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ABSTRACT 

The feasibility of applying the Lie transform method to the problem of 
the physical libration of the Moon is investigated. By a succession of 
canonical transformations, the Hamiltonian of the problem is brought 
under a form suitable for perturbation technique. The mean value of 
the inclination of the angular momentum upon the ecliptic and the fre­
quencies of the free libration are computed. 

1. INTRODUCTION 

One of the main toolsneeded to analyze the data of the laser ranging of 
the Moon is a precise theory of the libration of the Moon. 

Several authors (Eckhardt 1973, Cook 1976, Migus 1976) have worked and 
are still working on the improvement of such a theory. All of them use 
a technique of successive approximations to the solution of a set of 
differential equations. 

We felt it would be interesting to investigate whether the problem could 
be treated by an Hamiltonian perturbation method such as the Lie trans­
form method. This method has been used successfully in several problems 
of celestial mechanics and presents some advantages. One of them is 
that it enables (or forces) the scientist to take one difficulty of the 
system at a time and thus gives him a better understanding of it, espe­
cially in case of resonance. On the other hand, this technique is 
often more difficult to implement and requires more care in choosing 
coordinate systems. 

Whatever the advantages or drawbacks of these two methods, it seems to 
us very interesting to compare their results. Indeed their philosophy 
and especially the way they treat resonance is quite different. Thus, 
if the results of both of them agree, one can feel confident that the 
problem has no hidden traps and that the solution is valid. 
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126 J. HENRARD AND M. MOONS 

In this paper, we study the feasibility of applying the Lie transform 
method to the problem of the physical libration of the Moon. This 
task is not a trivial one as the libration of the Moon is not obviously 
the perturbation of an integrable problem or, if it is (one can think 
of the constant rotation around the axis of inertia), the integrable 
problem is too degenerate to be of any use. 

2. THE PHASE SPACE AND THE FREE ROTATION PROBLEM 

To describe the problem of the libration of the Moon as an Hamiltonian 
system, we choose the Tisserand's canonical variables (Deprit 19^7) -
They are the three angles Ui , U2 , ̂ 3 (see figure 1) and their 
conjugate momenta : 

Mi = M2 cos I 

M2 = norme of the angular momentum of the Moon 

M3 = M2 cos b 

where the angles I and b are defined in figure 1. The frame of 
reference X , Y , Z is an inertial frame (the plane X , Y being the 
ecliptic) and the frame x , y , z is the frame of the principal axis 
of inertia of the Moon. 

orbit of the Earth 

ecliptic 

equatorial plane 

invariable plane 

Figure 1. Geometry of the libration of the Moon. 

The invariable plane is the plane perpendicular to the angular momentum 
of the Moon. Note that we have taken the angle I as negative so that 
the mean value of the longitude \i\ , will be equal to the mean value 
of the node of the orbit of the Earth as seen from the Moon. 

The Hamiltonian of the free rotation is then written as (Deprit 1̂ 6?) : 
2 

Mi 
1 1 , 2 2, 

H = - — + j (M2 - M3) 

sin2 y3 cos2 U3 
1 

where A , B , C (A < B < C) are the moments of inertia of the Moon 
with respect to the axis x , y , z . 
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The Tisserand's canonical variables are singular when I and b are 
equal to zero (or to IT). When 1 = 0 (resp. b = 0 ) the angles yi 
and y2 (resp. y2 and y3 ) are undefined (although their sum is well 
defined). This is a situation very similar to the one appearing when 
one uses the Delaunay's variables for small eccentricities or inclina­
tions in the two body problem. 

As usual, this situation can be dealt with easily by using the proper­
ties of d'Alembert characteristic if the singularity can be shown to be 
of the polar-coordinates type (Henrard 197*0- To do this, we introduce 
the modified Tisserand's elements : 

Ai = M2 Xi = ]ii + y2 + y3 (2.1) 

A2 = M2 - M3 X2 = -y3 (2.2) 

A3 = M2 - Mi X = -yx (2.3) 

The angle X2 (resp. X3 ) is undefined when A2 = 0 (resp. A3 = 0 ) 
but the Poincare-type variables associated with (2.2) and (2.3) : 

E, = V2 A2 sin X2 E = \J2 A2 cos X2 (3-1) 

n = V2 A3 sin X3 H = V2 A3 cos X3 (3.2) 

are non singular. Thus, the virtual singularities of the modified 
Tisserand's variables (2) will not present any difficulty if the 
functions we shall be dealing with present the d'Alembert characteristic 
with respect to the couple (X2 , A2) , (X3 , A 3 ) . 

