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1. Introduction

The structure of various classes of annihilator algebras has been known for
some time. Bonsall and Goldie (1) considered semi-simple Banach algebras
9t with the properties

(i) r{L) = {x: xe 91, yx = O(yeL)} # (0) for each proper closed left
ideal L of 91,

(ii) l(K) = {x: xe 91, xy = O(yeK)} # (0) for each proper closed right
ideal K of 91.

Bonsall obtained more detailed results in (2) by imposing an extra topological
condition on 91. Smiley (7) generalised the work of Bonsall and Goldie by
-asking that only condition (i) should hold. In fact he also proved the main
structure theorem for topological rings instead of Banach algebras. It is known
that conditions (i) and (ii) are not equivalent.

Recently Yood (8) has considered semi-prime topological rings 5R with the
property

(i)' r(L) ^ (0) for each closed maximal modular left ideal L of 5R.
He shows that condition (i)' is in fact equivalent to

(ii)' 1{K) ^ (0) for each closed maximal modular right ideal K of 5R.
In other words, his " left" annihilator class coincides with his " right"
annihilator class.

In this paper we shall consider an annihilator condition which is slightly
weaker than the condition considered by Yood. We say that a Banach algebra
91 is a modular annihilator algebra if it has a family of maximal modular left
ideals {Lx: X e A} such that

(2) n{LA: AeA} = (0).

It is immediate that a modular annihilator algebra is semi-simple. For con-
venience we shall confine our attention to complex Banach algebras. In § 2
we shall obtain structure theorems for modular annihilator algebras. In

t This paper contains part of the author's Ph.D. thesis and covers part of research
supported by a Carnegie Scholarship. The research was carried out under the supervision of
Prof. F. F. Bonsall to whom grateful acknowledgement is made.
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90 J. DUNCAN

particular, Theorem 1 will show that there is no need to distinguish between
" left " and " right " modular annihilator algebras.

We say that any Banach algebra % is a B* algebra if

(3) given ae 31 with \\a\\ = 1, and given e with 0 < E < 1 , there exists
a* e 31 such that || a* || = 1 and

\\{aa*T\\ l ( l - £ ) " (n = 1,2, ...).
In § 3 we specialise to B* modular annihilator algebras with dense socle and
obtain more detailed structural results. (We recall that for a semi-simple
algebra the socle is the sum of the minimal left (or right) ideals.)

Bonsall and Goldie conjectured that their annihilator algebras were dual
(at least in the topologically simple case) in the sense that

(iii) L = l(r(Vj) for each closed left ideal L of 31,
(iv) K = r(l(K)) for each closed modular right ideal K of 31.

It seems natural to say that a modular annihilator algebra is modular dual if it
satisfies

(iii)' L = l(r(L)) for each closed modular left ideal L of 31,
(iv)' K = rQ(K)) for each closed modular right ideal K of 31.

We shall show that a B# modular annihilator algebra with dense socle is
modular dual.

Finally, in § 4 we shall show how the B* condition is related to a problem
concerning Banach spaces in normed duality.

Unless otherwise stated, all definitions are to be taken as in Rickart (6).

2. The structure of modular annihilator algebras
Theorem 1. Let 31 be a modular annihilator algebra. Then there is a family

of maximal modular right ideals {K^: \i e M} such that

(ii) n{^: |i

Proof. Let {eM: \i e M} be the family of all primitive idempotents of 31.
This family is non-empty by the analogue for left ideals of (8), Lemma 3.2.
Further, each Lx is of the form 31(1 -eM) for some \x.eM. Let K^ = (1—^)31,
so that Kp is a maximal modular right ideal of 31 for each fie M. By (6), Lemma
2.8.2 we have / ( ^ ) = 31^ so that condition (i) is satisfied.

