K. MiyakeNagoya Math. J.Vol. 93 (1984), 133-148

ON CENTRAL EXTENSIONS OF A GALOIS EXTENSION OF ALGEBRAIC NUMBER FIELDS

KATSUYA MIYAKE

Introduction

Let k be an algebraic number field of finite degree, and K a finite Galois extension of k. A central extension L of K/k is an algebraic number field which contains K and is normal over k, and whose Galois group over K is contained in the center of the Galois group $\operatorname{Gal}(L/k)$. We denote the maximal abelian extensions of k and K in the algebraic closure of k by k_{ab} and K_{ab} respectively, and the maximal central extension of K/k by $\operatorname{MC}_{K/k}$. Then we have $K_{ab} \supset \operatorname{MC}_{K/k} \supset k_{ab} \cdot K$.

Put $g=\operatorname{Gal}(K/k)$, and let $\mathfrak{S}(K/k)$ be the dual group of the Schur multiplicator $H^2(\mathfrak{g}, \mathbb{Q}/\mathbb{Z})$ of \mathfrak{g} . It is known as was explained in [5] for example, that there exists a canonical isomorphism

$$\varphi_{K/k}: \mathfrak{S}(K/k) \xrightarrow{\sim} \operatorname{Gal}(\operatorname{MC}_{K/k}/k_{ab} \cdot K).$$

Therefore, especially, $MC_{K/k}$ is a finite extension of $k_{ab} \cdot K$. For a central extension L of K/k, this $\varphi_{K/k}$ induces a surjective homomorphism $\operatorname{rest}_L \circ \varphi_{K/k}$ of $\mathfrak{S}(K/k)$ onto $\operatorname{Gal}(L/L \cap k_{ab} \cdot K)$. It is also known that there exists a finite central extension L of K/k such that $\varphi_{K/k}$ induces an isomorphism of $\mathfrak{S}(K/k)$ onto $\operatorname{Gal}(L/L \cap k_{ab} \cdot K)$. Such an L is said to be an abundant central extension of K/k for convenience in [5], where we posed the following problem:

PROBLEM. Is there an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$? If not, then what determines the structure of $Gal(M \cap k_{ab} \cdot K/K)$ for an abundant central extension M of minimum degree?

In this paper, we give a couple of sufficient conditions under which $M \cap k_{ab} \cdot K$ coincides with K, and examine some cases for which the conditions hold. We also give an upper bound for [M:K] in the final section.

Received September 27, 1982. Revised January 28, 1983. There is a certain kind of important central extensions which were introduced by Opolka [6] and others as a substitute for the Hasse norm theorem in K/k. Let $\Re(K/k)$ be Scholz's number knot of K/k, that is the quotient group of

$$\{a \in k^{\times} | a \text{ is a norm locally everywhere in } K\}$$

by its subgroup $\{a \in k^{\times} | a \text{ is a global norm in } K\}$. There exists a canonical surjective homomorphism $\psi_{K/k}$ of $\mathfrak{S}(K/k)$ onto $\mathfrak{R}(K/k)$. (See [5] for example.) A central solution of $\mathfrak{R}(K/k)$ is, according to Opolka, a finite central extension L of K/k such that an element a of k^{\times} is a global norm in K if a is a norm locally everywhere in L. For a finite central extension L of K/k to be a solution of $\mathfrak{R}(K/k)$, it is necessary and sufficient that there exists a homomorphism $\psi: \operatorname{Gal}(L/L \cap k_{ab} \cdot K) \to \mathfrak{R}(K/k)$ such that $\psi_{K/k} = \psi \circ \operatorname{rest}_{L} \circ \varphi_{K/k}$.

In this paper, we also show the result of Opolka [7] which gives an upper bound of [L:K] for a minimal central solution L of $\Re(K/k)$, and improve his sufficient condition for such an L to satisfy that $L \cap k_{ab} \cdot K = K$.

1. Notation and Preliminaries

Let K/k be a finite Galois extension of algebraic number fields of finite degree with $\mathfrak{g} = \operatorname{Gal}(K/k)$. Put $\mathfrak{S}(K/k) =$ the dual group of $H^2(\mathfrak{g}, \mathbb{Q}/\mathbb{Z})$, as was in Introduction. Let K_A^* be the idele group of K, and $\mathfrak{a}_K : K_A^* \to \operatorname{Gal}(K_{ab}/K)$ the Artin map of class field theory with $K^* = \operatorname{Ker} \mathfrak{a}_K$. Throughout this paper, we consider the idele group k_A^* naturally imbedded into K_A^* . Define a closed subgroup of K_A^* by

$$K_A^{dg} = \langle x^{1-\sigma} | x \in K_A^{\times}, \sigma \in \mathfrak{g} \rangle$$

under the natural action of \mathfrak{g} on K_A^{\times} . Then \mathfrak{a}_K induces an isomorphism $\bar{\mathfrak{a}}_K: K_A^{\times}/K_A^{2\mathfrak{g}} \cdot K^* \xrightarrow{\sim} \operatorname{Gal}(\operatorname{MC}_{K/k}/K)$. (See [5] for example.) Let $N_{K/k}: K_A^{\times} \to k_A^{\times}$ be the norm map. Then Scholz's number knot is given as

$$\Re(K/k) = k^{\times} \cap N_{K/k}(K_A^{\times})/N_{K/k}(K^{\times})$$

where k^{\times} and K^{\times} are the multiplicative groups of k and K respectively. From the divisibility properties of k^{\sharp}/k^{\times} and K^{\sharp}/K^{\times} , we easily see that $\Re(K/k)$ is isomorphic to $k^{\sharp} \cap N_{K/k}(K_{A}^{\times})/N_{K/k}(K^{\sharp})$. Therefore we have

$$\Re(K/k) \simeq N_{K/k}^{-1}(k^*)/N_{K/k}^{-1}(1) \cdot K^*.$$

(Cf. [3] for example.) Since a_K induces an isomorphism of $N_{K/k}^{-1}(k^*)/K^*$ onto $Gal(K_{ab}/k_{ab} \cdot K)$, we have the following commutative diagram:

Let $\pi: K_A^{\times} \to K_A^{\times}/K_A^{d_0} \cdot K^{\sharp}$ be the natural projection, and put

 $\mathscr{C} = \{L \mid \text{a finite central extension of } K/k\},$

 $\mathfrak{U} = \{U \mid \text{ an open subgroup of } \pi(K_A^{\times})\}.$

Then we have a perfect correspondence between $\mathscr C$ and $\mathfrak U$ assigning $U=\pi(N_{L/K}(L_A^\times))$ to $L\in\mathscr C$. If L is a finite abelian extension of K, then $L\in\mathscr C$ if and only if $N_{L/K}(L_A^\times)\cdot K^\times\supset K_A^{d_0}\cdot K^*$. Therefore, for $L\in\mathscr C$, we have a surjective homomorphism of $\mathfrak S(K/k)(\simeq N_{K/k}^{-1}(k^\sharp)/K_A^{d_0}\cdot K^\sharp)$ onto $N_{K/k}(L_A^\times)\cdot N_{K/k}^{-1}(k^\sharp)/N_{L/K}(L_A^\times)\cdot K^\times\cap N_{K/k}^{-1}(k^\sharp)$. Because the last isomorphism corresponds to the isomorphism

$$\operatorname{Gal}(L \cdot k_{ab}/k_{ab} \cdot K) \xrightarrow{\sim} \operatorname{Gal}(L/L \cap k_{ab} \cdot K)$$

by the Artin map α_K , the surjection is the idelic version of $\operatorname{rest}_L \circ \varphi_{K/k}$ of $\mathfrak{S}(K/k)$ onto $\operatorname{Gal}(L/L \cap k_{ab} \cdot K)$, which was stated in Introduction. Therefore we have:

A member L of \mathscr{C} is abundant

$$\iff$$
 Gal $(L/L \cap k_{ob} \cdot K) \simeq \mathfrak{S}(K/k)$

$$\iff N_{L/K}(L_A^{ imes}) \cdot K^{ imes} \cap N_{K/k}^{-1}(k^{\sharp}) = K_A^{d_{\mathfrak{g}}} \cdot K^{\sharp}.$$

It is also clear that:

A member L of \mathscr{C} is a solution of $\Re(K/k)$

$$\iff N_{\scriptscriptstyle L/K}(L_{\scriptscriptstyle A}^{\scriptscriptstyle imes}) \cdot K^{\scriptscriptstyle imes} \cap N_{\scriptscriptstyle K/k}^{\scriptscriptstyle -1}(k^{\scriptscriptstyle \sharp}) {\subset} N_{\scriptscriptstyle K/k}^{\scriptscriptstyle -1}(1) \cdot K^{\scriptscriptstyle \sharp}$$

 $\iff \text{There exists a homomorphism } \psi \colon \operatorname{Gal}\left(L/L \cap k_{\mathrm{ab}} \cdot K\right) \longrightarrow \Re(K/k)$ such that $\psi_{K/k} = \psi \circ \operatorname{rest}_L \circ \varphi_{K/k}$.

