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A BANACH SPACE WHOSE ELEMENTS ARE 
CLASSES OF SETS OF CONSTANT WIDTH 

BY 

J. E. LEWIS 

Let K be a compact subset of the real Euclidean space En. We say that K has 
constant width if the distance between each pair of distinct parallel hyperplanes 
which support K is constant. The collection of all compact convex subsets of En 

which have constant width is denoted J f n. 
The metric for En induces the Hausdorff metric h on Jfn, and the linear struc­

ture of En induces a corresponding algebraic structure for Jfn(see §1). The alge­
braic structure does not make Xn a vector space. However, Ewald and Shephard 
[4] have shown that by considering equivalence classes rather than individual 
elements of JTn , a normed linear space (Kn, | • |) can be obtained. 

In [4] an example was given showing that (Kn, | • |) is incomplete, whereas the 
opposite is true for the metric space p f w, h). One may therefore ask if there is a 
norm under which Kn becomes a complete space. We shall show that such a re-
norming of Kn is possible; in fact, there is a norm, || • ||, such that (Kn, || • ||) is a 
conjugate Banach space. 

It also turns out that the extremal structure of the closed unit ball, V, of (Kn, || • ||) 
is closely related to certain geometric properties of the elements of Jfn. Namely, 
there is a correspondence between the scalar multiples of the extreme points of V 
and the indecomposable elements of Xn. (A subset K is indecomposable in Xn 

if K=K1+K2 with Kl9 K2 in Xn implies that at least one of the subsets Kx or K2 

is equal to XK+x for some X>0 and some x e En.) By using this correspondence 
it is possible to obtain results concerning the approximation properties of the inde­
composable sets of constant width, similar to those obtained by Shephard [5, 
Chapter 15], [7], and Berg [1]. 

1. The Ewald-Shephard Embedding. The family Jf*n is closed under the opera­
tions of scalar multiplication (XK={Xx:x eK})9 and Minkowski addition C&i+ 
K2={x1+x2:x1e Kly x2e K2}). Also, since all the members of Jfn are convex 
(in fact, strictly convex), the cancellation law holds for Minkowski addition (that 
is, K1+K=K2+K implies that K1=K2). Despite these properties, Jfn is not a 
vector space, for any member of Jfn, other than a singleton, does not possess an 
additive inverse. 

In [4], Ewald and Shephard showed how a linear structure may be introduced 

Received by the editors November 17, 1971 and, in revised form, January 5, 1973. 

4 679 

https://doi.org/10.4153/CMB-1975-119-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-119-6


680 J. E. LEWIS [December 

by considering equivalence classes of JT n : Two members Kx and K2 of Cfn are 
defined to be equivalent, K1^K2, if there are closed balls B1 and B2 such that 

(1) K1+B1 = K2+B2. 

The equivalence class containing K is denoted [K], and the family of equiva­
lence classes of Jfn is denoted Kn. (In [4], this family of equivalence classes is 
denoted ^ * ) . A linear structure is introduced on Kn by defining the following 
operations: 

k[K] = [XK] 
( 2 ) [K 1 ]+ [X 2 ]= [K 1 +K 2 ] . 

These definitions are consistent, and it follows that Kn is a vector space whose 
null element is the class of all closed balls ofEn (including those with zero radius). 

As mentioned previously, in [4] a norm | • | was defined on Kn. This norm may 
be described by using the fact that each element K of Jfn has a unique insphere 
and a unique circumsphere. These spheres have a common center, and if r(K) 
and R(K) are their respective radii, then r(K)+R(K) is the width of K [3, p. 125]. 
In view of this, the number R{K)—r(K) is the same for each K e [K\9 and 1 [î T][ is 
defined to be this number. 

It was proved in [4] that if A denotes the Hausdorff metric for Jfn (h(Kl9 K2)= 
inf{A>0:KX aK2+AB; K2 c^+zLS} , where B is the closed unit ball of £n) , then 
the natural mapping 

i : ( J f n , / i ) - > ( X M . | ) 
is continuous. 

As well as proving that (Kn
91-|) is not complete, an example was provided to 

show that the closed unit ball of (Kn, | • |) was not strictly convex [4, p. 8]. The 
same example serves to illustrate the fact that, with the norm | • |, it is possible 
that Kl9 K2, and K3 be indecomposable in Jfn while 

[*y = [K,]+[K3] 
and, 

i M = ira = ira = i. 
This shows that in general the indecomposable elements of «2fn do not correspond 
to the extreme points of the closed unit ball of (Kn

9 \ • |). 
We would mention at this point that as well as considering Jfn, it was shown in 

[4] and [8] how more general families of convex sets can be embedded in normed 
linear spaces. In each case, properties of the vector spaces corresponded to geo­
metrical properties of convex sets. In particular, it was shown that the study of 
complementary subspaces of Kn is equivalent to certain decomposition theorems 
for the members of JTn . 