Let K = n { / ^ : n e M}. Suppose that K # (0). By the argument in (6),
Lemma 2.1.11, for each ju e M, u e % either we,, 31 is a minimal right ideal or
ue^3I = (0). If K contains no minimal right ideal, then we have Ke^ = (0)
(/z e M), and so ^c/(e/13I) (n e M). Thus, by (6), Lemma 2.8.2, Kcz 31(1 -«„)
(jieM). It follows that Kan{Lx: AeA} = (0). This contradiction implies
that K contains a minimal right ideal and so a primitive idempotent e. We now
have e%<=-Kc(\ — e)5I. This is again a contradiction and therefore condition
(ii) is satisfied.
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Theorem 2. Let % be a modular annihilator algebra and let 23 be the closure
of the socle of 21. Then r(23) = (0), and SB is a semi-simple Banach algebra such
that

(i) r(L) # (O)for each maximal modular left ideal L of 23,

(ii) l(K) # (0) for each maximal modular right ideal K of SB,

(iii) r(7) # (0) for each proper closed two-sided ideal Iof$>.

Proof. If r(93) ^ (0), then r(23) is a non-zero right idea Jof 91. It follows
as in the proof of Theorem 1 that r(93) contains a primitive idempotent. But 21
is semi-simple and 58 is two-sided and so 23nr(23) = (0). This is a contradiction
since 58 contains all the primitive idempotents of 21. Hence r(23) = (0). We
now observe that if e is a primitive idempotent for 21 then it is also a primitive
idempotent for 23. In fact 23ec 2Ie, and 2Ie<=23 so that 2Ie = 2Ie2<=23e. Thus
2Ie = 2te and so e2le = e^Be. 23 is semi-simple since it is a two-sided ideal of
21. Thus 23 is a semi-simple Banach algebra with dense socle. Statements (i)
and (ii) now follow immediately from (5), Lemma 3.1. Finally, let / be a
proper closed two-sided ideal of 23. Then there is a primitive idempotent e of
23 such that e$I. Let Ie = (23e23)~. By the argument of (6), Lemma 2.8.8, Ie

is a minimal-closed two-sided ideal. Thus Inle = (0) or Inle = Ie. Since
e$I we must have 7n/e = (0). We now have IIe<=InIe = (0), so that
r(7) 7̂  (0) as required.

Corollary 1. 21 has a unique norm topology.

Proof. This is immediate from (6), Corollary 2.5.8.

Corollary 2. The following statements are equivalent.

(i) r(L) 7̂  (0) for each maximal modular left ideal L of 21.

(ii) 21/23 is a radical algebra.

Proof. This is immediate from (8), Theorem 3.4.

Theorem 3. Let 1 be a minimal-closed two-sided ideal of a modular annihilator
algebra 21. Then I is a semi-simple topologically simple Banach algebra such that
r(L) # (0) for each maximal modular left ideal L of I.

Proof. As above 23 denotes the closure of the socle of 21. We observe that
there is a primitive idempotent e of 21 such that / = (23e23)~. We now regard
/ as an ideal of 23 and the result follows simply from Theorem 3.7 and Lemma
3.10 of (8).

Corollary. 23 is the direct topological sum of topologically simple modular
annihilator algebras.

We recall that two Banach spaces X and Y are said to be in normed duality
with respect to < , >, if < , > is a non-degenerate bilinear form o n l x y such
that there is some M>0 with

|<*,^>|^J»/ | |* | | | |y | | (xeX.yeY).
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For such a pair of spaces (X, Y, < , » we shall use the concept of the adjoint
of a bounded operator as described in (3). We shall denote by %5(X, Y, < , »
the algebra of all bounded operators on X which have an adjoint on Y with
respect to < , >. It is shown in (3) that 93(X, Y, < , » is a Banach algebra with
respect to the norm defined by

|| 71 = m a x { m , \T*\}

where | T\, \ T* | are the operator norms in %>(X), 93( Y) respectively. We shall
denote by F(X, Y, < , » the algebra of all bounded operators on X of finite
rank which have an adjoint on Y with respect to < , >. We shall denote by
%(X, Y, < , » the closure of F(X, Y, < , » in 23(X, Y, < , » . We shall use the
concept of a dual representation of a Banach algebra as defined in (3).

