}}
$$

2.4. Lemma.

$$
\frac{1}{t}\left(\log \frac{1}{t}\right)^{\Delta} \int_{0}^{t} \varphi(u) d u \rightarrow 0
$$

as $t \rightarrow 0$.
Proof. For $\alpha_{n}<t \leqq \alpha_{n-1}$,

$$
\begin{aligned}
\frac{1}{t}\left(\log \frac{1}{t}\right)^{\Delta} \int_{0}^{t} \varphi(u) d u & =O\left\{\frac{1}{\alpha_{n}}\left(\log \frac{1}{\alpha_{n}}\right)^{\Delta} \sum_{i \geq n} \frac{c_{i}}{\lambda_{i}}\right\} \\
& =O\left\{\frac{1}{\lambda_{n} \alpha_{n}}\left(\log \frac{1}{\alpha_{n}}\right)^{\Delta} \sum_{i \geq n} c_{i} k^{i-n}\right\} \\
& =O\left\{\left(\frac{\log 1 / \alpha_{n}}{\log \lambda_{n}}\right)^{\Delta} \sum_{i \geq n} c_{i} k^{i-n}\right\} \\
& =O\left\{\left(\frac{-1 \log 1 / \alpha_{n}}{\log 1 / \alpha_{n}+\log \left(\lambda_{n} \alpha_{n}\right.}\right)^{\Delta} \sum_{i \geq n} c_{i} k^{i-n}\right\} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

2.5. Lemma. If $\eta>\eta^{\prime}>0$, if $\lambda_{i} /\left(\lambda_{i-1}+1\right) \leqq i^{\eta^{\prime}}$ for all $i \geqq 2$ and if the series $\sum_{i} c_{i}$ converges, then

$$
\frac{n a_{n}}{(\log n)^{\Delta+\eta}} \rightarrow 0
$$

as $n \rightarrow \infty$.
Proof.

$$
a_{n}=\frac{2}{\pi} \sum_{i=i^{\prime}+1}^{\infty} c_{i} \int_{a_{i}}^{\alpha_{i-1}} \sin \lambda_{i} t \cos n t d t
$$

hence

$$
\begin{aligned}
\frac{n a_{n}}{(\log n)^{4+\eta}}= & \frac{2 n}{\pi(\log n)^{4+\eta}} \sum_{\lambda_{n} \leq 2 n,} c_{i} \int_{\alpha_{i}}^{\alpha_{i-1}} \sin \lambda_{i} t \cos n t d t \\
& +\frac{2 n}{\pi(\log n)^{i^{4+\eta}}} \sum_{\lambda_{i}>2 n} c_{i} \int_{\alpha_{i}}^{\alpha_{i-1}} \sin \lambda_{i} t \cos n t d t \\
= & A_{n}+B_{n} .
\end{aligned}
$$

But

$$
\begin{aligned}
\left|A_{n}\right| \leqq & \frac{2 n}{\pi(\log n)^{4+\eta}} \sum_{\lambda_{i} \leq 2 n} c_{i} \left\lvert\,\left[\frac{\sin \lambda_{i} t \sin n t}{n}\right]_{\alpha_{i}}^{a_{i-1}}\right. \\
& \left.-\frac{\lambda_{i}}{n} \int_{\alpha_{i}}^{\alpha_{i-1}} \cos \lambda_{i} t \sin n t d t \right\rvert\, \\
\leqq & \frac{2 n}{\pi(\log n)^{4+\eta}} \sum c_{i}\left(\frac{2}{n}+\frac{\lambda_{i} \alpha_{i-1}}{n}\right) \\
= & \frac{2}{\pi(\log n)^{4+\eta}} \sum c_{i}\left\{2+\frac{\lambda_{i}}{\lambda_{i-1}}\left(\log \lambda_{i-1}\right)^{4}\right\} \\
\leqq & \frac{2}{\pi(\log n)^{4+\eta}} \sum c_{i}\left\{2+\frac{\lambda_{i}}{\lambda_{i-1}}(\log 2 n)^{4}\right\} \\
\leqq & \frac{2(\log 2 n)^{4}}{\pi(\log n)^{4+\eta}} \sum K c_{i} i^{\eta^{\prime}}
\end{aligned}
$$

for large n.
Let $\lambda_{p(n)} \leqq 2 n<\lambda_{p(n)+1}$. Then

$$
\begin{aligned}
\left|A_{n}\right| & \leqq \frac{2(\log 2 n)^{\Delta}}{\pi(\log n)^{\Delta+\eta}} \sum K\{p(n)\}^{\gamma^{\prime}} \\
& \leqq K^{\prime}\left(1+\frac{\log 2}{\log n}\right)^{\Delta} \frac{\{p(n)\}^{\eta^{\prime}}}{(\log n)^{\eta}}
\end{aligned}
$$