2. A complete norm for Kn. To obtain a complete norm for Kn, we first choose 
as a representative of each class [K\ that member of [K\ whose Steiner point (see 
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below) is the origin and which has minimal width. The norm of [K] will then be 
defined as the width of this representative. ' 

The Steiner point of a convex set K is defined to be [7]: 

(3) s(K) = fu H(K, u) dco f <w, uf dco. 

where u e Q={u e En: \\u\\ = 1}, and H(K, u) is the support functional for K: 

(4) H(K, u) = sup«x, u) : x e K}, 

and where w is an arbitrary, but fixed unit vector. 
The mapping K-+s(K) from (yf n, h) into En has the following properties which 

may be readily deduced from (3) and (4) (see [7]). 

(5) s continuous and s(K) e K 
s(XK) = fo(K) 

(6) s^K.+K,) = s(KJ+s(KJ. 

By using the cancellation law for addition of convex sets, it is readily seen that 

2.1. K1f^K2 if and only if either K^—K^B^ or K2=K1+Bl9 where Bi is a closed 
ball {perhaps of zero radius). 

In view of 2.1, given an equivalence class [K] there is clearly a unique K0 e [K] 
with the following properties : 
(7) The Steiner point s(K0) of K0 is the origin of En. 
(8) For any other member Kx of [K\, there is some closed ball Bx such that 

The element K0 of [K] defined by (7) and (8) above will be denoted a[K], and is 
called the apex of [K]. Note that if [K\ contains an indecomposable member Kx 

of Jfn, then Kx is a translate of a[K]. 
The linear space Kn may be given a norm by 

(9) | |[tf]||=diam*[*] 

The proof that (9) actually defines a norm for Kn is straightforward and has 
therefore been omitted. 

The unit ball of (Kn, \\ • ||) will be denoted V. Most of our results about (Kn
9 \\ • ||) 

are summed up by the following two theorems : 

2.2. The space (Kn
9 \\ • ||) is a conjugate space. If&" denotes the topology induced 

on V by the norm | • |, then $~ coincides with the restriction of some w*-topology to V. 

2.3. Let KeJfn with a[K]^{0}. Then a[K\ is an indecomposable element of 
3fn if and only if [X]/|| [K]\\ is an extreme point of V. 
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In order to prove 2.2, first recall that the Mackey-Arens Theorem [9, p. 248] 
states that if A and B are linear spaces in duality with respect to the bilinear form 
(, ), and if y is any locally convex linear topology for A, then the family of 3"-
continuous linear functionals on A is identical with B if, and only if 

(10) w(A, B)^ 3T c m(A, B). 

Here, w(A9 B) is the linear topology with a local base consisting of all subsets 
of the form G°={f e A : (/, x)< 1, for each x EG}9 where G is a finite subset of 
B. The linear topology m(A9 B) is the one with a local base consisting of all subsets 
W°9 where W is a w(B, ^4)-compact, convex, circled (i.e., ÀWcW for all A with 
|A|<1) subset of £. 

The following simple and probably well-known, consequence of the Mackey-
Arens Theorem will be used. 

2.4. Let E be a normed linear space with closed unit ball V. Suppose that 3T 
is a locally convex Hausdorff linear topology for E such that V is &~-compact. Let 
F be the space of all ^-continuous linear functionals on E. Then F can be given a 
norm || • || such that F*=E, and the weak* topology, w(E9F)9 coincides with 3* 
on V. 

Proof. By (10), w(E9 F)a^9 and so F is a w(E, F)-compact circled convex 
subset of E. Similarly, for each A^O, XV is a w(E9 ^-compact circled convex 
subset of E. In fact, the family &={ÀV:À?£0} is an admissable family for the pair­
ing (E, F) [6, p. 167]. Therefore, the family {B°:B e 8$) is a local base for a linear 
topology °ti on F with the property that w(F, E)<=-°U [6, pp. 167,168]. It is also clear 
from the manner in which % has been defined that %<^m{F, E) and thus the 
Mackey-Arens Theorem assures that the set of continuous linear functionals on 
(F, °ll) is exactly E. Clearly, since °ti is Hausdorff, °tt is a norm topology whose 
closed unit ball is V°, showing that E is a conjugate space. 