Theorem 4. Let 91 be a topologically simple modular annihilator algebra.
Then there is a faithful dual representation a^Ta of 91 on some pair (X, Y, < , »
such that

(i) || Ta || g || a || (a e 91),

(ii) if A is the image of 91 under a-*Ta then

Fix, y,<,)Mcp, r, <,».
Proof. 91 is certainly a left primitive complex Banach algebra with minimal

one-sided ideals. By (3) Theorem 14 there exists a faithful dual representation
a^Ta of 91 on some pair (Xu Yu < , >t) whose image A satisfies

Since 91 is topologically simple we also have A<=^(XU Ylt < , X). By (3),
Theorem 3, Corollary 1 there exists / e %' such that the dual representation
a-+Tf of 91 on (Xf, Yf, <, }f) is equivalent to the dual representation a^T* of
91 on (Xu Yu < , >j). Since we have

\T/\^\\a\\, |(T/)* | g || a )\(a e 9t),

the proof is now complete.

Remarks. (1) We point out that the underlying pair is essentially unique in
the sense that if a^T^ is any other faithful dual representation of 91 on a pair
(X2, Y2, < , >2) with property (ii) above, then a->Ta

2 is equivalent to the dual
representation a->Ta of the theorem. The proof of this remark follows by a
simple extension of (6), Theorem 2.5.19.

(2) We shall have occasion to choose our underlying pair (X, Y, < , » as
follows. Let L be a minimal left ideal of 91 and let K be a minimal right ideal
of 91. By (6), Lemma 2.4.13 there exist bicontinuous isomorphisms U, V of
L, K with X, Y respectively. Let

</, fc> = <£//, Vk} (leL,k<s K).

Then (L, K, < , » are Banach spaces in normed duality. Let a->Ta be the
equivalent dual representation of 91 on (L, K, < , »implemented by the mappings
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U, V. Then a->To is simply the left regular representation of 21 on L and
a->T* the right regular anti-representation of 21 on K. Hence condition (i) is
satisfied for this representation.

We now give some illustrative examples of modular annihilator algebras.

1. Let 21 be any semi-simple Banach algebra which contains minimal one-
sided ideals. If 23 is the closure of the socle of 21 then 23 is a modular annihilator
algebra. Let {ex: X e A} be the family of all primitive idempotents of 21. We
may easily show that r(2l(l -ex)) * (0)(l 6 A) and n{2I(l -ex):X e A} = /(23).
In particular, if /(23) = (0), then 21 is a modular annihilator algebra.

2. Any primitive complex Banach algebra with minimal one-sided ideals is
a modular annihilator algebra. This fact follows easily from (6), Theorem
2.4.12.

3. Given any Banach space X, 23(X), the Banach algebra of all bounded
linear operators on X, is a modular annihilator algebra. (In this case we may
even take A' to be a real Banach space and so 23(Ar) a real Banach algebra.)
The closure of the socle of 23(A') is of course ^(X, X', ( , ) ) where X' is the
Banach space of all continuous linear functionals on X and ( , ) is the natural
bilinear form o n l x A".

4. Let 3(X) denote the subalgebra of 23(Ar) consisting of all inessential
operators on X (see (4)). Since 3(Ar)/g(Ar, A", ( , )) is a radical algebra, 3(A-)
is a modular annihilator algebra with r(L) # (0) for each maximal modular
left ideal L of 3(A"). Further 3(A") is the largest subalgebra of 23(Ar) with this
property.

3. B* modular annihilator algebras with dense socle
The first result of this section is stated in the notation of (2). The proof is

a simple extension of the methods of Theorems 3, 4 and 6 of (2).

Theorem 5. Let 21 be a B* modular annihilator algebra with dense socle.
Then 21 has minimal norm and is isometrically isomorphic with the B(co) sum
of its minimal-closed two-sided ideals, each of which satisfies the B* condition.

