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OSCILLATIONS IN A NONAUTONOMOUS DELAY LOGISTIC
DIFFERENCE EQUATION

by CH. G. PHILOS

(Received 4th April 1990)

Consider the nonautonomous delay logistic difference equation

(So)

where (pn)n g 0 ' s a sequence of nonnegative numbers, (/n)ng0 ' s a sequence of positive integers with lim,^,,
(« — /„) = oo, and K is a positive constant. Only solutions which are positive for nSO are considered. We
established a sharp condition under which all solutions of (£0) are oscillatory about the equilibrium point K.
Also we obtained sufficient conditions for the existence of a solution of (£0) which is nonoscillatory about K.

1980 Mathematics subject classification (1985 Revision). Primary 39A1O.

1. Introduction

Difference equations provide an important first step in developing techniques for the
analysis of dynamic phenomena in biology, both with respect to problem formulation
and theoretical development. See, for example, [1, 4, 5, 7 and 12]. An example is the
logistic difference equation, which arises in models of population dynamics as a discrete-
time version of the logistic differential equation and as an approximation to a nonlinear
renewal equation (see, e.g., [3, 4, 7 and 12]). This equation has been studied in many
papers, including [3, 8, 9, 10 and 13]. Our aim in this paper is to study the oscillation
about the positive equilibrium point of the solutions of a nonautonomous delay logistic
difference equation.

The logistic difference equation is

Nn+l=Nn{a-bNn),

where a and b are positive constants. By writing

the equation may be brought into canonical form
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This equation has two equilibrium points, the origin and K=(a — l)/a which has
physical meaning only for a > 1. For a > 1, the last equation takes the form

where p = a — 1 > 0 and the forward difference operator A is defined as usual, i.e.
Ayn=yn+i-yn.

In this paper, we consider the nonautonomous delay logistic difference equation

(Eo)

where (pn)ng0
 IS a sequence of nonnegative numbers, (l,,)n^0 <s a sequence of positive

integers with

lim («-/„) = oo,

and K is a positive constant.
Throughout the paper we will use the notation

/= — min (« — /„).

Clearly, / is a positive integer.
By a solution of (£0) we mean a sequence (yn)ng_, which satisfies (Eo) for all n^O.
Motivated by the plausible applications of (£0), in what follows we consider only

solutions (yJng -i °f (^o) with yn>0 for every n^O.
We are concerned with the oscillation of the solutions of (£0) about the equilibrium

point K. A solution (yn)n> _( of (£0) is said to be oscillatory about K if the terms of the
sequence are neither eventually greater than K nor eventually less than K. Otherwise,
the solution is called nonoscillatory about K.

The substitution

transforms (£0) into the equation

Axn + pn(l+xn)xn.ln = 0. (E)
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Clearly, the oscillation of (yn)n^ _j about K is equivalent with the usual oscillation (i.e.
the oscillation about the origin) of (xn)n^-i- As usual, a solution (xn)ng_, of (£) is called
oscillatory if it is neither eventually positive nor eventually negative, and otherwise the
solution is called nonoscillatory.

Moreover, the fact that yn>0 for n^O is equivalent with the statement l + x n > 0 for
n^O. So, in the sequel we consider only such solutions (xjng _, of (£) which satisfy

l + x n > 0 for all n^O.

The paper is organized as follows: In Section 2 we give a sharp condition for the
oscillation of all solutions of (£). Sufficient conditions for the existence of a nonoscilla-
tory solution of (£) are presented in Section 3.

For related results concerning the oscillation of the solutions of (£) we refer to the
recent paper [2]. Moreover, we note that oscillation and nonoscillation criteria for a
nonautonomous delay logistic differential equation are obtained in [14].

2. A sharp condition for oscillations

The main result in this section is Theorem 1 below, which provides a sufficient
condition for the oscillation of all solutions of the delay difference equation (£) where
the sequence (« — /„)„ g0 ' s assumed to be increasing.

Theorem 1. Let the sequence (n—ln)n^0 be increasing and assume that

/j »-i \ //„
l i m i n f l - £ Pt > H m s u p " , n + 1 - (i)

n - » o o \'n k = n-ln ] n—a> I ' n ' l /

Then all solutions of (£) are oscillatory.