The identity map (V,^)-+(V, w(E9F)) is continuous (because w(E9F)<=^)9 

and since (V9 w(E9 F)) is Hausdorff and (V9 ^) is compact it follows that (F, &~) 
and (V9 w(E9 F)) are homeomorphic. • 

2.5. Let ^ denote the \-\ topology of Kn
9 and let V denote the closed unit ball of 

(Kn
9 || • ||). Then V is ^-compact. 

Proof. In {Xn
9K) let V denote the subset {^ :d i am^=l and s(K)=Q}. The 

fact that s is continuous together with Blaschke's Selection Theorem [3, p. 64] 
implies that V is compact. It is readily verified that the natural map i : (Jfn

9 h)-> 
(Kn

9 2T} maps V onto V9 and since / is continuous, V must be compact (in the 
topology ST)9 being the continuous image of a compact space. • 

The results 2.4 and 2.5 together yield 2.2. We also remark that the normed space 
^constructed in 2.4 may not be complete. If F denotes its completion, then of course 
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F*=E. By the Banach-Alaoglu Theorem, (V> w(E, F)) is compact and it readily 
follows that (V, ^) and (V, w(E, F)) are homeomorphic (see also Theorem 3.4 
of this paper). 

A further remark seems to be in order. If E is a conjugate space, there may be 
Banach spaces F1 and F2 such that F*~F$=E, while F± and F2 are not linearly 
isometric. In this case, there is no guarantee that (V, w(E, FJ) and (V, w(E, F2)) 
are homeomorphic. For example, one may take F1=c0 and F2=c, with F*=F2=l1. 

Incidentally, note that Theorem 2.2 implies that (Kn, || • ||) is the conjugate of 
some separable Banach space, due to the fact that some weak* topology for F i s 
metrizable [2, p. 426]. 

To prove 2.3 we will need 

2.6. Let Kx and K2 be elements of Kn and suppose that al^+K^^K^K^ 
Then, for every pair (Xl9 A2) of non-negative scalars, a[X1K1+X2K2]=X1K1+X2K2. 

Proof. If X1=X2=Q, the proposition is clearly true. Therefore we may assume 
that XX>X2 and Ax>0. Now suppose that alX^+^K^K^X^+X^. By 
(6) s(X1K1+X2K2)=Ô=s(K), and so the definition of Û[A 1 X 1 +A 2 ^ 2 ] implies that 

X1K1+X2K2 = K+B, 

where B is a closed ball of positive radius. Therefore, 

K1+K2 = fc[ {X1—X2)K2-\-X[ -K+^r B. 

Since X^B is a closed ball of positive radius, this shows that 

a[Kx+K2] * Kx+K2> 

which contradicts the hypothesis of the proposition. • 

Proof of 2.3. Let K0=a[K0], Since K0=£{Ô}, || [K0]\\ ^ 0 , and so K0 is indecompos­
able in Jfn if and only if K0I\\ [K0]\\ is an indecomposable element of JTn . Therefore, 
there is no loss of generality in assuming that || [KQ]\\ = 1. 

Suppose that [K0] is not an extreme point of the unit ball of Kn
9 i.e. [KQ]= 

A[K1]+(1—X)K2 for some two points [K±] and [K2] of norm 1 and for some A 
between 0 and 1. Since K0 is the apex of [K0], we have K0+B=XK1+(1 — X)K2 

where Kl9 K2 are apices and B is a closed ball. Since the widths of KQ, Kl9 and K2 are 
all equal to unity, it follows that B is the singleton {0} and so K0=XK1+ (1 — X)K2, 
that is, KQ is decomposable in Jfn. 

Suppose now that K0 is decomposable in Jfn. Then, there are elements Kx and 
K2 of Xn for which 

Kx + K2 = K09 

with K^XK0+x for any X>0, xeRn. Since s(K0)=Ô, we have s(K^s(K^9 

and so we may assume that s(K1)=s(K2)=0, Since a[K0]=K09 by 2.6 it follows 
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that alK^K-L and a[K2]=K2. Since || [Kt]\\ =diam Kt for z=0, 1, 2, we have 

ll[^0]ll = ll[^l]ll + l l [ ^2 ] | |= l 
=> [K0] = ||[XJII [XJII[jy||]+1|[K2]|| [K2/||[K2]||], 

which completes the proposition. Q 

3. Comparison of Kn and «2Tn. This section is primarily concerned with the 
properties of the two mappings a\Kn~>Xn and i\Xn->Kn, where a takes the 
equivalence class \K\ to its apex a[K], and where / is the natural map taking each 
set K to its equivalence class [K\. 