We recall from (3) that if (X, Y, < , » are Banach spaces in normed duality,
then there are two natural mappings x->%, y^>$ from X into Y', Y into A"
respectively given by

Theorem 6. Let 21 be a topologically simple B* modular annihilator algebra.
Then there is a pair {X, Y, < , » of Banach spaces in normed duality such that

(i) x->£, y->y are isometries,

(ii) 21 is isometrically isomorphic with <5(Ar, Y, < , » .
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94 J. DUNCAN

Proof. Let a-*Ta be the dual representation of 91 on (X, Y, < , » given by
Theorem 4. Since 21 has minimal norm it follows from Theorem 4 (i) that

17; | = | T ; | = || a || (0 6 so-

Thus the image of % under a-*Ta is closed in ©(A', Y, < , » and so must be
, Y, < , » by Theorem 4 (ii). Further, for each x e X, y e Y we have

I so that

lUIIIUMI = 11*1111*11 (xeX,yeY).
Hence there exists k > 0 such that

| |* | | = A: II* II ( x e X ) ,

II J> II = k || j>|l (y e 7 ) .

Now consider the pair (X, ¥, ( ,)) of Banach spaces in normed duality. We
have for each x e X

sup{|(x, j>)|: || j) || ^ 1} = A:"1 sup{|<x, fcy>|: || fry || ^ 1}

= fc"1 II * II
= II x ||.

Condition (i) is now satisfied for the new pair (X, 9, ( ,)). Since also

the proof is now complete.

Remark. In particular we may again take our pair of the form (L, K, < , »
with L, K minimal left, right ideals respectively and /->?, k^>k isometries. To
see this, choose x0 e X, y0 e Y with || x0 || = || y0 || = 1. Let L be the minimal
left ideal of 91 isometrically isomorphic with {x®yQ: x e X}, and let K be the
minimal right ideal of % isometrically isomorphic with {xo®y: ye Y}. Since

= I I * IIII . P o l l = 11*11 ( x e X ) ,

L is isometrically isomorphic with X. Similarly K is isometrically isomorphic
with Y. If < , > is the induced bilinear form on L x K, then we have /-»•?, k—>£
isometries for the pair (L, K, < , » .

Let {E^: X e A} be any family of Banach spaces. For 1 ^ p< oo we denote
by T.(P){EX: l e A } the set of all functions / on A such that fk e £A(A e A) and

11/11 =(£{11A II": AeA)^<co.
We denote by l(m){Ex: A e A} the set of all functions / on A such that
fx e EX(A e A) and

11/11 = sup{H/, ||: AeA}<co.

It is routine to verify that for 1 ^ p g oo, I.(p){Ex: A e A} is a Banach space
(with addition and scalar multiplication defined pointwise).
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Proposition 1. For each A e A let (Xx, Yx, < , >A) be a pair of Banach spaces
in normed duality. Suppose that the bounds Mx satisfy M = sup{Ml: A eA} <oo.
Let X = S ( 1 ) { ^ : A e A}, Y = Z(co){Yx: A e A} and

<x, j> = 2{<^, ^ > , : A e A} (x e X, y e Y).

Then (X, Y, < , » are Banach spaces in normed duality. If, further, for each
A e A, xx->$x, yx^Px are isometries, then x-*x, j->j) are isometries.

Proof. < , > is non-degenerate and bilinear since each < , } x has these
properties. Further, for each x e X, ye Y,

xxMyA-- A 6 A}

Therefore (X, Y, < , » are Banach spaces in normed duality.

Suppose now that xx-*xx, yx->$x are isometries for each A e A, so that

I <xx, yx>, \^\\xx || || yx || (x , e Xx, yx e Yx).