The Hamiltonian of the free rotation now reads : 

(A1-A2)2 sin2 X2 cos2 X2 

H = | ^ — + { A2 (2 Ai-A2) [ + — ] (k) 

or 
2 .2 

1 1 o * • 9 b 2 b r C - A . , , C-B , , „ . 
H = - — + 2 — sin2 - cos2 - [ sin2 X2 +• cos2 X2 ](5) 

2 C C 2 2 A B 
From (*0 , it is obvious that this Hamiltonian function presents the 
d'Alembert characteristic with respect to the couples (X2 , A2) and 
(X3 ,A3) . The expression (5) with the auxiliary quantities : 

b A2 I A3 

sin — = r— sin — - (^ 2 2 Ai 2 2 Ai 

which are geometrically meaningfull and undimensional, will be prefered. 
It makes obvious that, when A = B = C (which is almost the case for 
the Moon), the problem is trivial. 

3. THE PERTURBATION FROM THE FREE ROTATION PROBLEM 

The function which has to be added to the Hamiltonian of the free 
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rotation to take into account the attraction of the Earth on the rigid 
Moon is : 

c f f d y Av' 
Earth Moon r' 

where r' is the distance between an element of mass dM' in the 
Earth and an element of mass dp in the Moon. We assume that the 
Earth is a mass-point, thus neglecting terms of the order of : 

with respect to the mean terms of the perturbation ( r being the dis­
tance of the centers of mass and R the equatorial radius of the body). 

Furthermore, in this preliminary computation, we shall neglect the terms 
of the third order in the expansion of the potential of the Moon, thus 
neglecting terms of the order of : 

J2 r Moon -

with respect to the mean terms of the perturbation. 

Neglecting terms independant of our phase space, we are thus considering 
as perturbing potential : 

V = - |G-E[(C-A) ?" + (C-B) £] (7) 
2 r3 

where 5X and ?2 are the first two coordinates of the unit vector 
pointing to the Earth in the frame of the principal axis of inertia of 
the Moon. 

Defining the mean semi-major axis of the orbit of the Earth by : 

a 
.3 _ n /v ^ *,\ I „2 G (E + M) /n2 (8) 

where n is the mean notion in longitude of this orbit, we write the 
equation (7) under the form : 

where y an^ K a r e defined as usual by K = M/E and y = (B-A) / C. 
The quantity 6 is defined by : 

6 = (2 C - A - B) / C (10) 

and is related to the usual quantity $ = (C-A) /B by : 

6 a
2 P - Y ( i - g ) = 2 p _ 2 p 2 + g + 0 ( p 3 ) ( l 1 ) 

l + P 

The expressions of E,\ and £2 in C9) are obtained by a succession of 
rotations (of angles \i\ , I , |i2 > "b , y3 ) from the expressions of Xi , 
X2 , X3 , the components of the unit vector pointing to the Earth in the 
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ecliptical frame. In our program, the quantities : 

s = sin (b/2) k = cos (b/2) , > 
S = sin (I / 2) K = cos (I / 2) { ' 

are used to express the rotation of angles I and b . 

The expressions of (a/r) , Xi , X2 , X3 in turn are obtained from the 
Theory of the Moon; they are multiple Fourier series in the arguments 
A , D , F , 1 , 1' (resp. the mean longitude of the Moon, the difference 
of longitude between Moon and Sun, the arguments of latitude, the mean 
anomaly of the Moon and the mean anomaly of the Sun). In this compu­
tation, we have used the solution of the main problem called ALE 
(Deprit et al. 1971a, 1971b, Henrard 1972) truncated at 50" for 
longitude and latitude and at 0"5 for the_sine-parallax. This 
corresponds to a relative accuracy of 2.10 in the computation of V . 

Note that if we use in the expression (a/r) the definition (8) for 
the mean semi-major axis and not the inverse of the constant term of 
sine parallax, we do not have to take into account the correcting factor 
A = 1.0027 of Jeffreys (Jeffreys 1961). Actually, our computation 
corresponds to A = 1.002726 as the value given by Jeffreys is trun­
cated. 

The system we are considering is a system with three degrees of 
freedom but it depends explicitely on the time through the frequencies 
n (of the longitude of the Moon), n' (of the longitude of the Sun), 
ng (of the perigee of the Moon) and n^ (of the longitude of the node 
of the Moon). We transform it into an autonomous system with seven 
degrees of freedom by introducing artificial momenta L , L' , G , H , 
conjugated respectively to the angles A , 1' , g , h (note that L , G , H 
are not the Delaunay's momenta). 

