A REMARK ON INTEGRATION OF ALMOST-PERIODIC FUNCTIONS

BY

S. ZAIDMAN

Introduction. A result proved by Favard for scalar-valued almost-periodic functions has an immediate extension to Banach space valued functions (see [2] and [3] for explicit details).

The result says that integrals of almost-periodic functions whose 'spectrum' is at positive distance from 0 are again almost-periodic. Our aim here is to indicate a more general formulation of this result using strongly almost-periodic oneparameter groups of operators in Banach spaces.

1. Let us remember here a few fundamental definitions. Consider a Banach space X and a function f(t), $-\infty < t < +\infty \rightarrow X$ which is continuous and almostperiodic; this means that the set of translates (f(t+h)) where $h \in (-\infty, +\infty)$ is a relatively compact family with respect to the space $C[-\infty, +\infty; X]$. It is known that for such a function $\lim_{T\to\infty} (1/T) \int_0^T e^{-i\lambda t} f(t) dt$, where λ is real number, exists in X and is $\neq 0$ (the null element of X) on at most countable set $(\lambda_n)_1^\infty$ (see [1] and [3] for proof); one denotes by $\sigma(f(t)) = (\lambda_n)_1^\infty$ the 'spectrum' of f(t). Then the result by Favard (extended to Banach space valued functions) which was stated in the introduction is as follows:

THEOREM 1. If $\exists \alpha > 0$ such that $|\lambda_n| > \alpha > 0$, $\forall n = 1, 2, ...$ then $F(t) = \int_0^t f(\eta) d\eta$ is again an almost-periodic function.

Let us consider now a strongly continuous one-parameter group of linear operators in X, $G(t) \in \mathscr{L}(X, X)$, $\forall t \in (-\infty, +\infty)$, $G(t+s) = G(t)G(s) \ \forall t, s \in (-\infty, +\infty)$. We say that G(t) is a strongly almost-periodic group (as in our paper [4]) when, $\forall x \in X$, G(t)x is almost-periodic, $-\infty < t + \infty \rightarrow X$.

Then, according to our previous remark, $\forall x \in X$ the spectrum σ_x of G(t)x is a well defined at most countable set. We may, at this stage, assume the following.

The union when x varies in X of the σ_x : $\bigcup_{x \in X} \sigma_x$ is a countable set $(\mu_n)_1^{\infty} \subset \mathbb{R}^1$; we say in this case that the group G(t) has property (P) and denote $(\mu_n)_1^{\infty} = \bigcup_{x \in X} \sigma_x$ = σ_G . We can state now our result in form of

THEOREM 2. Let f(t) be an almost-periodic function, $-\infty < t < +\infty$ to X and $G(t), -\infty < t < +\infty \rightarrow \mathscr{L}(X, X)$ be a strongly almost-periodic one parameter group of operators, having property (P). Then if $(\lambda_n)_1^{\infty} = \sigma(f)$, and $(\mu_m)_1^{\infty} = \sigma_G$, and if $\exists \alpha > 0$ such that $|\lambda_n - \mu_m| > \alpha > 0 \forall n, m = 1, 2, ...,$ we have that $F(t) = \int_0^t G(t-\eta)f(\eta) d\eta$ is an almost-periodic function.

Received by the editors October 17, 1969.

S. ZAIDMAN

[June

REMARK 1. When G(t) = I (the identity operator), $\forall t \in (-\infty, +\infty)$ we obtain Theorem 1. So Theorem 2 is a more general form of Theorem 1. Its proof consists in fact in a reduction, after some steps, to Favard's Theorem 1.

REMARK 2. If f(t) is regular, say $C^1(X)$, then $F(t) \in D(A) \ \forall t$ and F'(t) = AF(t) + f(t) holds; here A is the infinitesimal generator of G(t) defined through $Ax = \lim_{\eta \to 0} (1/\eta) (G(\eta)x - x)$, and D(A), the domain of A, is dense in X.

Proof of Theorem 2. We use the following result which was given by us previously (see [3] and [4]); see also [5] for a proof using Maak's definition of almostperiodicity.

LEMMA 1. If G(t) is a strongly almost-periodic one parameter group of operators, and f(t) is an almost-periodic function, then G(t)f(t) is again an almost-periodic function.

Then we have the obvious

LEMMA 2. If G(t) is a strongly almost-periodic one-parameter group of operators, then $\check{G}(t) = G(-t)$ is again a strongly almost-periodic one-parameter group of operators.

