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WEIGHTED LACUNARY MAXIMAL FUNCTIONS ON CURVES 

JONG-GUKBAK 

ABSTRACT. Let 7(0 = (/, f2,..., f) + a be a curve in R", where n > 2 and a G R". 
We prove LP-Lq estimates for the weighted lacunary maximal function, related to this 
curve, defined by 

% MX) = s u p b ^ - " / ^ [lf(x - 2*7(0) diV fe CS°(Rn). 
keZ\ Jo I 

If n = 2 or 3 our results are (nearly) sharp. 

Let n > 2 and fix a vector a G Rw. Let 7(0 = (t, t2,..., f) + a, for t G R. Consider 

the curve T = {7(0 : 0 < K 1} C R", and the measure /i supported on T given by 

dfi(l(t)) = dt. That is, /z acts on functions/by (/x,/) = Jo/(7(0) *• For r > 0 a dilate 

[ir of/x is defined by 

or equivalently, [ir may be defined by the equation /ir(£) = A^O- H e r e " denotes the 
Fourier transform in Rw. A dilate of a distribution v is defined similarly. 

In analogy with the spherical maximal function introduced by E. M. Stein (see [S3]), 
one may define the maximal function fA£ associated to the curve T, with a = (0 , . . . , 0,1) 
say, by 

9{f{x) = sup |/xr */-(x)| = supl jj(x - rr(0) dtV f G C?(Rn). 

If n = 2 this is a variant of the spherical (circular) maximal function and it is known that 
9i is bounded on LP if and only if/? > 2 (see [B], [MSS], [So]). On the other hand if 
n > 3 it is at present unknown whether there is some/? < oo for which 5\£ is bounded 
on LP(Rn). 

Let us now abbreviate the lacunary dilate /i2* as /i£ (k G Z). The corresponding lacu
nary maximal function may then be defined by 

Mf(x) = sup K */(x)| = supl fj{x - 2*7(0) dl f G C?(Rn). 

In contrast to fA£ it is well known that f̂ f is bounded on If(Rn) for/? G ( 1, oo] (see [DR], 
[S3]; also see [C]). 
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The purpose of this note is to study the LP—Lq mapping properties of a weighted ver
sion of the lacunary maximal function: 

%,J{x) = Ml/p_l/qflx) = sup |2*<"/'-"/«V* *f(x% f e cg°(R"). 
kGZ 

(A weighted maximal function (for the sphere) was first considered by Oberlin [02]. As 
was noted there, homogeneity implies that 94pyq can only be bounded from U to U when 
l/r-l/s=l/p-l/q.) 

It appears that the mapping properties of !Mp,q are closely related to those of the con
volution operator Tf = [i *f. Let 

A = Al.= {(l/pJ/,)€lP,l]xIp,l]:0<I-i<^,i>^, 

i>-I L_). 
q (n-l)p n - 1 J 

Thus A is the closed trapezoid (triangle when n = 2) with vertices (0,0), (1,1), D = 
((n2 -n + 2)/{n2 + n),(n - l)/(n + 1)), and D' = (2/(n + l),(2/i - 2)/(n2 + n)). 
For T to be bounded from If(Rn) to Lq(Rn) it is necessary that (1//?, l/q) G A (see 
e.g. [M]). When « = 2 or 3 the complete mapping properties of T are known: T is 
bounded from Lf(Rn) to L*(RW) if and only if (\/p, l/q) G A (see [Ol]). But when 
n > 4 the only known sufficient condition is that T is bounded from LP(Rn) to Z^(R") if 
(I//?, 1/^belongs to the closed triangle with vertices (0,0),(1, l),andE = ((«2+«+2)/ 
(2«2 + 2«), («2 +« — 2)/(2n2 +2«)), where £ is the midpoint of the line segment DZ)' (see 
[M]). Thus when n > 4 there is a large gap between the known necessary and sufficient 
conditions. 

Note that tMp,q may not be bounded unless (1 /p, l/q) G A, since \i *f is pointwise 
dominated by ftC,qf. We obtain the following positive result for ftC^ in R3. It affirms a 
conjecture of Oberlin. The letter C will denote a constant which may not be the same at 
each occurrence, but always independent of l G Z and/ (or £). Let A° denote the interior 
of A 

THEOREM. Let n = 3. Then 

(i) II*W1U'(R-) < ^ril^(R-) 

i / ( i , i ) e A ° , o n / j p = ^G( l ,oo] . 

When/? = # G (1, oo] this is the known result about M mentioned above. Let us give 
a brief outline of its proof. The I? estimate follows from the decay of/i and a Littlewood-
Paley decomposition off (as in Lemma 1 below). The LP estimates for 1 < p < 2 (the 
other values of p being trivial) are then deduced by applying a "bootstrap" argument (an 
iterated interpolation argument) similar to the one appearing in [NSW] (see also [DR], 
[S3]). The proof of the estimates (1) for the points in A° is similar: it may be based on a 
Littlewood-Paley decomposition off, and certain uniform oscillatory integral estimates 
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due to Oberlin [03] and McMichael [M] (see Lemma 2 below), and the convolution 
properties of/x in R3 ([01]; see above), combined with complex interpolation and a 
bootstrap argument. A similar argument also shows that ( 1 ) holds in Rn (n > 2) whenever 
(l/p,l/q) belongs to the open triangle with vertices (0,0), (1,1) and E, where E is as 
above. 