It is always true that ia[K]=[K], but in general a[i{K)} will be different than K. 
As already mentioned, it has been shown in [4] that the mapping z:pfw, h)-> 

(Kn, | • |) is continuous. Our first result shows that this is not true if the norm | • | 
is replaced by the stronger norm || • ||. 

3.1. The natural map i: ( J f n , h)^{Kn, || • ||) is not continuous. 

Proof. Let Ai denote a regular Reuleaux ra-gon m=2i+l9 f = l , 2 , . . . , whose 
centroid is the origin of E2 and whose diameter is 1. 

We shall use the following facts : 

(11) ^ ) = 0,z = l , 2 , . . . . 

(12) For i ?£j, Ai—Aj always has a rough point in its boundary. 

(13) l i m ^ h(Ai9 Bj2) = 0, where B is the unit ball of E2. 

The preceding statements show that i:(3f2, h)-+(K2, ||-||) is not continuous. 
To see this, from (11) and (12) we conclude that alAi—A^Ai—Aj, and hence 
l l t ^ — ^ ] | | = 2 for ij£j. This shows that { [ ^ J : / = l , 2 , . . . } is certainly not a 
Cauchy sequence in (K2, \\-\\). On the other hand, (13) shows that {A^i^l, 2 , . . . } 
is a sequence in (JT2, h) converging to Bjl. Thus, i: (Jf2, h)->(K2, \\ • ||) is not con­
tinuous. 

To prove (11), note that there are unitary transformations T whose only fixed 
point is the origin and for which T(Ai)=Ai. It follows from the definition of s 
that s(T(Ai))=T(s(Ai)) for any linear transformation, T, and hence ^ ( ^ ^ = 0 . 

To prove (12), let U{ be the subset of the unit circle with the property that u 6 C/t-
attains its supremum on Ai at a rough point of A^ Then, U{ consists of 2/+1 
closed arcs, equal in length, equally spaced around the unit circle, with each arc 
in Ui subtending an angle of 77/(2i+1) at the origin. If ij&j, it is clear that Ui n 
(—Uj) must contain an open interval U' in the boundary of the unit sphere. 
Then, each ueU' supports both Ai and — A3- at rough points say, xt and —xiy 

and it follows that u e U' supports At+{—A3) at x^—*,. Hence xi—xj is a rough 
point of Ai—Aj. 

The proof of (13) is left to the reader. 
In order to show that the natural map (Jfn, h)~>(Kn, \\ • ||) is not continuous for 
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n>29 first modify the sets At in E so that they all have a vertex on the axis through 
0 and a point p. Then each At is symmetric about this axis. Let A'i be the set of 
constant width in En which is obtained by revolving At about the axis through 0 
and/?. Then using arguments similar to the ones above, it can be shown that (11), 
(12), and (13) hold with A!t replacing Ax. • 

The continuity of the mapping a:(Kn, || • ||)->(JTn, h) may be deduced from the 
following lemma. 

3.2. Let [Kx] and [K2] be elements of(Kn, || • ||). The following two statements are 
equivalent. 

(i) Ht*!]-[*2] | |<s 
(ii) There exists a member K e Xn with diam K<&\2 such that 

Kx-K = Kx+K, 

whenever K{ e (XJ, / = 1 , 2, is chosen so that s ( i Q = 0 and diam ^Tx=diam K2. 

Proof. To show that (i) implies (ii), suppose that || [J£J— [^2]ll <£• Letting [Kz] = 
[K^K^l it is clear that 

If K± and K2 have the same diameter, for each Kz e [^3] we must have, by defi­
nition of the equivalence classes, 

Ki—Kz = K2+Kz. 

Choosing Kz to be the apex of [K2], we have diam Kz= \\ [K3]\\ <fi/2, which shows 
that (i) implies (ii). 