The following proposition is now almost obvious:

PROPOSITION 1. There exists an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$ if and only if there exists a member U of $\mathbbm{1}$ such that $U \cap \pi(N_{K/k}^{-1}(k^*)) = 1$ and $U \cdot \pi(N_{K/k}^{-1}(k^*)) = \pi(K_A^{\times})$.

Now, let \mathfrak{p} and \mathfrak{P} be prime divisors of k and K, respectively, with

the completion $k_{\mathfrak{p}}$ and $K_{\mathfrak{P}}$. We denote the maximal order of k or the ring of integers of $k_{\mathfrak{p}}$ by O(k) or $O(k_{\mathfrak{p}})$, respectively, and the unit groups by $O^{\times}(k)$ or $O^{\times}(k_{\mathfrak{p}})$. We also denote $O^{\times}(k_{A}) = k_{\infty}^{\times} \cdot \prod_{\mathfrak{p}} O^{\times}(k_{\mathfrak{p}})$ where k_{∞}^{\times} is the Archimedian part of K_{A}^{\times} . For an Archimedian prime divisor \mathfrak{p} , let us write $O^{\times}(k_{\mathfrak{p}}) = k_{\mathfrak{p}}^{\times}$ where $k_{\mathfrak{p}}$ is the completion of k by \mathfrak{p} . Then $O^{\times}(k_{A}) = \prod_{\mathfrak{p}} O^{\times}(k_{\mathfrak{p}})$ where $\prod_{\mathfrak{p}}$ is the direct product over all prime divisors of k. We naturally identify $(K \otimes_{k} k_{\mathfrak{p}})^{\times}$ with $\prod_{\mathfrak{p} \mid \mathfrak{p}} K_{\mathfrak{p}}^{\times}$, and denote the norm map $(K \otimes k_{\mathfrak{p}})^{\times} \to k_{\mathfrak{p}}^{\times}$ by $N_{K/k}^{(\mathfrak{p})}$. For a prime divisor \mathfrak{P} of K, the norm map $K_{\mathfrak{p}}^{\times} \to k_{\mathfrak{p}}^{\times}$ is simply denoted by $N_{\mathfrak{p}}$ if $\mathfrak{p} = \mathfrak{P}|_{k}$. Let $\mathfrak{g}(\mathfrak{P})$ be the decomposition group of \mathfrak{P} , and put

$$K_{\mathfrak{P}}^{\scriptscriptstyle d\mathfrak{g}(\mathfrak{P})}=\langle x^{\scriptscriptstyle 1-\sigma}|x\in K_{\mathfrak{P}}^{\scriptscriptstyle imes},\,\sigma\in\mathfrak{g}(\mathfrak{P})
angle.$$

We also put

$$(K \otimes k_{\mathfrak{p}})^{A\mathfrak{g}} = \langle x^{1-\sigma} | x \in (K \otimes k_{\mathfrak{p}})^{\times}, \sigma \in \mathfrak{g} \rangle.$$

The following three propositions are well known:

PROPOSITION 2. Let \mathfrak{P} and \mathfrak{P}' be prime divisors of K such that $\mathfrak{P}|_k = \mathfrak{P}'|_k = \mathfrak{P}$. Then there exists an element $\sigma \in \mathfrak{g}$ such that $N_{\mathfrak{P}}^{-1}(1) = N_{\mathfrak{P}}^{-1}(1)^{\sigma}$ in $(K \otimes k_{\mathfrak{p}})^{\times}$. Especially, we have $(N_{K/k}^{(\mathfrak{p})})^{-1}(1) = (K \otimes k_{\mathfrak{p}})^{4\mathfrak{g}} \cdot N_{\mathfrak{P}}^{-1}(1)$ for any \mathfrak{P} dividing \mathfrak{P} .

Proposition 3. $N_{\mathfrak{P}}^{-1}(1)/K_{\mathfrak{P}}^{4\mathfrak{g}(\mathfrak{P})} \simeq the dual of H^2(\mathfrak{g}(\mathfrak{P}), \mathbb{Q}/\mathbb{Z}).$

Remark. This is the local version of the isomorphism of $\mathfrak{S}(K/k) \simeq N_{K/k}^{-1}(k^*)/K_A^{2q} \cdot K^*$ in the diagram (*).

PROPOSITION 4. If $K_{\mathfrak{P}}$ is cyclic over $k_{\mathfrak{p}}$ for a prime divisor \mathfrak{P} dividing \mathfrak{p} , then $N_{\mathfrak{P}}^{-1}(1) = K_{\mathfrak{P}}^{d_{\mathfrak{p}}(\mathfrak{P})}$ and $(N_{K/k}^{(\mathfrak{p})})^{-1}(1) = (K \otimes k_{\mathfrak{p}})^{d_{\mathfrak{p}}}$.

If $\mathfrak p$ is unramified in K/k, then $K_{\mathfrak p}$ is cyclic over $k_{\mathfrak p}$ for any $\mathfrak P|\mathfrak p$. Put

 $D = \{ \mathfrak{p} | \text{ a prime divisor of } k \text{ ramified in } K/k \}.$

Proposition 5. For each $\mathfrak{p} \in D$, take a prime divisor $\tilde{\mathfrak{p}}$ of K dividing \mathfrak{p} . Then we have

$$N_{K/k}^{-1}(1) = K_A^{4\mathfrak{q}} \cdot \prod_{\mathfrak{p} \in D} N_{\mathfrak{p}}^{-1}(1).$$

Here each $N_{\mathfrak{s}}^{-1}(1)$ is considered to be naturally imbedded in $K_{\mathbf{A}}^{\times}$.

2. The condition C(m) and the key theorem

For a positive integer m, let us consider a few conditions on K/k.

$$\begin{split} &C(m):\{u\in N_{{\scriptscriptstyle{K/k}}}(K_{{\scriptscriptstyle{A}}}^{\times})\cdot k^{\times}|u^{{\scriptscriptstyle{m}}}=1\}{\subset}N_{{\scriptscriptstyle{K/k}}}(\{z\in K_{{\scriptscriptstyle{A}}}^{\times}|z^{{\scriptscriptstyle{m}}}\in K_{{\scriptscriptstyle{A}}}^{{\scriptscriptstyle{dg}}}\})\cdot\{\zeta\in k^{\times}|\zeta^{{\scriptscriptstyle{m}}}=1\};\\ &C'(m):\{u\in N_{{\scriptscriptstyle{K/k}}}(K_{{\scriptscriptstyle{A}}}^{\times})\cdot k^{\times}|u^{{\scriptscriptstyle{m}}}=1\}{\subset}N_{{\scriptscriptstyle{K/k}}}(K_{{\scriptscriptstyle{A}}}^{\times})\cdot\{\zeta\in k^{\times}|\zeta^{{\scriptscriptstyle{m}}}=1\};\\ &C_1(m):u\in N_{{\scriptscriptstyle{K/k}}}(K_{{\scriptscriptstyle{A}}}^{\times})\cdot k^{\times}\ \ \text{and}\ \ u^{{\scriptscriptstyle{m}}}=1\Longrightarrow {}^{\sharp}\zeta\in k^{\times}\emptyset\,\in\,D\,((u\zeta)_{{\scriptscriptstyle{n}}}=1). \end{split}$$

Here for an idele $x \in k_A^{\times}$ and a prime divisor \mathfrak{p} , $x_{\mathfrak{p}}$ is the \mathfrak{p} -component of x, i.e. $x = (\dots, x_{\mathfrak{p}}, \dots) \in k_A^{\times} = \prod_{\mathfrak{p}} k_{\mathfrak{p}}^{\times}$.