It may be an interesting problem to determine what happens on the boundary of À (see 
e.g. [Chi, Theorem 4]). It might also be worth pointing out that (1) holds independent 
of the vector a, in particular when a = 0, although there are related maximal functions 
whose properties when a = (0 , . . . , 0,1) and when a = 0, say, are very different. 

To prove the theorem we first need to state two lemmas. Fix a nonnegative function 
(j> e ÇQ°(R) such that </> is supported in the interval (1/2,2) and E / e z ^ O = 1 for 
/ > 0. Fory <E Z the Littlewood-Paley operator Pj is defined by Pjf(Q = <t>j(\Ç\)f(Q = 
<K2!\t\)t(0, for/ e q°(R"), say. Thus/ = T.J&tPjf. 

The following lemma is standard (see [DR]). It follows by Plancherel's theorem from 
the hypotheses on the decay of the Fourier transform of v and the support properties of 

LEMMA 1. Suppose that v is a distribution on R" such that for some number 6 > 0 
KOI < C\Z\-8, and KOI < C\tffori e R" Then 

|(EI"**JWI2) I <cr*"'i||/i|2. 
II \keZ / 112 

It follows from the last inequality that 

1 /2 

I(EK*/l2)I/2I2 = I (E | " t* (E^ | 2 ) <cE2- '̂|[/1l2<q|/ll2. 
K II V Ac t ' H Z L 

Certain special cases of the next lemma were proved by Oberlin [03]. The general 
version stated below is due to McMichael [M]. Let (PN be the space of real-valued poly
nomials on R of degree at most N. 

LEMMA 2. Given a positive integer N, there exists a constant CM such that if 
a\,..., a# are nonnegative real numbers with HjLiJocj = 1, then 

r / N x \+is I 

^ ( n b ^ o r ) dt\<cN(i + \s\y 
7=1 

ifp E (PN, a < b, and s G R, where a = EJLi <*/• 

PROOF OF THEOREM. Following Oberlin and McMichael [M] we define an analytic 
family of operators by 

w)=-;—-—^2 e r r Ax - 7 « - «""w - ^"\i))\u\*\vuudvdt 
r((z+i)/2) Jo J-°°J-°° ' 
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(initially by this equation for Re z > — 1, then for all complex z by analytic continuation). 
Then TJix) = \iz */(x), where 

?(0 = cz[ ^<>%"(0 • i\-x~z • \i"{t) • i\-^dt 

(see [GS, p. 359]). If Rez = - 6 / 5 , it follows from Lemma 2 withp(t) = 7(0 • £, N = 3, 
a\ — 0, and oti = a^ = 1 / 5 , that 

| / ? ( O l < C z V £ G R 3 , 

where the constant Cz has at most exponential growth in | Imz|. 
Now let G a be the Bessel kernel of (complex) order a, i.e., 

^ ( o = (i + i£i2ra/2, 

and take v = Ga* / / , with Re a = e G (0,2/5). Then !/(£) = 5^(0/?(0- So |J/(£)| < 
Cz(l+|£|)"£ if Rez = - 6 / 5 . Notice also that |P(0| < C|£|2/5 if Rez = - 6 / 5 . Therefore 
by Lemma 1 

(2) flsup \(G£+is * iiz\ * Pk+(f\ ||2 < Cz2-£l"||/1|2, if Rez = - 6 / 5 . 
k 

We have \\G£+iS ||! < C|r((e + îs)/2)| (see [SI, p. 132]). And we can see that [ilT 

is bounded (as a function of £) if r G R, by making the change of variables (/, u, v) —> 
y = (yuyi.yï) given by>> = 7(0 + w7"(0 + v7'"(0 = (U t2 + 2w, 1 + P + 6ut + 6v) in the 
integral for TiTf(x) = filT */(x), and noting that the Jacobian is a constant. Thus 

||(G£+/5*///r)*/||oo < llG^^^Hooll/ll! < HG^IMIM^IIOOII/III <c£,cT\\f\\u 

where the constant Ct^CT has at most exponential growth in s and r. Hence by homo
geneity we have 

(3) |sup |23*(G£+* * / / )* * / W | J < C^Crll/lli, if Rez = 0. 