In order to prove Theorem 1 we make use of the following known result, in which
(Pn)ng0 is assumed to be a sequence of nonnegative numbers.

Theorem 0. Let the sequence (" — /„)„go oe increasing and assume that

/J 1-1 \ fn
l iminfl- X Pt >limsup "

n -> oo

liminfl X Pt
n-oo \'n k = n-tn )

Then:

(a) There is no sequence of numbers (xn)n^ _/ which is eventually positive and satisfies

Axn + Pnxn _ ,„ g 0 for all large n.

(b) There is no sequence of numbers (xn)ng _, which is eventually negative and satisfies
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Axn + Pnxn_,n^0 for all large n.

It has been proved in [11] (see also [6] for the special case where /„ = / for all n^
that, under the assumptions of Theorem 0, all solutions of the linear delay difference
equation

are oscillatory. A slight modification in the proof of this result leads to Theorem 0.
To prove Theorem 1 we also need the next lemma.

Lemma 1. Assume that

n=0

Then every nonoscillatory solution of (E) tends to zero as«-»oo.

Proof. Let (xn)n^_, be a nonoscillatory solution of (£). Then there exists an integer
n 0 ^ —I such that (xjngno is either positive or negative.

Consider first the case where xn>0 for all n^n0. We choose a nonnegative integer
nt^n0 such that

n — ln^n0 for every n^n^.

Then from (£) it follows that Axn^0 for n^.n1 and so the sequence (xn)n^ni is
decreasing. Hence, a = limn _ „ xn exists and is a nonnegative number. Assume, for the
sake of contradiction, that a > 0. Then from (£) we obtain

Axn= -pn(l +xjxn_ / n^ -pMxn_,n^ -<xpn

for all n^n2, where the integer n2^ni is chosen so that

n — / n ^«! for every n^n2-

Hence, we get for n^.n2

Pk

and consequently
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which contradicts (ii). Thus, a = limn _ TO xn must be zero.
Suppose now that xn<0 for all n^n0 and choose the nonnegative integer n^riQ as

above. By our general hypothesis, we have l+x n >0 for n^O. From (E) we derive
Axn^0 for every n^n^, which means that (xn)ngni is an increasing sequence. This
implies that /? = limn _ „ xn exists and is a nonpositive number. Let j? be negative. Then
from (£) it follows that

Axn = - pn( 1 + xn)xn _ ,„ ̂  - (1+ xB2)/?pB

for every n^w2> where the integer n2^n1 is chosen as in the first case. So, we obtain for

n

xn+i-xn2 = £

and hence
Pk,

where l+xn 2>0. This contradicts (ii) and so )?slimn_ooxn=0.
The proof of the lemma is complete.

Proof of Theorem 1. Assume, for the sake of contradiction, that there is a
nonoscillatory solution (xn)n^_, of the difference equation (£). Then we can choose an
integer « 0 ^ - / so that the sequence (xn)ngno is either positive or negative. We consider
the following two cases:

Case 1: xn>0 for all n^.n0. Let nt ^.n0 be a nonnegative integer such that

n — ln^n0 for every n^Mj.

Then from (£) it follows that

Axn + pnxn_/n^0 for all n^w,.

By Theorem 0, this is a contradiction.

Case 2: xn<0 for all n^.n0. In view of condition (i), we can choose a number ee(0,1)
such that

(l-e)liminf - £ pjt)>limsup "
n-oo \'n k = n-ln I n - oo \'n+l)
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That is

liminf [ — £ Pt)>limsup
\'n k = n-ln ) n-oo In-oo

where

Furthermore, we observe that from condition (i) it follows that

B - l

liminf £ P*>0,
n - * oo ft = n — /n

which obviously implies that condition (ii) is satisfied. Hence, in view of Lemma 1, we
have

lim xn = 0.

Thus, if we consider a nonnegative integer «f ^ n0 such that

n — ln^n0 for n ̂  nj

and

xn > — e for all n ̂  nf,

then from (E) we obtain for n^nf

So, we have

xn_,n^0 for all n^

In view of Theorem 0, this is impossible.
The proof of the theorem is now complete.