Remark. It is obvious that $C_1(m)$ implies $C_1(\mu)$ for every $\mu|m$.

Proposition 6. $C_1(m) \Rightarrow C(m) \Rightarrow C'(m)$.

Proof. It is obvious that C(m) implies C'(m). We show that $C_1(m)$ implies C(m). Let u be an element of $N_{K/k}(K_A^\times) \cdot k^\times$ such that $u^m = 1$. Choose $\zeta \in k^\times$ for u by $C_1(m)$. Then in k_v , we have $\zeta^{-1} = u_v$. Therefore, especially, $\zeta^m = 1$. Since $(u\zeta)^m = 1$, we have $u\zeta \in O^\times(k_A)$. For each prime divisor $\mathfrak P$ of k, fix a prime divisor $\mathfrak P$ of K dividing $\mathfrak P$. For a prime divisor $\mathfrak P$ of K, put $z_{\mathfrak P} = 1$ if either $\mathfrak P|_k \in D$ or $\mathfrak P \neq \mathfrak P$ for $\mathfrak P = \mathfrak P|_k$. If $\mathfrak P = \mathfrak P$ for $\mathfrak P \notin D$, then $K_{\mathfrak P}$ is unramified over k_v . Therefore there is an element $z_{\mathfrak P}$ in $O^\times(K_{\mathfrak P})$ such that $N_{\mathfrak P}(z_{\mathfrak P}) = (u\zeta)_{\mathfrak P}$. Let $z = (\cdots, z_{\mathfrak P}, \cdots)$ be the idele of K_A^\times with $z_{\mathfrak P}$ determined in this way as the $\mathfrak P$ -component. Then we have $N_{K/k}(z) = u\zeta$. Since $N_{K/k}(z^m) = (u\zeta)^m = 1$, z^m belongs to $N_{K/k}^{-1}(1)$. Then by Proposition 4, we have $z^m \in K_A^{d\mathfrak P}$ because of the choice of $z_{\mathfrak P}$'s for $\mathfrak P|_k \in D$. This shows that $u = (u\zeta) \cdot \zeta^{-1} = N_{K/k}(z) \cdot \zeta^{-1}$ belongs to the set at the right hand side of C(m).

PROPOSITION 7. Suppose that $m = q \cdot r$ and (q, r) = 1. Then C(m) implies C(q) and C(r).

Proof. Take μ and ν in Z so that $\mu q + \nu r = 1$. Let u be an element of $N_{K/k}(K_A^{\times}) \cdot k^{\times}$ such that $u^q = 1$. Then by C(m), we can find $z \in K_A^{\times}$ and $\zeta \in k^{\times}$ such that $z^m \in K_A^{d_0}$, $\zeta^m = 1$ and $N_{K/k}(z) \cdot \zeta = u$. Therefore we have

$$u = u^{\mu q + \nu r} = u^{\nu r} = N_{K/k}(z^{\nu r}) \cdot \zeta^{\nu r}.$$

Because we have $(z^{\nu r})^q = (z^m)^{\nu} \in K_A^{q_q}$ and $(\zeta^{\nu r})^q = (\zeta^m)^{\nu} = 1$, we have seen that C(m) implies C(q).

Proposition 8. Suppose that $m = q \cdot r$ and (q, r) = 1. Then C'(m) implies C'(q) and C'(r).

The proof is similar to the one of Proposition 7.

Now, define a set of prime numbers \mathcal{P} and a positive integer $m(\mathfrak{g})$ by

 $\mathscr{P} = \{p \mid \text{a prime number, } p \mid |\mathfrak{S}(K/k)|\};$ $m(\mathfrak{g}) = \text{the exponent of } \mathfrak{S}(K/k).$

Then $m(\mathfrak{g})$ divides the order $|\mathfrak{g}|$. (See the proof of Proposition 10.) Note that $\mathfrak{S}(K/k) \cong H^2(\mathfrak{g}, \mathbb{Q}/\mathbb{Z})$.

Theorem 1. Suppose that the condition C(m) is satisfied for every $m|m(\mathfrak{g})$ by the Galois extension K/k, and that $k^{\times} \cap k_A^{\times m(\mathfrak{g})} = k^{\times m(\mathfrak{g})}$. Then there exists an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$. Especially, Gal(M/K) is isomorphic to $\mathfrak{S}(K/k)$.

Remark. As is well known, $[k^{\times} \cap k_A^{\times m(\mathfrak{g})} : k^{\times m(\mathfrak{g})}] \leq 2$. If $k(\zeta_{\mathfrak{g}^t})$ is cyclic over k, then the index is equal to 1 where $\zeta_{\mathfrak{g}^t}$ is a primitive 2^t -th root of 1 for $2^t || m(\mathfrak{g})$. (See Artin-Tate [1, Ch. 10, § 1].)

We prove the theorem by showing the existence of an open subgroup U of $\pi(K_A^{\times}) = K_A^{\times}/K_A^{49} \cdot K^*$ which satisfies the condition of Proposition 1.

Lemma 1. Suppose that the condition C(q), $q = p^e$ for a prime number p, is satisfied. If p = 2, we assume that $k^{\times} \cap k_A^{\times q} = k^{\times q}$. Let \overline{x} be an element of $\pi(N_{K/k}^{-1}(k^*))$. If \overline{x} belongs to $\pi(K_A^{\times})^q \cdot U$ for every open subgroup U of $\pi(K_A^{\times})$ such that $U \cap \langle \overline{x} \rangle = 1$, then \overline{x} belongs to $\pi(N_{K/k}^{-1}(k^*))^q$.

Proof. Because $\pi(K_A^*)^q = \{\bar{z}^q | \bar{z} \in \pi(K_A^*) \}$ is a closed subgroup of $\pi(K_A^*)$, we have $\bigcap_U \pi(K_A^*)^q \cdot U = \pi(K_A^*)^q$ where \bigcap_U is the intersection over all the open subgroup U of $\pi(K_A^*)$ such that $U \cap \langle \bar{x} \rangle = 1$. (Remember that $\pi(N_{K/k}^{-1}(k^\sharp))$ is isomorphic to $\mathfrak{S}(K/k)$, and finite. Therefore $\langle \bar{x} \rangle - \{1\}$ is a closed subset of $\pi(K_A^*)$.) By the assumption, therefore, \bar{x} belongs to $\pi(K_A^*)^q$. Take $x \in N_{K/k}^{-1}(k^\sharp)$ and $y \in K_A^*$ so that $\bar{x} = \pi(x) = \pi(y)^q$. Then $x = y^q wa$ with $w \in K_A^{4g}$ and $a \in K^\sharp$. Therefore $N_{K/k}(xa^{-1}) \in k^\sharp \cap K_A^{*q}$. We have $k^\sharp = k^* \cdot k^{\sharp q}$ by the divisibility property of k^\sharp/k^* (see [3] for example), and $k^* \cap k_A^{*q} = k^{*q}$ (by the assumption if p = 2). Therefore there exists $b \in K^\sharp$ such that $N_{K/k}(xa^{-1}) = b^q$. Then we have $N_{K/k}(y) = u \cdot b$ with $u \in N_{K/k}(K_A^*) \cdot k^\sharp = N_{K/k}(K_A^*) \cdot k^*$ such that $u^q = 1$. By C(q), take $z \in K_A^*$ and $\zeta \in k^*$ such that $z^q \in K_A^{4g}$, $\zeta^q = 1$ and $N_{K/k}(z) \cdot \zeta = u$. Then $N_{K/k}(yz^{-1}) = \zeta \cdot b \in k^\sharp$, i.e. $yz^{-1} \in N_{K/k}^{-1}(k^\sharp)$. Since $\pi(z)^q = 1$, we finally have $\bar{x} = \pi(x) = \pi(y)^q = \pi(yz^{-1})^q \in \pi(N_{K/k}^{-1}(k^\sharp))^q$. Q.E.D.