Then for each y e Y
lip || =sup{|<x,.y>|: | |x | | g 1}

J 11*11 £ 1}

S \\y\l
Given e>0, there exists Ao 6 A such that || y || -\z g || y,_0 ||. Further there
exists xXo 6 XXo such that || xAo || = 1 and || yXo || ~ie ^ |<xAo, jAo>|. Define x
on A by

* 10 (A # Ao).
Then x e JST, || x || = 1 and || ̂  | | - e g |<x, j> | . It follows that y^-p is an
isometry, and similarly x->x is an isometry.

Theorem 7. Le/ % be a modular annihilator algebra with dense socle. Then
there is a faithful dual representation a-*Ta of 91 on some pair (X, Y, < , » such
that

0) lir.ll ^11 a IKaeSO,
(ii) if A is the image of % under a^Ta then A^f&X, Y, < , » .

If, further, ?I is a B* algebra then we may choose (X, Y, < , » such that
x->x, y-*P are isometries and a-+Ta, a-*T* are isometries.

Proof. Let 9I0 be the least subalgebra of 31 containing the family {Ix: A 6 A}
of minimal-closed two-sided ideals of % so that we have 51Q = 21. Let ix~>Tix

be the dual representation of Ix on (Xx, Yx, < , >,i) as given in Remark (2) after
Theorem 4. Note that we may suppose that each < , >A has bound 1, for if
< , >;

 n a s bound Mx we simply replace < , >̂  by the non-degenerate bilinear
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96 J. DUNCAN

form Mx
l(_,}x. Let (X, Y, < , » be the pair of Banach spaces in normed

duality defined in Proposition 1.
Let ae 9I0 so that a = al + a2 + ---+an where ateIXl (1 ^ / ^ ri). Note

that a^j = 0 (/ # 7). Define Ta on A' by

/ " x ' ' . (A = x" l = '! = ")
\0 (otherwise).

Then To is linear on X and we have

II ?> I K E 1 1 ^ , I

i = 1

= t \\ xXl \\ sap
i = 1

^ II«IIII * li-

l t follows that Ta e 93(Z) and | Ta \ ^ || a \\ {a e 9I0). Define Sa on Y by

(Say)x ^Q (otherwise).

Arguing as above we obtain Sa e 93(7) and | Sa | ^ || a \\ (a e 9I0). For each
x e X, y e 7 we have

•(Tax, yy = 2 J (Ta{xXj, yXiyXi = /_, (,xXi, Ta yXtyx.
i = 1 i = 1

= <x, Sayy,
so that Sa = T* (a e 9I0).

Now extend a-*Ta, a-+Sa by continuity from 9T0 to 91. This gives a dual
representation a-*Ta of 91 on (X, 7, < , » satisfying condition (i). Further
a->Ta is faithful. Otherwise, the kernel would contain a primitive idempotent
ex belonging to some Xx and this is clearly impossible since | Te^ | = || ex ||.
Suppose that i e Ix corresponds to an operator on Xx of the form xx®yx. Then
clearly Tt e F(X, Y, < , » . Since a->Ta is a continuous isomorphism we now
have T; e ^(X, Y, < , » (i e Ix), from which we obtain Ta e

 I%(X, 7, < , »
(a e 9T) so that condition (ii) holds.

Suppose now that 91 is a B* algebra. By Theorem 6 we may choose each
(̂ u> Yx, < , yx) so that xx-*xx, yx->$x a r e isometries. By Proposition 1 x->x,
y->P are isometries. Finally it follows from (i) and Theorem 5 that a-*Ta

a-^T* are isometries.
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We remark that the inclusion F(X, Y, < , » c 4 holds if and only if 91 is
topologically simple. We also point out that there are many possible choices
of underlying pairs in duality. For example we might take X = lSp\Xk: I e A},
Y = ZM{YX: X e A}, <x, y> = S{<xA, yx\: 1 e A}, wherep> 1 and

p-'+q-1 = 1.

In the case when 91 is not topologically simple there remains the problem of
determining the " best possible " underlying pair in duality.