To interpolate (2) and (3) we consider an analytic family of vector-valued linear op
erators defined by 

Sz(f) = {2kV+5z/2\G£+is * / / )* * / W } * e z 

(with e + w and £ fixed). Observe that (2) may be restated as boundedness of Sz from L2 

to L2(l°°) (a mixed-norm space): 

I l|5z(Oll^(Z)||i2(R3) < C2-°W\\f\\2, if Rez = - 6 / 5 ; 

and (3) as 
\\\\SMU-(Z)\\L^Ri)<C\\f\\u if Rez = 0. 
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Therefore by complex interpolation in the mixed-norm setting (see [BP], [02]) we obtain 

(4) llsup \2k'2(G£+is * p)h * / W l I L < C2-(5/6)^l| 
! l l 2 / 5 - ^ "/ 1112/7' 

since \i l = \i. 
Now fix a number 6 G (0,1/3). By Theorem 2 in [S2, p. 324] we have |/2(0| < 

C(l + ICI)"1/3. So \(G.ô+is * /i)A(Ol = |(G-^&)A(Ol • l/HOl < C Hence by Plancherel's 
theorem 

(5) llsup |(G_6+/5 * p)k * / W l II < I fe |(G_^, * //)* * / W i 2 ) V 2 I < C||/1|2. 
11 * "^ II V u J Il2 

We now apply complex interpolation again to the analytic family 

S*{f) = {2*«*+*>/2^>(Ga * ii)k * Pk+lf}kez. 

Since Go * /i = /x, (4) and (5) thus yield 

(6) ||sup |2^3/PO-3/?O)W * pk+ef] I < ^ - ^ K l 1 1 ^ 
"tfO 

for some £(po) > 0 if 2 > p0 > 12/7 and go = PQ (the conjugate exponent of/?o)-
(By choosing e > 0 small enough in (4) we may get (6) for points (l//?o, l/Po) € 
A° arbitrarily close to the point (7/12,5/12).) Since/ = T,tezPk+tf, an immediate 
consequence of (6) is that 

(6') ll*W1l»<c||/1U-
This proves (1) for points (1 /p, 1 jq) in A° lying on the line of duality \/p+\/q= 1. 

We now extend (1) to points that lie off the line of duality. Fix /? = l//?0 — l/#o G 
(0,1/6) and let L denote the (open) line segment L = Lp = {(1//?, l /#) E A° : 
\jp — \/q = (3}. Since /i is a positive measure, if {fk} is a sequence of functions, 
(67) implies that 

(6") flsupl^/"-3/»)^*/^ < Jfl^,^(supliÇ|)| <C|suplj$|I 
* y y 

(See [NSW] and [Ch2] for related positivity arguments.) Let (l/a9\/b) denote the right 
endpoint of L. (At the left endpoint the argument is simpler and a bootstrap argument is 
not necessary, since a > 2.) It is known from [01] that 

HM*/II*<C||/1U 

which implies by homogeneity that for k G Z and the same constant C 

\\2kVl°-Wnk*f\\b<C\\f\\a. 

Since 1 < a < b it is easy to see that 

(7) | (E l2* ( 3 / a - 3 / 6 ) W*/ i |
f c ) 1 / 1 | ^ t e l / I l " ) ' 7 ] < d £ l / i l 

II V k J \\b IIV k I lia il t 
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(8) 

By interpolating (6") and (7) in the mixed-norm setting we get 

M2b\\ _ l l / ^ , „ „ \ ' / 2 (£i23/v*/*r) II ^clteO lPi 

with l/p\ — \/q\ = (3 and \/p\ = (l//?o + \jd)j2. (Thus (l/pi, l/q\) is the midpoint 
of the line segment joining (l/po, l/#o) and (I/a, \/b).) Taking^ = Pk+zf in (8) we 
obtain 

(80 
1/2 

suP |23^*iWI| <c | (£ | /w | 2 ) I <c|i/iu, 

where the last inequality follows from a Littlewood-Paley inequality (see e.g. [So, p. 21 ]). 
Interpolating (6) and (8') yields 

(9) |sup|23^*^+/l|L<C2- -e(Ml*l|l 
IIP» 

for all (1//?, l /#) onZ, lying strictly between (l//?o, l/#o) and (l//?i, l /^ i ) . Hence we 
have for the same values of p and # 

(9') liaWII* < c\\f\\P, 

and by the positivity of// (as before) 

(9") | sup |2^V**/* l | < C | s u p ^ | | L 
k M j »P 

We interpolate again with (9") (in place of (6") in the interpolation step above) and (7) 
to get (1) on the entire open line segment with endpoints (l/po, 1 /qo) and (1 /p2,1 jqi), 
where the latter is the midpoint of the line segment joining (l/p\, 1 jq\) and (1 /a , 1 jb). 
By repeating this process we obtain (1) for any point (l/p9\/q)onL. m 

It should also be clear from this proof that in the statement of the theorem (1) may be 
replaced by the following slightly stronger estimate: 

(10 ( E | 2 * ( 3 / P - 3 / , W / | ? ) Ui 
< c\\f\\P-

To see this observe that, for instance, the sup^ on the left hand side of (2) may be replaced 
by an I2 norm, so that (4) actually holds with the sup^ replaced by an £12/5 norm. 

We would like to thank David McMichael, Daniel Oberlin and James Wright for sev
eral helpful conversations on the subject matters of this note. We also wish to thank the 
referee for several suggestions that greatly improved the exposition. 
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