LEMMA 2. Let A be a finite abelian p-group, and B be a subgroup of A. Suppose that $A^q \cap B \subset B^q$ for each q ($1 \le q \le \exp(B)$), then there exists a subgroup C of A such that $B \cdot C = A$ and $B \cap C = 1$.

Proof. Choose a set of generators $\{b_1,\cdots,b_\mu\}$ of B such that B is the direct product $\langle b_1 \rangle \times \cdots \times \langle b_\mu \rangle$. Then $B^q = \langle b_1^q,\cdots,b_\mu^q \rangle$. Among the subsets $\{c_1,\cdots,c_\nu\}$ of A such that $A = \langle b_1,\cdots,b_\mu,c_1,\cdots,c_\nu \rangle$, take $\{c_1,\cdots,c_\nu\}$ so that $|\langle c_1 \rangle| + \cdots + |\langle c_\nu \rangle|$ is minimum. Put $C = \langle c_1,\cdots,c_\nu \rangle$. Assume that $B \cap C \neq \{1\}$, and let x be an element of $B \cap C$ different from 1. Then $x = \prod_{i=1}^r c_i^{q_i \cdot r_i}$ where q_i is a power of p and $(r_i,p)=1$. Put $q=\min\{q_i|c_i^{q_i \cdot r_i} \neq 1\}$. Then x belongs to B^q since this contains $A^q \cap B$. Take $u \in B$ such that $u^q = x$. Put $s_i = q_i \cdot r_i/q$ for i such that $c_i^{q_i \cdot r_i} \neq 1$, and $c = u^{-1} \cdot \prod' c_i^{s_i}$ where \prod' is the product over all such i that $c_i^{q_i \cdot r_i} \neq 1$. Then we have $c^q = 1$. Let j be one of the indices such that $q_j = q$ (and $c_j^{q_j \cdot r_j} \neq 1$). Replacing c_j by c_i , we have a set of generators $\{b_1,\cdots,b_\mu,c_1,\cdots,c,\cdots,c_\nu\}$ of A. Since $c_j^q \neq 1$, we also have $|\langle c \rangle| < |\langle c_j \rangle|$. This contradicts the choice of $\{c_1,\cdots,c_\nu\}$. The proof is completed.

Proof of the theorem. Put $X=\pi(N_{K/k}^{-1}(k^{\sharp}))$. This is finite. Take $p\in \mathscr{P}$, and let $p^t\|m(\mathfrak{g})$. Then for each $q=p^e$ $(p\leq q\leq p^t)$, the condition C(q) is satisfied. By Lemma 1, we see that, for every $x\in X-X^p$, there exists and open subgroup U_x of $\pi(K_A^{\times})$ such that $U_x\cap X=\{1\}$ and $\pi(K_A^{\times})^p\cdot U_x\not\ni x$. Put $U_1=\bigcap_{x\in X-X^p}U_x$. Then we have

$$\pi(K_A^{\times})^p \cdot U_1 \cap X \subset X^p$$
.

Next, for every $y \in X^p - X^{p^2}$, take an open subgroup V_y of $\pi(K_A^{\times})$, by Lemma 1, such that $V_y \cap X = \{1\}$ and $\pi(K_A^{\times})^{p^2} \cdot V_y \not\ni y$. Put $U_2 = (\bigcap_{y \in X^p - X^{p^2}} V_y) \cap U_1$. Then we have

$$\left\{egin{aligned} \pi(K_A^{ imes})^p \cdot U_2 \ \cap \ X \subset X^p, \ \pi(K_A^{ imes})^{p^2} \cdot U_2 \ \cap \ X \subset X^{p^2}. \end{aligned}
ight.$$

Continue the process and obtain an open subgroup U of $\pi(K_A^{\times})$ such that $U \cap X = \{1\}$ and

$$\pi(K_A^{ imes})^q \cdot U \cap X \subset X^q \quad ext{for} \quad q = p^e \ (p \leq q \leq p^t).$$

Let $X^{(p)}$ be the *p*-primary part of X and X_1 be the *p*-complementary part of X. Let A be the *p*-primary part of $\pi(K_A^{\times})/U$ and put $B = X^{(p)} \cdot U/U$. Then A is a finite abelian *p*-group and B is its subgroup. By the choice of U, we can apply Lemma 2 to A and B. Therefore we can find an open subgroup W of $\pi(K_A^{\times})$ containing U and X_1 such that $\pi(K_A^{\times}) = W \cdot X^{(p)}$ and $W \cap X^{(p)} = \{1\}$. Take another prime factor p_1 of $m(\mathfrak{g})$ and proceed the similar process to the above for W and X_1 in place of $\pi(K_A^{\times})$ and X re-

spectively. In this way, we can finally find an open subgroup of $\pi(K_A^{\times})$ which satisfies the conditions of Proposition 1, and complete the proof.

In the following Sections $3\sim6$, we see examples to which Theorem 1 is applicable. Therefore, we assume there that the following condition is satisfied by K/k:

Assumption. $k^{\times} \cap k_A^{\times m(\mathfrak{g})} = k^{\times m(\mathfrak{g})}$.

Note that this implies $k^{\times} \cap k_A^{\times m} = k^{\times m}$ for every $m|m(\mathfrak{g})$. (See Artin-Tate [1, Ch. 10, Theorem 1].)

3. The case of unramified extensions

Suppose that K/k is unramified. Then by Proposition 5, we have $N_{K/k}^{-1}(1) = K_A^{d_0}$ in this case. Then it is easily seen that the conditions C(m) and C'(m) coincides for each m. It follows, moreover, from the commutative diagram (*) at once that $\mathfrak{S}(K/k)$ is isomorphic to $\mathfrak{R}(K/k)$. We also easily see that the following condition $C'_1(m)$ holds for any m in this case, that implies C'(m) immediately:

$$C_1'(m): \{u \in k_A^{\times} | u^m = 1\} \subset N_{K/k}(K_A^{\times}).$$

Hence we have

Theorem 2. Suppose that K/k is a finite (not necessarily abelian) unramified extension. Then there exists an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$. Furthermore, $\mathfrak{S}(K/k)$ is isomorphic to $\mathfrak{R}(K/k)$, and also to $\mathrm{Gal}(M/K)$ for such an M.

4. The case that k is either Q or an imaginary quadratic field

In this section, let k be either the rational number field Q or an imaginary quadratic field. In this case, the units of k are roots of 1, and very few. Therefore, for almost every ray class field K of k, the condition $C_1(m(\mathfrak{g}))$ holds.

Let $D_{k/Q}$ be the discriminant of k over Q, and f be the conductor of K/k. Suppose that the following conditions are satisfied:

- (1) If $2 \nmid D_{k/Q}$, then $\mathfrak{p}|(2,\mathfrak{f}) \Longrightarrow \mathfrak{p}^2|\mathfrak{f};$
- (2) If $2|D_{k/Q}$, then $\mathfrak{p}|(2,\mathfrak{f}) \Longrightarrow \mathfrak{p}^3|\mathfrak{f}$;
- (3) If $k = \mathbf{Q}(\sqrt{-3})$, then $\mathfrak{p}|(\sqrt{-3},\mathfrak{f}) \Longrightarrow \mathfrak{p}^2|\mathfrak{f}$.

Now, put $U(\mathfrak{f}) = \{x \in O^{\times}(k_A) | x \equiv 1 \mod \mathfrak{f}\}$. Then $N_{K/k}(K_A^{\times}) \cdot k^{\times} = U(\mathfrak{f}) \cdot k^{\times}$. Let u be an element of this group such that $u^m = 1$ for $m = m(\mathfrak{g})$. Then

u belongs to $O^{\times}(k_A) \cap U(\mathfrak{f}) \cdot k^{\times} = U(\mathfrak{f}) \cdot O^{\times}(k)$. Since $O^{\times}(k)$ consists of roots of 1, we easily see the condition $C_1(m(\mathfrak{g}))$ holds if the conditions (1) \sim (3) are satisfied. Hence we have

Theorem 3. Let K be a ray class field of k, and suppose that the conducor f satisfies the conditions (1) \sim (3). Then there exists an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$.