Eventually, taking into account (5) and (9), we obtain as Hamiltonian 
function for the problem of the libration of the Moon : 

H = n L + n ' L ' + n G + n , H + Ai/2C + 
h 

A? 
+ — s2 k2 (6 - y cos 2 A2) - (13) 

3 n2 C . 3 n2 C 
6 P Y P, 

"» 1 + K 1 * 1 + K l 

2 2 
where Pi and P2 are the expansions respectively of (a/r)3 (d+? 2) 

and (a/r)3 (t\ - g) . 

In writing (13), we have neglected a term : 

h s2 k2 [
6 +y - Y 6 cos 2 A2] + *(6

3) (1U) 
of the order of 62 in the expression of the Hamiltonian of the free 
rotation. 
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The principal terms in Pj and P2 are approximatively : 

K2 S2 k2 s2 + (r + s14) (k- + s") + 

+ 2 K* k2 s2 cos (2 A - 2 Ai - 2 A2) + 

+ 2 sini KS (K2 - S2) (k" + s" - U k2 s2) cos (A3 + h) 15 

0.015 K1* k s (k2 - s2) cos (X Aj - A2 

P2 = 2 k (K + S - U K S ) cos (2 A,) + 

+ K1* k" cos (2 A - 2 Ax) -

- 0.015 K1* k3 s cos (A - A, + A2 0 + 
(16) 

U. CASSINI'S LAWS AND THE FREQUENCIES OF THE SYSTEM 

In our notations, Cassini's laws which provide an approximation for the 
physical libration of the Moon, can be written : 

<AX> = A 

<A3> = -h 

<2S> = -sin (1° 30') 

where <...> stands for "the mean value of". 

17) 

To take into account those laws and bring forward the librations around 
these mean values, we propose the following canonical transformation : 

A, 
Xl A, A 

x2 

X3 

A + 

h + 

-A 
-A 
= A 

= h 

A2 

0 

c sin (A3 +h) 

yi =n-C~ V 

Yl 

73 

S-2 A, 
n C 

cos A2 

V ^ ^ c o s (A3+h) -2y 

1,+ = 1' 

n C 

L+ = (L + A i ) / n C 

H+ = (H - A3) / n C 

G+ = G / n C 

L ' + = L( / n C 

18.1) 

18.2) 

18.3) 

18.1+) 

18.5) 

18.6) 

18.7) 

The constant v (close to one) which appears in (18.1) comes from the 
fact that the mean value of Ai is close but not quite equal to n C 
and the constant y which appears in (18.3) is close to the constant 
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<-S> . These constants will be computed so that the coordinates 
(xi,yj_) will be cartesian-like coordinates centered at a mean equili­
brium. The multiplier of the transformation has been made equal to 
1 /nC in order to obtain undimensional (x£,y-j_) . 

The Hamiltonian function (13) now reads : 

H = n L + n ' L ' + n G + n H + 
g h 

+ n (v - 1) yi + 2 y nh y3 + 

+ - y\ + -[6 (xl + y|) + y (x|-yl)] v+ (19) 
2 i* 

+ — (x3 + y 3) + • • • -

3 n 6 3 n Y 
P l L_ p 2 

<+ 1 + K •» 1 + K 

where we have dropped the stars. The principal terms in Pi and P2 
are approximatively : 

Px = [ - 2 V V / V - sin i + <?(y2) ] y3 + 

+ [Vy2/V sin i + #(y2) ] yi + 

+ 7 [ -(xl + y23) - 2 xz + 0.15 yi y3 + ( 2 0 ) 

+ 0.16 cos g (y2 y3 - x 2 x 3) -

- 0.16 sin g (y2 x3 + x2 y 3 )] + #(u) + 

+ cubic terms in (x. ,y.) 

(21.) 

P2 = [-2Vy
27v - sin i + r?(y2) ] y3 + 

+ [Vy2/v sin i + i?(y2) ] y i + 

+ 1 [ - ( x l + y3) - 2 x
2 - U x2 + 

2 

+ 0.15 yi y3 + 0.32 y i x3 + 

+ 0.16 sin g (y2 x3 - x2 y 3) -

- 0.16 cos g (y2 y3 + x2 x 3)] + >?(y) + 

+ cubic terms in (x.,y.) 

where sin i is the sine of the inclination of the orbit of the Earth. 

The origin of the phase space will be a mean equilibrium for the system 
if y and V are such that the mean values of the coefficients of the 
linear terms in (xi,y^) are zero. 

Then, in order to compute the basic frequencies of the system around 
this mean equilibrium, we should, by a linear canonical transformation, 
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bring the quadratic part in (x^,yi) of the Hamiltonian under the form 
of three uncoupled harmonic oscillators. 

