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1

Let ¢(f) be an even function integrable in the Lebesgue sense and
periodic with period 2x. Let
o(t) ~ $a,+ Zla,, cos nt.
Write
t
B(t) = [ p(u)du.

By an indirect method based on the method of Riesz summability
for the Fourier series, the author has established the following convergence
test for the oscillating series Y 4,. The theorem is as follows:

THEOREM A [1). If, for some A >0

114
Q) o) = o ‘: (log 7) }

as t - +0 and

(i) a, > —Knt (log )4,

tl;en 3 a, converges to the sum s = 0. Here K is an absolute constant independent
of n.

In this note, we intend to show that it is essential to use the same 4
in the conditions (i) and (ii) of the theorem; i.e., we prove the following

THEOREM. For each A > 0 and each n > 0, there exists an even function
@(t) satisfying (i), with its Fourier series diverging at t = 0, and such that

(i) a,=o {E°g+>"*_} :

* The author expresses his hearty thanks to the referee for his elaborate help in sim-

plifying the calculations of this paper and rewriting it in the present compact form.
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2
Let {4;} be a strictly increasing sequence of positive integers such that:
(a) A, —> c© as ¢ o0; and
(b) there exists a constant %2 and an ¢ with

A
2L <k<l1
J'i-i-l
for all ¢z = 4,.
Then
A
_ kn—t
PR
for all 4, = ¢ <.
Let 4 > 0 and define
(log 4,)*
oy = 1‘ .

It can easily be seen that there exists an ¢’ such that a, <z, a, < @5,
for all 7 = +¢41 and
LAY
;'l+1
for all 1 = ¢'—1.
Let {c,} be a sequence of non-negative real numbers tending to zero
as limit. Next, we define an even function:

c;sin 4,8 (0, St <oyt =9+1),

ol) = {o (2 <t < 7).

We are going to prove that the Fourier series of ¢(¢) diverges at the point
¢t = 0 though ¢(¢) and its Fourier coefficients (a,) satisfy (i) and (iii) respec-
tively. Denote by S, the 4,-th partial sum of the series a,/2+33° 4, then

S, = ;- J:qJ(t) Sint’l"t di-+o(l).

Substitute the function ¢(f) defined above into this integral and write it

in the form:
2 %1 gin A, ¢ si ¢ 2 %s-15in2 4,2
SA.=—{ +E}C‘J‘ lwdt+—c,,f 1sint 4, dt+o(1)
% \iragic<n  i>n " ¢ n ,ﬁ t

=’72; {21+22}+ '72;1'*'0(1)'

We require a number of lemmas.
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2.1 LEmMMA. We have
31—>0 as n->co.
ProOF. Since, for every ¢ <7 <mn, A4/, < k"' < k<1, thus we
have
1 c
=—0 { _i} .
zl ;'n ¢'<§<n oy

Take ¢ > 0, and choose p sufficiently large that > 4’41 and ¢, <e¢
for all + > p. Then

S _ z 4 b
i<i<n %4 i'<izp % p<i<n %
A

<0(
=0t )+8ﬂ<§<ﬂ (log 4,)4

<O0()4et, 3

il
p<i<n }»,.

< 0(1)+e1, S k.
r=1

Thus 3; - 0 as # — oo.

2.2. LEMMA. We have

>:—>0 as n— 0.

ProOF. Integrating by parts,

J-q_l sin A,¢ sin A,.¢ gt = [cos At sin }.nl:l 2y
t N 2 t le,

A, (31 sin 4,£\ cos 4,¢
= t— dt,
+ 2 L‘ (cos A, 7t ) ;

oy

and noticing that the integrand in the second term of the right side is
O(«;'), we obtain immediately