Remark. Shirai [8] gave an M of Theorem 3 more explicitly in the case that $k = \mathbf{Q}$ and $f = f_0 \cdot p_{\infty}$ unless $(f_0, 16) = 8$. Note that, if $k = \mathbf{Q}$, the condition (1) is automatically satisfied by any conductor f. Furthermore we have $\mathbf{Q}^{\times} \cap \mathbf{Q}_A^{\times m} = \mathbf{Q}^{\times m}$ for every m.

5. The case of ray class fields, I

If Gal(K/k) is a nilpotent group, Gal(L/k) is also nilpotent for any central extension L of K/k. Therefore it is essential to study the case of p-extensions for a prime p as far as K/k is nilpotent at most.

In this section and in the next, we consider the maximal p-extension K of k contained in a ray class field of k. Let \mathfrak{f} be the conductor of K/k. Then K is also the maximal p-extension contained in the ray class field modulo \mathfrak{f} of k.

For a positive integer q, let ζ_q be a primitive q-th root of 1. We define an integer $i=i(\mathfrak{p})\geq 0$ for a prime divisor \mathfrak{p} of k by the condition that $\zeta_{\mathfrak{p}^i}\in k_{\mathfrak{p}}$ and $\zeta_{\mathfrak{p}^{i+1}}\not\in k_{\mathfrak{p}}$. For a prime divisor \mathfrak{p} of p, let $\ell=\ell(\mathfrak{p})$ be the minimal positive integer among those for which $\zeta_{\mathfrak{p}}\not\equiv 1 \mod \mathfrak{p}^\ell$ if $i(\mathfrak{p})>0$, and put $\ell(\mathfrak{p})=1$ if $i(\mathfrak{p})=0$. Then $\ell=\ell(\mathfrak{p})$ is the minimal positive integer such that $1+\mathfrak{p}^\ell\cdot O(k_{\mathfrak{p}})$ does not contain any p-power root of 1 except 1 itself.

Let ε_0 , ε_1 , \cdots , ε_r be a set of generators of $O^{\times}(k)$ such that $\langle \varepsilon_0 \rangle$ is finite, and that ε_1 , \cdots , ε_r are Z-free.

Theorem 4. Suppose that $\mathfrak{p}^{\ell(\mathfrak{p})}|\mathfrak{f}$ for each prime divisor \mathfrak{p} of (p,\mathfrak{f}) . If there is a positive integer m such that (m,p)=1 and $\varepsilon_i^m\equiv 1$ mod \mathfrak{f} $(i=1,\cdots,r)$, then there exists an abundant central extension M satisfying $M\cap k_{ab}\cdot K=K$.

Proof. It is sufficient to show that the condition $C_1(m(\mathfrak{g}))$ is satisfied. Put $q = m(\mathfrak{g})$ and $U(\mathfrak{f}) = \{x \in O^{\times}(k_A) | x \equiv 1 \mod \mathfrak{f}\}$. Then the order of $N_{K/K}(K_A^{\times}) \cdot k^{\times}/U(\mathfrak{f}) \cdot k^{\times}$ is relatively prime to p. Therefore an element u of

 $N_{K/k}(K_A^{\times}) \cdot k^{\times}$ belongs to $U(\mathfrak{f}) \cdot k^{\times}$ if $u^q = 1$. Then $u \in U(\mathfrak{f}) \cdot O^{\times}(k) = U(\mathfrak{f}) \cdot k^{\times}$ $\cap O^{\times}(k_A)$. It follows from the assumption that the exponent of the quotient group $U(\mathfrak{f}) \cdot O^{\times}(k)/U(\mathfrak{f}) \cdot \langle \varepsilon_0 \rangle$ is relatively prime to p. Therefore u has to be in $U(\mathfrak{f}) \cdot \langle \varepsilon_0 \rangle$. Let ζ be an element of $\langle \varepsilon_0 \rangle$ such that $u\zeta \in U(\mathfrak{f})$. Because $\zeta^q = (u\zeta)^q$ belongs to $U(\mathfrak{f})$, we may assume that ζ is a p-power root of 1 adjusting ζ with an element of $\langle \varepsilon_0 \rangle \cap U(\mathfrak{f})$. Then by the condition on \mathfrak{f} , we have $\zeta^q = 1$. Therefore $(u\zeta)^q = 1$. Since $u\zeta \in U(\mathfrak{f})$, we have $(u\zeta)_{\mathfrak{p}} = 1$ for each \mathfrak{p} dividing \mathfrak{f} by the same reason. Q.E.D.

6. The case of ray class fields, II

Let K/k be same as in the previous section. In this section, we suppose that Leopoldt's conjecture on the units of k for p is valid. (See [4] for example.) Now put $\mathfrak{q} = \prod_{\mathfrak{p} \mid p} \mathfrak{p}$, and

$$U(\mathfrak{q}) = \{x \in O^{\times}(k_A) | x \equiv 1 \mod \mathfrak{q}\}.$$

By Leopoldt's conjecture for p, we show

Proposition 9. For each $q = p^t$ ($t \ge 1$), there exists a positive integer κ such that

$$O^{\times}(k) \cap U(\mathfrak{q}^{\iota}) \subset (O^{\times}(k) \cap U(\mathfrak{q}))^q$$
.

Proof. Let $\ell = \max\{\ell(\mathfrak{p})|\ \mathfrak{p}|p\}$, and put $E = O^{\times}(k) \cap U(\mathfrak{q}^{\ell})$. Then E is a free Z-module. Let e_1, \dots, e_r be a set of generators of E over Z ($r = \operatorname{rank} E$). We imbed E into $\prod_{\mathfrak{p}|p}(1+\mathfrak{p}\cdot O(k_{\mathfrak{p}}))$ diagonally, and take the closure \overline{E} of E. Then the ring of p-adic integers Z_p naturally acts on \overline{E} as powers. It follows, furthermore, from Leopoldt's conjecture that \overline{E} is a free Z_p -module of rank r. In other words, the elements e_1, \dots, e_r of E are free over Z_p in \overline{E} and generate \overline{E} over Z_p . (See [4] for example.)

Now, assume that there exists $q=p^t$ such that $O^\times(k)\cap U(q^t)$ is not contained in $(O^\times(k)\cap U(\mathfrak{q}))^q$ for any positive integer κ . For each n=1, $2,3,\cdots$, take $x_n\in O^\times(k)\cap U(\mathfrak{q}^{t+n})-(O^\times(k)\cap U(\mathfrak{q}))^q$. Then in \overline{E} , $\{x_n\}_{n=1}^{+\infty}$ converges to 1. Each x_n determines an element $\nu_n=(i_1(n),\cdots,i_r(n))$ in $Z\times\cdots\times Z$ (r copies) by $x_n=\prod_{\mu=1}^r e_\mu^{i_\mu(n)}$. Because $x_n\not\in E^q$, we have $\nu_n\not\equiv (0,\cdots,0)\mod q\cdot Z$. Since $Z_p\times\cdots\times Z_p$ (r copies) is compact, we may assume that $\{\nu_n\}_{n=1}^{+\infty}$ converges to an element $\nu=(i_1,\cdots,i_r)$ in $Z_p\times\cdots\times Z_p$, replacing $\{\nu_n\}$ by a suitable subsequence if necessary. This ν is not equal to $(0,\cdots,0)$ because $\nu_n\not\equiv (0,\cdots,0)$ mod $q\cdot Z$. But we have $\prod_{\mu=1}^r e_\mu^{i_\mu}=\lim x_n\equiv 1$. This contradicts the fact that e_1,\cdots,e_r are free over Z_p . Hence

the proposition is proved.

Remark. Leopoldt's conjecture for p is actually equivalent to Proposition 9.

By Proposition 9, we define $\kappa(q)$ for each $q = p^t$ as the minimal κ that satisfies the condition of the proposition for q.