But

$$
\begin{aligned}
\log n+\log 2 n & \geqq \log \lambda_{D(n)} \\
& =\log \frac{\lambda_{D(n)}}{\lambda_{i^{\prime}}}+\log \lambda_{i^{\prime}} \\
& \geqq\left\{p(n)-i^{\prime}\right\} \log \frac{1}{K}+\log \lambda_{i^{\prime}}
\end{aligned}
$$

hence

$$
\begin{aligned}
\left|A_{n}\right| & \leqq K^{\prime}\left(1+\frac{\log 2}{\log n}\right)^{\Delta} \cdot \frac{\{p(n)\}^{y^{\prime}}}{\left\{\left(p(n)-i^{\prime}\right) \log 1 / K+\log \lambda_{i^{\prime}}-\log 2\right\}^{n}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Also

$$
\begin{aligned}
\left|B_{n}\right|= & \left\lvert\, \frac{2 n}{\pi(\log n)^{d+\eta}} \sum_{\lambda_{i}>2 n} \frac{c_{i}}{2}\left[-\frac{\cos \left(\lambda_{i}+n\right) t}{\lambda_{i}+n}\right.\right. \\
& \left.-\frac{\cos \left(\lambda_{i}-n\right) t}{\lambda_{i}-n}\right]_{\alpha_{i}}^{\alpha_{i-1}} \mid \\
\equiv & \frac{4 n}{\pi(\log n)^{d+\eta}} \sum_{\lambda_{i}>2 n} \frac{c_{i}}{\lambda_{i}-n} \\
\equiv & \frac{4}{\pi(\log n)^{\Delta+\eta}} \sum c_{i} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.

3

Let $\eta>0$. Take η^{\prime} such that $0<\eta^{\prime}<\eta$ and define

$$
\lambda_{i}=\left[(i!)^{\eta^{\prime}}\right]
$$

Then $\lambda_{i} / \lambda_{i+1} \rightarrow 0$ as $i \rightarrow \infty$, hence k exists. Also, $\lambda_{i} \leqq(i!)^{\eta^{\prime}}$ and $\lambda_{i-1}+1 \geqq\{(i-1)!\}^{\eta^{\prime}}$, so that

$$
\frac{\lambda_{i}}{\lambda_{i-1}+1} \leqq i^{\prime}
$$

Now,

$$
\frac{\alpha_{i-1}}{\alpha_{i}}=\left(\frac{\log \lambda_{i-1}}{\log \lambda_{i}}\right)^{\Delta} \frac{\lambda_{i}}{\lambda_{i-1}} \cong i^{\eta} \rightarrow \infty
$$

as $i \rightarrow \infty$, since

$$
\log \lambda_{i} \cong \eta^{\prime} \log i!\cong \eta^{\prime}\left(i+\frac{1}{2}\right) \log i \rightarrow \infty
$$

as $i \rightarrow \infty$ by Stirling's approximation formula for $i!$. Define

$$
e_{i}=\left(\log \frac{\alpha_{i-1}}{\alpha_{i}}\right)^{-i}
$$

Then $e_{i} \rightarrow 0$ as $i \rightarrow \infty$. Let $c_{i}=e_{i}$ for an infinite number of i 's, but put $c_{i}=0$ for enough values of i to make $\sum c_{i}$ converge. Thus by 2.3

$$
\limsup _{n \rightarrow \infty} I=\infty,
$$

so that by 2.1 and 2.2, the Fourier series of φ diverges at $t=0$. By 2.4, (i) is satisfied and it follows from 2.5 that (iii) is satisfied. Thus the theorem is completely established.

References

[1] F. C. Hsiang, On Riesz summability of Fourier series, Proc. American Math. Soc., 9 (1958), 37-44.
[2] A. Zygmund, Tyigonometric series (Cambridge, 1959).
National Taiwan University, Formosa, China.