2:=4,0 { > c‘aiul}

i>n aild

~s0{s 1)

i>n li-—l
= o(1).
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2.3. LeMMA. If a, ,/o, > o0 as n — oo, then

limsup I = }limsup ¢ log
Proor. We have

w-15in? A, ¢ %a-1 1—cos 24,1
J“ sin? 2,, &= J‘ cos 24, it
, ¢ « 2t

and substitute ¢ = «,%, we obtain
J"'ﬂ-l cos 24, t J‘“-l"‘- cos 22, &, %
&,

¢
J"ﬂ coSs ¢, %
(where p, - o0, ¢, = (log 4,)4 - © as n — )

=f ) cos g, udu
1

(by the second mean-value theorem, where 1 <7, < 9,)

du

"

1
= — {sing,7,—sing¢,} >0

as n — oo, since ¢, - o as # —> oo. Thus,

Ry 1
limsup = limc,,f

n-+00 NBI0

2.4. LEMMA.

as t—-0.
Proor. For a, <t < a, 4,

1 (1og 1)4 J-o p)du =0 | 1 (o 1 )4 5o

Xl iznhg

=0 {}‘“1“” (log —1—- A‘Z:” c‘k""'}
-0 () ze]

pu———.

_ ~ log 1la, 4 ‘_”}
0 (log 1, +log (A, a,) 2ok

-0 as #n—> o0.
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2.5. LEMMA. If > 9" > 0, if A/(Ay+1) S 4" for all £ = 2 and if
the series Y ,c, converges, then

na, 0
i
(log n)4+7

as n — oo.
ProoF.
2 0 @4y
ay=— 3 c‘f sin 4,¢ cos ntdt,
T i=i'1 ay
hence
na, 2n

@41
(log n)"""l = n(log ”)A+” /\,‘SZZn, C‘J; sin l‘t cos ntdt

¢
>

2n -1
7 (log n)4+7 ’\gh C¢J: sin A;¢ cos nt dt
=A,+B,.
But
2 i £ sin ni] %
il s — o 3 o[
7 (log n)3+7 3 Sam " 5
A, [
- ’—J‘ cos 4,¢ sin ntdt'
nJ,,
2" 2 }'g‘a,‘_l
S TN N A J—
= n(log n)4+1 2 ¢ (” + — )
2 A, )
- W 2 {2 + T (log 4,,) }
2
> Py s 2 4+ L (log 2 A}
S
2 (log 2n)4 ”
= 2 (log #)4+ S Ke,i
for large ».
Let l’("’ =< }‘p(n)+1~ Then
2(log 2n)4
A< 227
4l n(log n)4+7 S Kpm)”
4 "
<k (1+ 1°g2) pm)
logn/ (logn)”
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But
log n+log 2n = log Ay(p
_ p(n)
= 1" +log A,
1

2 (p(n)—i') 1og 35 + log A,

hence
log 2\4 {pm)}”
=K' (1 :
4 S E (145 ) {(p(n)—7)1og 1/K + log 1, — log 2}
-0 as n— .
Also
Bl = 2n & [_ cos (A, +n)t
* n(log n)4+1 353, 2 Atn
cos (A, —n)t] %~
Ai—n a
4in s s
= n(log n)347 3 Son A—n
n(log n(log n)4+1 24
-0

as n - ¢,

3
Let n > 0. Take 5" such that 0 < 5’ < 5 and define
A= [EH7].

Then A,/A,,, >0 as - oo, hence % exists. Also, 4, < (i!)

A+l = {(i—-1)1}", so that

A <.
A+l
Now,
a
o logd, ] Ay

as 1 — o0, since
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log 4; @ 7' logi! = #'(i4-4) log ¢ - ©
as 1 — oo by Stirling’s approximation formula for ¢!. Define
_§
e = (log a—‘il)
L7

Then ¢, - 0 as 7 —» 00. Let ¢; = ¢, for an infinite number of ¢’s, but put
¢, = 0 for enough values of ¢ to make ) ¢, converge. Thus by 2.3

lim sup I = oo,

n—+00

so that by 2.1 and 2.2, the Fourier series of ¢ diverges at { = 0. By 2.4,
(i) is satisfied and it follows from 2.5 that (iii) is satisfied. Thus the theorem
is completely established.
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