Now, decompose the conductor \mathfrak{f} in such way as, $\mathfrak{f} = \mathfrak{f}' \cdot \mathfrak{f}_p$, $(\mathfrak{f}', p) = 1$ and $\mathfrak{f}_p = \prod_{\mathfrak{p} \mid p} \mathfrak{p}^{e(\mathfrak{p})}$, and define $q = q(\mathfrak{f}', p)$ to be the minimum such that

$$\{q \geq p^{i(\mathfrak{p})} \quad ext{ for every, } \mathfrak{p}|\mathfrak{f}', \ (1+\mathfrak{p}\cdot O(k_{\mathfrak{p}}))^q \subset 1+\mathfrak{p}^{\ell(\mathfrak{p})}\cdot O(k_{\mathfrak{p}}) \quad ext{ for every } \mathfrak{p}|\mathfrak{f}_p.$$

THEOREM 5. If $c(\mathfrak{p}) \geq \max\{\kappa(m(\mathfrak{g})q), \ell(\mathfrak{p})\}\$ for each $\mathfrak{p}|p$, then there exists an abundant central extension M of K/k such that $M \cap k_{ab} \cdot K = K$.

Proof. We show that the condition $C_1(m(\mathfrak{g}))$ holds. Put $m=m(\mathfrak{g})$. Let u be an element of $N_{\kappa/k}(K_A^\times) \cdot k^\times$ satisfying $u^m=1$. As in the first step of the proof of Theorem 4, we see $u \in U(\mathfrak{f}) \cdot O^\times(k)$. Let $u=v \cdot \varepsilon$ with $v \in U(\mathfrak{f})$ and $\varepsilon \in O^\times(k)$. Then $\varepsilon^m=v^{-m} \in U(\mathfrak{f})$. Therefore ε^m belongs to $U(\mathfrak{q}^{\kappa(mq)})$. Take $\alpha \in O^\times(k) \cap U(\mathfrak{q})$ so that $\varepsilon^m=\alpha^{mq}$. Then $\alpha^q=\varepsilon \cdot \zeta$ with $\zeta \in k^\times$, $\zeta^m=1$. Therefore $u\zeta=v\varepsilon\zeta=v\alpha^q$. Now, $v \in U(\mathfrak{f})$. Therefore, for $\mathfrak{p}|\mathfrak{f}'$, we have $(u\zeta)_{\mathfrak{p}} \equiv (\alpha)_{\mathfrak{p}}^q \mod \mathfrak{p}$, and so, $(u\zeta)_{\mathfrak{p}}=1$ because $q \geq p^{\iota(\mathfrak{p})}$. For $\mathfrak{p}|p$, $(u\zeta)_{\mathfrak{p}} \equiv (\alpha)_{\mathfrak{p}}^q \mod \mathfrak{p}^{\ell(\mathfrak{p})}$. By the choice of q, we have $(\alpha)_{\mathfrak{p}}^q \equiv 1 \mod \mathfrak{p}^{\ell(\mathfrak{q})}$. Then by the choice of $\ell(\mathfrak{p})$, we conclude that $(u\zeta)_{\mathfrak{p}}=1$. Therefore $C_1(m)$ is certainly satisfied. The proof is completed.

7. On solutions of the number knot $\Re(K/k)$

An abundant central extension M of K/k is a solution of $\Re(K/k)$ itself. But we can always find such a subfield L of M that L is a solution of $\Re(K/k)$, and that $\operatorname{Gal}(L/L \cap k_{ab} \cdot K)$ is isomorphic to $\Re(K/k)$. Therefore, if $M \cap k_{ab} \cdot K = K$, then we have $L \cap k_{ab} \cdot K = K$, and $\operatorname{Gal}(L/K) \simeq \Re(K/k)$. In this section, we see sufficient conditions for such a central solution L of $\Re(K/k)$ to exist.

Now, let $\pi': K_A^{\times} \to K_A^{\times}/N_{K/k}^{-1}(1) \cdot K^*$ be the natural projection, and put $m'(K/k) = \text{the exponent of } \Re(K/k).$

Then replacing $\pi: K_A^{\times} \to K_A^{\times}/K_A^{dg} \cdot K^{\sharp}$ by this π' , and m(g) by m'(K/k), we can prove the following theorem in the same way as we did for Theorem 1.

Theorem 6. Suppose that the condition C'(m) is satisfied for every

m|m'(K/k) by the Galois extension K/k and that $k^{\times} \cap k_A^{\times m'(K/k)} = k^{\times m'(K/k)}$. Then there exists a central solution L of $\Re(K/k)$ such that $L \cap k_{ab} \cdot K = K$ and $\operatorname{Gal}(L/K) \simeq \Re(K/k)$.

Here we give an application of this theorem. As before, let D be the set of prime divisors of k which ramify in K/k, and fix a prime divisor $\tilde{\mathfrak{p}}$ of \mathfrak{p} in K for each $\mathfrak{p} \in D$. Let $\mathfrak{g}(\mathfrak{p})$ be the decomposition group of $\tilde{\mathfrak{p}}$, $\bar{\mathfrak{g}}(\mathfrak{p}) = \mathfrak{g}(\mathfrak{p})/[\mathfrak{g}(\mathfrak{p}),\mathfrak{g}(\mathfrak{p})]$, and $\bar{\mathfrak{t}}(\mathfrak{p})$ the inertial group of $\tilde{\mathfrak{p}}$ in $\bar{\mathfrak{g}}(\mathfrak{p})$. For a prime number p, let $\bar{\mathfrak{t}}(\mathfrak{p})^{(p)}$ be the p-Sylow group of $\bar{\mathfrak{t}}(\mathfrak{p})$. Define a subset \mathscr{P}' of \mathscr{P} by

$$\mathscr{P}' = \{ p \in \mathscr{P} | p | | \mathfrak{t}(\mathfrak{p}) | \text{ for some } \mathfrak{p} \in D \},$$

and positive integers e(p) and e'(p) for $p \in \mathscr{P}'$ and $\nu(K/k)$ by

$$p^{e(p)}= ext{the p-factor of }m'(K/k), ext{ i.e. }p^{e(p)}\parallel m'(K/k), \ p^{e'(p)}= ext{max}\{ ext{the exponent of }ar{\mathfrak{t}}(\mathfrak{p})^{(p)}|\mathfrak{p}\in D\}, \
u(K/k)=\prod_{\mathfrak{p}\in\mathscr{P}'}p^{e(p)+e'(p)}.$$

Proposition 10. $\nu(K/k)||\mathfrak{g}| = [K:k].$

Proof. It is obvious that $\nu(K/k)$ divides $\exp(\mathfrak{g}) \cdot \exp(\mathfrak{S}(K/k))$. Since $\exp(\mathfrak{S}(K/k)) = \exp(H^2(\mathfrak{g}, \mathbf{Q}/\mathbf{Z}))$, we have the proposition by Huppert [2, Ch. V, The proof of 24.5, pp. 640-641] at once.

Remark. If g is abelian, then

$$\mathscr{P} = \{p \mid \text{prime; } \mathfrak{g}^{(p)} \text{ is not cyclic}\}.$$

If $\mathfrak{g}^{(p)}$ is not cyclic, $\exp(\mathfrak{g}^{(p)}) \cdot \exp(H^2(\mathfrak{g}^{(p)}, \mathbb{Q}/\mathbb{Z})) || |\mathfrak{g}|$ if and only if $\mathfrak{g}^{(p)}$ is a direct product of two cyclic groups.

Theorem 7. If k contains a primitive $\nu(K/k)$ -th root of 1, then C'(m) holds for every m|m'(K/k). Therefore there exists a central solution L of $\Re(K/k)$ such that $L \cap k_{ab} \cdot K = K$ and $\operatorname{Gal}(L/K) \simeq \Re(K/k)$.

Proof. If $2^3 | m'(K/k)$, then $\sqrt{-1}$ is contained in k. Therefore we have $k^{\times} \cap k_A^{\times m'(K/k)} = k^{\times m'(K/k)}$ in any case.