3. Sufficient conditions for the existence of nonoscillatory solutions

The main purpose in this section is to prove the following theorem, which establishes
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some conditions under which the delay difference equation (E) has a nonoscillatory
solution.

Theorem 2. Suppose that

£ Pn + i > 0 for all n^O, (iii)
i = 0

where

1,2,...}:— l^p — lp^n—1 for n ^ / i ^ i

Moreover, assume that there exist two numbers c and y with 0 < c < y < 1 such that

Pn<7 for every n^0 (iv)

and

~ I! ( l - -p \b l + (l--cY+1 /ora» n̂ O, (v)

Pn ^c, if - / - l g

T/ien there exists a positive solution (xn)n^_t of (E) with limn_ooxn = 0.

We remark that in the special case where /„ = / (n = 0,1,...) we also have Ln = l for all
n ̂  0. The proof of Theorem 2 is based on the following lemma.

Lemma 2. Suppose that (iii) holds, where (Ln)n^0 is defined as in Theorem 2, and let
(zn)ng -i be a positive solution of the delay difference inequality

Azn + pn( l+zn)zn_,ng0. (I)

Then there exists a positive solution (xn)n^_( of (E) with limn^coxn = 0 and such that
xn-gznforn^-l.

Note. By a solution of (I) we mean a sequence (zn)n§ _( which satisfies (I) for all n^O.

Proof. The method of proof is similar to that of a lemma in [11] (see also the proof
of Theorem 3 in [6] for the special case where /„ = / for n = 0,1,...).

From (I) it follows that for v ^ n ^ O
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V v

z n > - ( z v + 1 - z n )= - £ Azk^ £

and consequently
OO

z n= S Pik(l+zfc)z*-/fc for every n ^

Next, we consider the space 3C of all sequences (xn) n g_ , which satisfy

xn = zn for - / ^ n < 0 , and Q^xn<Lzn for n^O.

For any sequence (xn)n^ _, in SC, we put

zn, if -l^

L Pk(l+xk)xk-,k, if n^O.

We immediately see that this formula defines an operator S:9C^*9C. This operator is
monotonic in the sense that, if (x^)n^_, and (x^)n S_, are two sequences in 3C with
x,} ^ x2 for n ̂  — /, then Sx^ ^ Sx^ for all n ̂  — /. Now, we define

x? = zn for n^-l

and

x^ = 5x^ - 1 for n^-l ( r= l ,2 , . . . )

and we see that (x^)ng_, belongs to ^" for every nonnegative integer r. Moreover, it is
easy to see that

xj? ̂  x,J ^ x2 ^ • • • for all w ^ — /.

Furthermore, we set

xn = lim xr
n for n^—l

r -* oo

and we observe that 0 ̂  xn g zn for every n ̂  — /. Moreover, we have xn = Sxn for all
n ~2. — I and consequently
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zn, if - / ^

*-,„, if n^

This gives

Also, we get

lim xn = 0.
n —• QO

Axn=-pn(l+xn)xn_,n for all n^

and therefore the sequence (xn)ng_, is a solution of (£). Since xn = zn>0 for —/gn<0, it
remains to show that xn > 0 for all n ̂  0. Assume, for the sake of contradiction, that the
sequence (*„)„> 0 has at least one zero. Then these exists an integer no ^0 such that

xn>0 for —l^n<n0, and xno = 0.

By condition (iii) and the definition of the integer Lno, we obtain

Ax,

^ - min (l+x^x^,^ £

r
= - min

which is a contradiction, and so the proof of our lemma is complete.

Proof of Theorem 2. Define (cf. [11, Theorem 5] or [6, Corollary 1])
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n - l

zn= n
By taking into account the fact that 0<c<y and condition (iv), we can see that zn>0
for all n ̂  — /. Furthermore, by using condition (v), we derive for each n g 0

n

^ ^

Hence, the sequence (zJBfe_i is a positive solution of the delay difference inequality (I).
So, an application of Lemma 2 completes our proof.
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