^ (x{2 + yj2) + ^ (x2
2
 + y<2

2) + ^ (x3
2
 + y3

2) (22) 

As we have defined only a mean equilibrium in the first step, the 
frequencies n^ obtained would be only approximations of the true 
frequencies around the true equilibrium. In view of this, we shall 
simplify this second step by asking only that the quadratic part of the 
Hamiltonian becomes approximatively (22) and restrict ourselves to 
linear canonical transformations of the scaling-type : 

x. = a- x.' y. = a~l y! (23) 
i l l J i i J i 

Eventua l ly , the t ransformat ion : 

xi = v 2 P s in p y i = v 2 P cos p 

x2 =V2~^ s i n q y2 = V^~Q cos q (2U) 

x3 = v 2 R sin r y3 = v2R cos r 

will introduce the action-angles coordinates used in the following step 
of the theory. 

5. NUMERICAL VALUES 

The constants y , v , a^ and n^ (1 < i < 3) of the preceding para­
graph depend upon the values of K , n^ , 6 , y . We have taken : 

6 = 0.00103 K = 1/81.30 
(25) 

Y = 0.00023 n h ^ n = _0-00l+02133375326 

Of course, the constants 6 and y are not well determined and we 
should allow for their variation by computing the derivative with 
respect to them of the final solution. 

With the above values, we find : 

U = 0.013^99866212 (26) 

V = 1.00000lU65T)+6 

which, as we check, can be compared with the values given for the mean 
inclination of the axis of rotation of the Moon on the ecliptic. 
Assuming (x^,y^) to be zero, we find : 

I = -2 sin"1 (vWv) = - 1° 32' U9" (27) 

which is to be compared to - 1° 32' 28" given by Eckhardt (Eckhardt 
1965) or to - 1° 32' 57" given by Migus (Migus 1976). Not too much 
emphasis should be placed upon this comparison at this stage. Indeed, 
if both the quoted authors give as data the final mean value of I , it 
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should be compared t o the mean value of : 

2 sin"1 (liiiJL^illlil,1-
2 v + y i 

(28) 

which is close to (because yx , x, , y3 
value) but not quite equal to (27). 

are small and of zero mean 

Figure 2 shows the variation of this last constant when & and Y 
varie. The level lines are lines of constant offset from the value 
- 1° 32' U9" . 

0.0010U 

0.00103 _ 

0.00102 

0.00022 0.00023 0.0002U 

Figure 2. Variation of I with 6 and Y • 

For the values of a^ (1 < i < 3) (see equation (23)), we find : 

cti = 6.2071913^2059 

<x2 = 0.633750505567 

a3 = 1.001132806819 . 

!29) 

The approximations of the frequencies at the equilibrium are thus : 

ni / n = 0.02595^386109 

n2 / n = 0.00099351622U ' 

n3 /n = -0.0030989772.93 

30) 

The corresponding periods are respectively : 2.88 years, 75-23 years 
and 2U. 1U years. 
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!31) 

6. CONCLUSIONS 

The Hamiltonian function of the problem of the libration of the 
Moon has now been transformed into a form suitable for perturbation 
theory : 

H = n L + 

+ n ' L' + n G + n . P + 
g : 

+ n 2 Q + n 3 R + n H + 

+ n H 3 ( P , Q , R , p , q , r , A , l ' , 1 , F , D ) 

where the principal terms in H3 are approximatively : 

H3 = -0.00020 VP R COS (p - r) + 

+ 0.00018 VP R COS (p + r) -

- 0.00013 VQ R COS (q + r + g) -

- 0.00007 VOTR COS (q - r - g) + ,^2\ 

+ 0.0000U V P Q COS (p - q - g) -

- 0.0000U VP Q COS (p + q + g) -

- O.OOOOOUVP COS (p - 2 g) + 

+ ... 

As suggested by the way we have written equation (31), the elimination 
of the periodic terms could be done in three steps, according to their 
frequencies. First, one could eliminate the monthly terms, then the 
terms of a period of a few years. They are the terms in 1' , g , p 
with the exception of the resonant term in p-2g . In the last step, 
one could eliminate the terms of a period of twenty years and more, i.e. 
the terms in q , r and the resonant term in p - 2 g . 

In the near future, we plan to implement this elimination of periodic 
terms and thus compute the generator of the canonical transformation 
which brings the Hamiltonian (31) into an integrable one. This trans­
formation known, the series describing the libration of the Moon can 
be obtained easily. 

Before obtaining what we hope will be a usefull theory, we shall have 
to include several neglected terms in the Hamiltonian and compute the 
derivatives of the series with respect to 6 and y . 
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