For a prime divisor \mathfrak{p} , let \mathfrak{P} be a prime divisor of \mathfrak{p} in K. Let F be the maximal abelian extension of $k_{\mathfrak{p}}$ in $K_{\mathfrak{p}}$, and $N_{F}: F^{\times} \to k_{\mathfrak{p}}^{\times}$ the norm map. Then $N_{\mathfrak{p}}(K_{\mathfrak{p}}^{\times}) \cap O^{\times}(k_{\mathfrak{p}}) = N_{F}(O^{\times}(F))$. Furthermore, the quotient group $O^{\times}(k_{\mathfrak{p}})/N_{F}(O^{\times}(F))$ is isomorphic to $\bar{\mathfrak{t}}(\mathfrak{p})$. Therefore, if p is not in \mathscr{P}' , then every p-power root of 1 in $k_{\mathfrak{p}}$ is contained in $N_{F}(O^{\times}(F))$, and so in $N_{\mathfrak{p}}(K_{\mathfrak{p}}^{\times})$.

Let p belong to \mathscr{P}' . By the assumption, we see that a primitive $p^{e(p)+e'(p)}$ -th root ζ of 1 belongs to $k_{\mathfrak{p}}$. Since the exponent of $O^{\times}(k_{\mathfrak{p}})/N_{F}(O^{\times}(F))$ is at most $p^{e'(p)}$, the primitive $p^{e(p)}$ -th root $\zeta^{pe'(p)}$ of 1 has to be in $N_{F}(O^{\times}(F))$, and so, in $N_{\mathfrak{p}}(K_{\mathfrak{p}}^{\times})$. Thus we have seen that the condition $C'_{\mathfrak{l}}(m'(K/k))$ holds. Therefore C'(m) is certainly satisfied for every $m \mid m'(K/k)$. The proof is completed.

Remark. Opolka [6] showed the existence of a central solution L of $\Re(K/k)$ satisfying that $L \cap k_{ab} \cdot K = K$ and $\operatorname{Gal}(L/K) \simeq \Re(K/k)$ in the case that k contains a primitive [K:k]-th root of 1.

8. An upper bound for the degree of a small abundant central extension

Put n = [K:k] and let d be the minimal number of generators of $\mathfrak{S}(K/k)$. In this section, we give a positive number $\lambda = \lambda(K/k)$ for the Galois extension K/k such that there exists an abundant central extension M of K/k whose Galois group $\operatorname{Gal}(M/K)$ is isomorphic to a subgroup of $(\mathbb{Z}/2\lambda n\mathbb{Z})\times\cdots\times(\mathbb{Z}/2\lambda n\mathbb{Z})$ (d copies).

Proposition 11. $\pi(K_A^{\times})^n \subset \pi(N_{K/k}(K_A^{\times})).$

The proposition is clear because we have, for $x \in K_A^{\times}$,

$$x^n = N_{{\scriptscriptstyle{K/k}}}(x) \cdot \prod_{\sigma \in \mathfrak{g}} x^{1-\sigma} \in N_{{\scriptscriptstyle{K/k}}}(K_A^{ imes}) \cdot K_A^{{\scriptscriptstyle{J_\mathfrak{g}}}}.$$

Proposition 12. $[\pi(N_{K/k}(K_A^{\times}) \cdot N_{K/k}^{-1}(1)) \cap \pi(N_{K/k}^{-1}(k^{\sharp})) : \pi(N_{K/k}^{-1}(1))] \leq 2.$

Proof. Let x be an element of $N_{K/k}^{-1}(k^*)$, and suppose that $x = y \cdot z$ with $y \in N_{K/k}(K_A^\times)$ and $z \in N_{K/k}^{-1}(1)$. Then $y^n = N_{K/k}(y) = N_{K/k}(x) \in k^* = k^\times \cdot k^{*n}$. Take $a \in k^\times$ and $b \in k^*$ so that $y^n = ab^n$. As is well known (cf. Artin-Tate [1], Ch. 10, § 1), we have $[k^\times \cap k_A^{\times n}: k^{\times n}] \leq 2$. If we can choose b to have a = 1, then y = ub, $u \in k_A^\times$, $u^n = 1$. Since $u^n = N_{K/k}(u)$, we have $x = yz = (uz) \cdot b$ with $uz \in N_{K/k}^{-1}(1)$ and $b \in k^* \subset K^*$. Therefore $\pi(x) \in \pi(N_{K/k}^{-1}(1))$ in this case. Suppose now that there exists an x_0 such that a_0 corresponding to it does not belong to $k^{\times n}$. Then $[k^\times \cap k_A^{\times n}: k^{\times n}] = 2$. Therefore, for each x, we can choose b so that a is either a_0 or 1. Then according to the cases, either $\pi(xx_0)$ belongs to $\pi(N_{K/k}^{-1}(1))$ or $\pi(x)$ does. The proposition is now clear.

Remark. If $[k^{\times} \cap k_A^{\times n} : k^{\times n}] = 1$, then the index of the proposition is also equal to 1.

LEMMA 3. For a positive integer m, we have

$$\pi(N_{K/k}(K_A^{\times}))^{2m} \, \cap \, \pi(N_{K/k}^{-1}(k^{\sharp})) \subset \pi(\{u \in (N_{K/k}(K_A^{\times})^2 \cdot k^{\times})^m \, | \, u^n \, = \, 1\}).$$

Proof. Let x be an element of $N_{K/k}(K_A^{\times})$, and suppose $x^{2m} \in N_{K/k}^{-1}(k^{\sharp})$. Then $N_{K/k}(x^{2m}) = x^{2mn} \in k^{\sharp} = k^{\times} \cdot k^{\sharp 2mn}$. Because $k^{\times} \cap k_A^{\times 2mn} \subset k^{\times mn}$ (cf. Artin-Tate [1], Ch. 10), we have an element a of k^{\sharp} such that $x^{2mn} = a^{mn}$. Put $u = (x^2 \cdot a^{-1})^m$. Then $u \in (N_{K/k}(K_A^{\times})^2 \cdot k^{\sharp})^m$ and $u^n = 1$. Since $k^{\sharp} = k^{\times} \cdot k^{\sharp 2n} = k^{\times} \cdot N_{K/k}(k^{\sharp})^2$, $\pi(x)^{2m} = \pi(u)$ belongs to the set at the right hand side of the lemma. Q.E.D.

Lemma 4. For a positive integer m, we have

$$\pi(\{u\in (N_{{\scriptscriptstyle{K/k}}}(K_{\scriptscriptstyle{A}}^{\times})^2\cdot k^{\times})^m|u^n=1\})\subset \pi(\prod_{{\scriptscriptstyle{\mathfrak{p}}\in D}}\{u\in k_{\scriptscriptstyle{\mathfrak{p}}}^{\times m}|u^{n({\scriptscriptstyle{\mathfrak{p}}})}=1\}),$$

where D is the set of prime divisors of k which ramify in K/k, and $n(\mathfrak{p}) = [K_{\mathfrak{p}} : k_{\mathfrak{p}}]_{\bullet}$

Proof. For $u \in k_A^{\times}$, we have $N_{K/k}(u) = u^n$. Therefore

$$\{u \in k_A^{\times m} | u^n = 1\} = k_A^{\times m} \cap N_{K/k}^{-1}(1).$$

It is easy to see, by Propositions 4 and 5,

$$N_{{\scriptscriptstyle{K/k}}}^{\scriptscriptstyle{-1}}(1)\,\cap\,k_{{\scriptscriptstyle{A}}}^{{\scriptscriptstyle{ imes m}}}\subset K_{{\scriptscriptstyle{A}}}^{{\scriptscriptstyle{4\mathfrak{g}}}}\cdot\prod\limits_{{\scriptscriptstyle{\mathfrak{p}}}\in D}\{u\in k_{{\scriptscriptstyle{\mathfrak{p}}}}^{{\scriptscriptstyle{ imes m}}}|u^{n\,({\scriptscriptstyle{\mathfrak{p}}})}\,=\,1\}.$$

Because $\pi(K_A^{I_0}) = 1$, we have shown the lemma.