The remainder of this section is concerned with the description of the closed
modular one-sided ideals of B* modular annihilator algebras with dense socle.
For this we need some notation and a preliminary result.

Let (X, Y, < , » be a pair of Banach spaces in normed duality. Given
E<= X, Fc Y we define

E° = {y: <*,;>> = 0 ( « £ ) } ,

°F = {x: <x,j> = 0 (ysF)}.

Given Te %(X) we define
R(T) = {Tx: xeX},
N(T) = {x: Tx = 0}.

Proposition 2. Let (X, Y, < , » be Banach spaces in normed duality such that
*-».£, y-+p are isometries. Let E e 'S(X) be such that E, E* are compact and 1
is an eigenvalue for E. Then

R(E*-I*) = N(E-J)°.

Proof. We shall identify Y with ¥ and thus take the bilinear form as the
natural form ( , ) . Since E is compact with eigenvalue 1 we have

dim (N(E-I)) = n

where 0<«<oo. Since E* is compact we have that R(E* — I*) is norm closed
and codim {R(E*— /*)) is finite, say m. Moreover we have m ^ n, since it is
trivial that

R(E*-I*)cN(E-I)°.

Suppose that m = n+p with p 2: 1. Let (£* — /*)' denote the usual adjoint
of E* — I* on Y', and let us agree to identify X with X. It is now trivial to verify
that (E* — I*)' is an extension of E— I and so

E*'XcX.
Moreover we have

dim (N((E*-/*)')) = codim (/?(£*-/*)) = n+p.

It follows that there exist linearly independent vectors uu u2, ..., up in Y'^X
such that

E*'UJ = UJ 0 = 1 , 2 , . . . , p ) .

Now let F be the restriction of E*' to the subspace of Y' generated by A1 and
{uj-. j = 1, 2, ..., p}, and let P be the spectral projection for F at 1. We then
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98 J. DUNCAN

have that F has an adjoint on Y (E* in fact) and

F = FP+F(I-P)

where (I-P)Xc X. It follows that

F= P+E(I-P)

and thereafter that F— E = Q where Q is of the form

Q= t UJ®<PJ
j = i

for non-zero <f>j e Y. Since FXc=. X we must have QXc X. But

Qx= t (x,<t>j>j
j = i

and so QXa Xiiand only if <pj = 0(j = 1, 2, ...,p). This contradiction shows
that codim (J?(£* —/*)) = « and we therefore conclude that

R(E*-I*) = N(E-I)°.

Remark. The above result is well known for the case {X, X', ( , )). It may
even be true for an arbitrary pair of Banach spaces in normed duality.

Theorem 8. Let 91 be a topologically simple B* modular annihilator algebra.
Given a proper closed modular left ideal L of 91 we have

(i) L is the intersection oj a finite number of maximal modular left ideals,

(ii) there exists p e 91 such that p2 = p and L = 91(1 — p),

(iii) L = Kr{D>).

A similar result holds for the proper closed modular right ideals.

Proof. It is clearly sufficient to make the proof for left ideals. In view of
Theorem 6 we shall identify 91 with an algebra of the form %(X, Y, < , » where
(A', Y, < , » are Banach spaces in normed duality such that x-*x and j-»j> are
isometries. Let L be a proper closed modular left ideal of 91 with modular
identity E. Let M be the closure of the subspace of Y generated by

{T*y: yeY,TsL}.

By (6) Corollary (2.4.19) we have that L contains every operator of finite rank
whose adjoint has range contained in M.

We show first that °M # (0). Indeed we have r(L) # (0) so that r{L)
contains operators of rank one. Therefore there exists non-zero xoe X such
that Tx0 = 0 (TeL). It follows that

<x0 !r*7> = 0 (yeY,TeL)

and so x0 e °M. Since E is a modular identity for L we have that

x®y—x®yEsL (xeX,yeY).