Now note that if K1—K=K1+K then there is some closed ball B centered at the 
origin with 

( K X - K M K J + J K ) = B 

K1-K2+2K-2K = 2K+B 

Kx-Xt+B' = 2K+B, 

where B' is the closed ball 2K-2K. Therefore, 

a(Kx-K2] = alKi-Kt+B'] = a[2K+B], 

and since || [J^—K2]\\ =diam a^—K^, we have 

H[^ i -^2] l l^2(d iamX) = a, 

which completes the lemma. • 

3.3. The mapping a:(Kn, || • ||)->(^Tn, h) is one-one and uniformly continuous. 

Proof. Clearly a is one-one. To see that it is uniformly continuous, suppose that 
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l l [ ^ i ] - r a < * . Then, l l l ^ J I I - l l ^ l l l ^ H ^ J - ^ J I I ^ e . Assuming that 
II IXi]ll < II [̂ 2]II > this implies that there is a positive number r^s/2 such that 

diam(a[lC1]+r1.B) = diam a[K2], 

where B is the closed unit ball of En. 
By 3.2, there is a set K e Xn with diam K=r2<ej2 for which 

atfiy + fiB-JS: = a[K2]+K. 

By first adding, and then subtracting i^from this equation, we find 

alKJ + fa+rJB = a[K2]+2K => a[K2] 

and 

a[K±] c [aKJ + ^B^K = a[K2] + r2£ 

showing that A(a[A^], « [^ 2 ] )< r i+ r 2< £ - D 

For the remainder of this section, F will denote the normed linear space construc­
ted in 2.4; that is, F consists of all those linear functional continuous on (K7\ | • |), 
and the norm of Fis the one whose closed unit ball is the polar V° of the closed unit 
ball Vof(Kn, || • ||). In this case, Fis incomplete, and its completion will be denoted 
by F. (To check that F i s incomplete, let W=={[K] GKn:\[K]\<l}. It is readily 
verified that W is a w(Kn, F)-bounded subset that is not || • ||-bounded and this 
situation could not occur if F were complete [6, p. 170].) 

In the remarks following 2.5, it was pointed out that the three topologies, ^ \ 
w(Kn, F), and w(Kn, F), coincide on V, where &~ denotes the topology induced by 
the norm | • |. As would be expected, this result can be generalized. 

3.4. Let Xbea convex subset ofKn. IfXis compact in any one of the topologies ^ , 
w(Kn, F) or w(Kn, F), then X is compact in the remaining two topologies. Conse­
quently the three topologies coincide on X. 

Proof. Even without convexity, it is clear that ^""-compactness of X implies 
w(Kn, F)-compactness and w(Kn, F)-compactness implies w(Kn, F)-compactness 
since w(Kn, F) is weaker than both ST and w(Kn, F). It therefore suffices to show 
that w(Kn, F)-compactness of X implies ^"-compactness and w(Kn, F)-compactness 
of X. Here, the convexity of X plays a crucial role, for together with the w(Kn,F)~ 
compactness of X it implies that X is a strongly bounded subset of Kn=F* [6, 
p. 170], that is, there is some positive number m with || [K]\\ <m for all [K] e X. 

Since w(Kn, F) a3~, this shows that X is a ^"-closed subset of the ^"-compact 
set mV={[K] eKn:\\[K]\\<m}. Thus, X is ^"-compact, and the same reasoning 
shows that X is w'(Kn, F)-compact. 

It follows readily that the three topologies coincide on X. The identity mapping 
from (X, W) onto (X, w(E, F)), where °U is either ST or w(E, F), shows that 
(X, w(E, F)) is a Hausdorff space which is the continuous one-one image of the 
compact space (X, °iï), and so (X, °U) and (X, w(E, F)) are homeomorphic. • 
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A corollary to 3.4 is 

3.5. Let °ll be any of the topologies 3"\ w(Kn, F), or w(Kn, F). The natural map 
i: (Jfn, h)-^(Kn, °U) is continuous. 

Proof. Let {£>f=l , 2 , . . .} be a sequence in (Jf n, h) converging to K0. The set 
{diam Ki:i=Q> 1, 2 , . . .} is then bounded above, and so {[iSTJ:i=0, 1, 2 , . . .} is a 
strongly bounded subset of (Kn, | |-| |). By [6, pp. 171-172], the w(Kn, F)-closed 
convex hull C of {[i£J : i=0 , 1, 2 , . . . } is w(Kn, F)-compact. Since the three topolo­
gies agree on C, and since i:(X'n9 h)->(Kn

93') is continuous [4], it follows that 
{[K{]} converges, in the topology °tt, to [K0]. D 

We remark that the mapping a:(Kn, %)->(J>Tn, h) is not continuous, where % 
is any one of the three topologies being discussed. Indeed, let {A[ e Jfn : /= 1,2,. . .} 
be the sequence of sets constructed in the proof of 3.1. Then, by 3.5, {[A'i]} °U-
converges to the null element, [B], of Kn. However, a[Ai]=Ai and a[B] = {0}, 
showing that a: (Kn, ^ ) ->(J f n , h) is not continuous. 