Remark. Throughout this paper, we consider k_A^{\times} a subset of K_A^{\times} by the natural imbedding. But each factor $\{u \in k_{\mathfrak{p}}^{\times m} | u^{n(\mathfrak{p})} = 1\}$ for $\mathfrak{p} \in D$ in this lemma is a subset of the \mathfrak{p} -component $K_{\mathfrak{p}}^{\times}$ of K_A^{\times} , and is equal to $k_{\mathfrak{p}}^{\times m} \cap N_{\mathfrak{p}}^{-1}(1)$.

Now, for $\mathfrak{p} \in D$, let $\bar{\mathfrak{g}}(\mathfrak{p}) = \operatorname{Gal}(K_{\mathfrak{p}} \cap k_{\mathfrak{p},ab}/k_{\mathfrak{p}})$, and $\bar{\mathfrak{g}}(\mathfrak{p})^{(p)}$ be the *p*-Sylow group of $\bar{\mathfrak{g}}(\mathfrak{p})$. Put

$$\mathscr{P}_1 = \{p \mid \text{prime}, \ p \mid |\bar{\mathfrak{g}}(\mathfrak{p})| \text{ for some } \mathfrak{p} \in D\},$$

and determine $i = i(p, \mathfrak{p})$ by the condition that $\zeta_{p^i} \in k_{\mathfrak{p}}$ and $\zeta_{p^{i+1}} \notin k_{\mathfrak{p}}$, and $j = j(p, \mathfrak{p})$ so that p^j is the exponent of $\bar{\mathfrak{g}}(\mathfrak{p})^{(p)}$. Put

$$\mu(p) = \mu_{K/k}(p) = \max(\{0\} \cup \{i(p, \mathfrak{p}) - j(p, \mathfrak{p}) | \mathfrak{p} \in D\}),$$
 $\lambda = \lambda(K/k) = \prod_{p \in \mathscr{I}_1} p^{\mu(p)}.$

Lemma 5. $\{u \in k_{\mathfrak{p}}^{\times \lambda} | u^{n(\mathfrak{p})} = 1\} \subset K_{\mathfrak{p}}^{\mathfrak{dg}(\mathfrak{p})}$ for each $\mathfrak{p} \in D$.

Proof. Let u be an element of $k_{\mathfrak{p}}^{\times \lambda}$ such that $u^{n(\mathfrak{p})}=1$. Take $v \in k_{\mathfrak{p}}^{\times}$ satisfying $v^{\lambda}=u$. Then v is a root of 1 in $k_{\mathfrak{p}}$. By the choice of $j(p,\mathfrak{p})$, $K_{\mathfrak{p}}$ contains a cyclic extension of $k_{\mathfrak{p}}$ of degree $\prod_{p \in \mathscr{P}_1} p^{j(p,\mathfrak{p})}$. Put

$$q=\prod\limits_{p\in\mathscr{P}_1}p^{\min(i(p,\mathfrak{p}),j(p,\mathfrak{p}))},$$

and let ζ be a primitive q-th root of 1. Then $\zeta \in k_{\mathfrak{p}}$. Therefore, $K_{\mathfrak{p}}$ contains a Kummer extension of $k_{\mathfrak{p}}$ of degree q. Hence we have $\zeta \in K_{\mathfrak{p}}^{d_{\mathfrak{q}}(\mathfrak{p})}$. We easily see that

$$\mu(p) + \min\{i(p, p), j(p, p)\} \ge i(p, p).$$

Therefore, we have $\lambda q \geq \prod_{p \in \mathscr{I}_1} p^{i(p,p)}$. Then by the choice of i(p,p), we see $u^q = v^{\lambda q} = 1$, and $u \in \langle \zeta \rangle \subset K_{\mathfrak{s}}^{4g(p)}$. Q.E.D.

Proposition 13. $\pi(K_A^{\times})^{2\lambda n} \cap \pi(N_{K/k}^{-1}(k^{\sharp})) = 1.$

Proof. We have $\pi(K_A^{\times})^{2\lambda n} = (\pi(K_A^{\times})^n)^{2\lambda} \subset \pi(N_{K/k}(K_A^{\times}))^{2\lambda}$ by Proposition 11. Then by Lemmas $3 \sim 5$, we have

$$\pi(N_{{\scriptscriptstyle{K/k}}}(K_{{\scriptscriptstyle{A}}}^{\scriptscriptstyle{ imes}}))^{{\scriptscriptstyle{2\lambda}}} \, \cap \, \pi(N_{{\scriptscriptstyle{K/k}}}^{\scriptscriptstyle{-1}}(k^{\sharp})) \, = \, 1.$$

Therefore
$$\pi(K_A^{\times})^{2\lambda n} \cap \pi(N_{K/k}^{-1}(k^{\sharp})) = 1.$$
 Q.E.D.

Theorem 8. Let d and $\lambda = \lambda(K/k)$ be as above. Then there exists an abundant central extension M of K/k such that Gal(M/K) is isomorphic to a subgroup of the direct product of d copies of $\mathbb{Z}/2\lambda n\mathbb{Z}$.

Proof. The subgroup $\pi(K_A^{\times})^{2\lambda n}$ of $\pi(K_A^{\times})$ is compact and closed. Therefore we easily see by Proposition 13 that there is an open subgroup U_1 of $\pi(K_A^{\times})$ such that $U_1 \supset \pi(K_A^{\times})^{2\lambda n}$ and $U_1 \cap \pi(N_{K/k}^{-1}(k^{\sharp})) = 1$. Then by the fundamental theorem of finite abelian groups applied to $\pi(K_A^{\times})/U_1$ and its subgroup $\pi(N_{K/k}^{-1}(k^{\sharp})) \cdot U_1/U_1$, we can find an open subgroup U of $\pi(K_A^{\times})$ such that $U \supset U_1$, $U \cap \pi(N_{K/k}^{-1}(k^{\sharp})) = 1$ and $\pi(K_A^{\times})/U$ is generated by d elements. Since U contains $\pi(K_A^{\times})^{2\lambda n}$, $\pi(K_A^{\times})/U$ is certainly isomorphic to a subgroup of $(Z/2\lambda nZ) \times \cdots \times (Z/2\lambda nZ)$ (d copies). Let M be the abelian extension of K corresponding to the open subgroup $\pi^{-1}(U)$ of K_A^{\times} . Then it is obvious that this M is a desired one.

Using Proposition 12 and Lemma 3 for m=1, we can prove the following theorem by the same way as in the proof of Theorem 8.

Theorem 9. Let d_1 be the minimal number of generators of $\Re(K/k)$. Then there exists a central solution L of $\Re(K/k)$ such that $\operatorname{Gal}(L/L \cap k_{ab} \cdot K)$ $\simeq \Re(K/k)$ and $\operatorname{Gal}(L/K)$ is isomorphic to a subgroup of the direct product of d_1 copies of $\mathbb{Z}/2n\mathbb{Z}$.

It is also obvious that we can show the following result of Opolka [7] by the same way using Proposition 12 on account of Remark just after the proposition.

THEOREM (Opolka). Suppose that the index $[k^{\times} \cap k_A^{\times n}: k^{\times n}]$ is equal to 1. Then there exists a central solution L of $\Re(K/k)$ such that $\operatorname{Gal}(L/K)$ is isomorphic to a subgroup of the direct product of d_1 copies of $\mathbb{Z}/n\mathbb{Z}$.

REFERENCES

- [1] E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967.
- [2] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin · Heidelberg · New York, 1967.
- [3] K. Miyake, On the structure of the idele group of an algebraic number field, Nagoya Math. J., 80 (1980), 117-127.
- [4] —, On the units of an algebraic number field, J. Math. Soc. Japan, 34 (1982), 515-525.
- [5] —, Central extensions and Schur's multiplicators of Galois groups, Nagoya Math. J., 90 (1983), 137-144.
- [6] H. Opolka, Zur Auflösung zahlentheoretischer Knoten, Math. Z., 173 (1980), 95-
- [7] —, Some remarks on the Hasse norm theorem, Proc. Amer. Math. Soc., 84 (1982), 464-466.
- [8] S. Shirai, On the central class field mod m of Galois extensions of an algebraic number field, Nagoya Math. J., 71 (1978), 61-85.

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464 Japan