Then we see that $F(t) = G(t) \int_0^t G(-\eta) f(\eta) d\eta = G(t) \int_0^t \check{G}(\eta) f(\eta) d\eta$. We shall prove that $\int_0^t \check{G}(\eta) f(\eta) d\eta$ is an almost-periodic function and then will apply Lemma 1.

From Lemma 2 and Lemma 1, $\check{G}(\eta)f(\eta)$ is an almost-periodic function. If $(\nu_n)_1^{\infty} = \sigma(\check{G}(\eta)f(\eta))$ it will be enough to show (by Theorem 1) that $\exists \alpha > 0$ such that $|\nu_n| > \alpha, \forall n = 1, 2, \ldots$

We have then, if for a set of real numbers $A = \{a\}, -A$ means the set $\{-a\}_{a \in A}$, the

LEMMA 3. The relation $\sigma_G = -\sigma_{\check{G}}$ holds.

For this it is enough to see that, $\forall x \in X$, $\sigma(G(t)x) = -\sigma(\check{G}(t)x)$. This follows immediately from the relation

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T e^{i\mu t}\check{G}(t)x\ dt = \lim_{T\to\infty}\frac{1}{T}\int_0^T e^{-i\mu u}G(u)x\ du$$

which is true for each real μ and $x \in X$, and is of easy verification.

Now we prove that, considering the positive α which enters in the hypothesis of Theorem 2, we have

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T e^{-i\eta s}\check{G}(\eta)f(\eta)\ d\eta = \theta \quad \text{for } |s| < \alpha$$

(this implies $\sigma(\check{G}(\eta)f(\eta)) \subset \{s; |s| \ge \alpha\}$).

Let us consider now Bochner-Fejer trigonometrical polynomials approximating uniformly (on $-\infty < s < +\infty$) $f(\eta)$ (see [3] for a proof).

250

1970] REMARK ON INTEGRATION OF ALMOST-PERIODIC FUNCTIONS 251

If $P_m(\eta)$ is such a polynomial, it is of the form:

$$P_m(\eta) = \sum_{k=1}^{N(m)} a_k^m e^{i\lambda_k \eta}$$

where $a_k^m \in X$ and λ_k belong to $\sigma(f)$. Then we have the

LEMMA 4. The relation $\lim_{T\to\infty} (1/T) \int_0^T e^{-i\eta s} \check{G}(\eta) P_m(\eta) d\eta = \theta$ holds for $|s| < \alpha$ and $\forall m = 1, 2, \ldots$

The expression equals:

$$\sum_{k=1}^{N(m)} \lim_{T \to \infty} \frac{1}{T} \int_0^T e^{-i\eta s} (\check{G}(\eta) a_k^m) e^{i\lambda_k \eta} d\eta$$
$$= \sum_{k=1}^{N(m)} \lim_{T \to \infty} \frac{1}{T} \int_0^T e^{-i\eta (s-\lambda_k)} \check{G}(\eta) a_k^m d\eta,$$

We know that for each k = 1, 2, ..., N(m) this limit is θ if $s - \lambda_k \neq -\mu_j, \forall j = 1, 2, ...$ (as $(-\mu_j)_1^{\infty} = \sigma_{\check{G}}^{\times}$). But this holds indeed when $|s| < \alpha$, because, obviously $|s - \lambda_k + \mu_j| \ge |\mu_j - \lambda_k| - |s| > \alpha - \alpha = 0$.

So the lemma is proved.

Then using uniform convergence (on $-\infty$, $+\infty$) of the sequence $P_m(\eta)$ to $f(\eta)$ and the uniform bound $\|\check{G}(\eta)\| \leq M$ (which follows from the strong almostperiodicity and uniform boundness theorem) we obtain the desired result. So, our theorem is proved, using the remarks in the beginning.

References

1. S. Bochner, Abstrakte Fast-periodische Funktionen, Acta Math., 1933.

2. B. M. Levitan, Almost-periodic functions, (Russian), Moscow, 1953.

3. S. Zaidman, Solutions presque-périodiques des équations hyperboliques, Ann. Sci. École Norm. Sup., Paris, 1962.

4. ——, Sur la perturbation presque-périodique des groupes et semi-groupes de transformations d'un espace de Banach, Rend. Mat. e Appl., Rome, 1957.

5. H. Gunzler and S. Zaidman, Almost-periodic solutions of a certain abstract differential equation, J. Math. Mech., 1969.

Université de Montréal, Montréal, Québec