On the other hand, if X is a bounded subset of (Kn, \\ • ||) it is always possible 
to define a mapping from (X, °iï) into (JTn, h) which is continuous: For each 
[K] e X let ux[K] denote that unique member of [K] for which s(ux[K])=Q and 
diam wx[X] = sup{|| [C]\\ : [C] e X}. Then, ux is well defined and has the following 
properties: 

(14) iux[K] = [Kl 

(15) ux is continuous from (X, °ll) into (Jf n, h), where °ll is any of the three 
topologies discussed above. 

Assertion (14) is clearly true, and a proof that (15) is valid follows readily from 
property (14) together with the fact that ux (X) is contained in a copact subset of 
(JTW, h) (by Blaschke's Theorem). 

4. Approximation properties of the indecomposable elements of Jfn. Let <£ 
be a collection of closed convex subsets of En. The convex subset C is said to be 
approximable by ^ [7] if there is a sequence {CTO:ra=l, 2 , . . .} in (Jfw, h) which 
converges to C where each Cm can be expressed 

Qm 

Shephard [5, Chapter 15] and [7], has shown that if P is a polytope which is 
indecomposable in the class SP of all polytopes in En, and if <€ is a subclass of ^ 
which is invariant under positive homotheties (ÀC+xetf whenever A>0 and 
C e^), then P is approximable by ^ if and only if F is in the closure of ^ . 

A consequence of 2.2 and 2.3 is 

4.1. Every element of (X*n,h) is approximable by the class of indecomposable 
elements of Xn. 

https://doi.org/10.4153/CMB-1975-119-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-119-6


688 J. E. LEWIS [December 

If(ëc:X'n is invariant under positive homotheties, and if K is indecomposable in 
JTn , then K is approximable by %> only if K is in the closure of^. 

Proof. As usual, F denotes the closed unit ball of (Kn, || • ||), and % denotes any 
of the three topologies of Theorem 3.4. 

In proving that each K in Xn is approximable by the family of indecomposable 
elements of JTW, it is clear that we may restrict attention to the case where diam K— 
1 and s(K)=Ô. For this case, [K] e V. Since F i s ^-compact, it follows from the 
Krein-Milman Theorem [6, p. 131] that there is a sequence {[Km], m==l, 2 , . . .} 
which ^-converges to [K], where each [Km] is a convex combination of the extreme 
points of V, that is; 

Qm 

[Km] = 2 îlXm.tL 

where Àt>09 2 ^ = 1 , and [Kmti] is extreme. 
From the definition of the mapping uv (described at the end of §3) it is easily seen 

that 
Qm 

and since [Kmi] is extreme, uv[Km>i]=a[Kmi], showing that uv[Kmi] is indecom­
posable. The continuity of uv together with the fact that uv[K]=Know shows that 
K is approximable by the family of indecomposable elements of Cfcn. 

Regarding the second assertion, we may assume that K is indecomposable in 
Xn with diam K=\ and s(K)=Ô. If Kwere approximable by fé7, then, Kwould be 
approximable by <^1={[C] e %>'.diam C = l , s(C)=Ô}. In fact, it is easily checked 
that K would be the limit of some sequence of convex combinations of ^ It 
follows that [K\ would be in the ^-closed convex hull D of /(^i)={[C]: C e (ëiy 
Clearly, [K] must be an extreme point of D, because D^V and [K\ is an extreme 
point of V. Since the ^-closure of i(^i) is ^-compact (due to the fact that the 
closure of ^ is compact in (JTn , A)), the Milman Theorem [6, p. 132] shows that 
[K] must be in the closure of i(^i). The continuity of the mapping uv now shows 
that K is in the closure of fé^, completing the proof of 4.1. • 

REMARKS. The fact that the Milman Theorem and the Krein-Milman Theorem 
are both closely related to the approximation properties of indecomposable sets is 
known—for example, see the paper of Berg [1]. We would also mention that the 
results of [1] are stated for the family of all compact convex sets of En

9 but remain 
valid for any closed subfamily ^ with the following property: *% is invariant under 
translations, scalar multiplication and Minkowski addition. (Indecomposability 
would then be defined with respect to the subfamily fé7.) Theorem 4.1 may therefore 
be obtained as a consequence of the more general results of [1]. 
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