Choose x # 0 and we obtain R{E* — 7*)<=M. Since E is compact N(E—1) is
f̂inite dimensional. Let xu x2, ••., xn be a basis for N(E—I). By (6), Lemma
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(2.4.9) we may choose yu y2 yn e Y such that

<*,-, yj> = S'j.

n

Now let P = Y, xj®yj s o that Pis a projection with range N(E—I). We shall

show that P is a modular identity for L. Since the operators of rank one
generate 21 it is sufficient to show that

x®y-x®yP e L ( x e l j e T ) .

For this it is sufficient to show that R(P* — I*)cM. Applying Proposition 2
twice we obtain

R(P*-I*) = N(P-I)0 = N(E-I)° = R(E*-I*)czM.

We now have

«(l-P)cLc{r: T*YcM} = {T: Tx} = 0(j = 1, 2, ..., «)}
)

since P2 = P. It follows that

L = 51(1 -/>) = {J: 7x,. = 0(j = 1, 2, ..., «)}

and the result is clear.

Remark. It is in fact clear that the above result holds for any topologically
simple modular annihilator algebra whose underlying pair (X, Y, < , » satisfies
the condition that x^x, y->$ are bicontinuous. We conjecture that the result
holds for all topologically simple modular annihilator algebras.

Proposition 3. Let "H be a B* modular annihilator algebra with dense socle,
let / j , I2 ,-••,/„ be minimal-closed two-sided ideals of % and letI = Il@I2@...@In.
Then % = /©r(/).

Proof. Let 2I0 = I@r{I). Then r(3I0) = r(I)nr(r(I)) = (0) and so 21 "̂ = %
by Theorem 2. We have that ^ACO is isomorphic with / and is a normed
algebra under the usual infimum norm. Transfer this infimum norm to / and
we obtain ||[i]|| ^ || / \\(iel). Since % is the .B(oo) sum of its minimal-closed
two-sided ideals we have that / is closed. It is proved in (7) that / is a B*
algebra and thus since / is a modular annihilator algebra with dense socle, /
has minimal norm. We thus have ||[i]|| = || i\\(iel). Thus ?I0/r(7) is a
Banach algebra under the infimum norm. We conclude that 2I0 is closed in 21
and so 3I0 = 31.

Theorem 9. Let % be a B* modular annihilator algebra with dense socle.
Then 31 is modular dual.

Proof. As in Theorem 8 we shall simply consider the left ideals of "21. Let
{Ix: X e A} be the family of all the minimal-closed two-sided ideals of $1. Let
L be any closed modular left ideal of 31. For each X e A let Lx = Lrilx. Then
Lx is a closed left ideal of Ix. Since L is modular, there exists e e 21 such that

— e ) c t . By Proposition 3 we may write e = ix+jx where ixe Ix and
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Jx^r(h)- Thus
h(l-tt<=h{l-e) + Idx = 7A(1 -e)cLn/A = Lx,

so that Lx is modular. If 7_A is proper, we have by Theorem 8 that Lx = Ix(l —px)
where px e Ix and p\ = px. If Lx = Ix, then the same is trivially true with
Px = 0.

We show next that L = (£{LA: A e A}) ~. I t is clear that (L{LX: A e A})" c L.
Now let / e 7,. Given any minimal-closed two-sided ideals Iu I2, ••.,!„ we have
by Proposition 3 that

/ = ix+i2 + ...+in + x

where xer(7), / = 71©72©...©7n. Since 91 is isometrically isomorphic with
the 7?(oo) sum of {Ix: A e A}, given e>0 we may choose the above elements ir

such that || x \\ <e. We show below that each ir eLr\Ir and it will then follow
that / e (L{LX: A e A}) ". We have

U = 7 r / c l n / r = 7,(1 -p r )

and so Irirprlr = (0). This implies irprlr = (0) (since 7r is semi-simple) and so
i, 6 7r(l -^ r ) = in7 r .

We shall denote left and right annihilators in Ix by lx and r \ We observe
that r(L)nIx = r\Lx). For, if x e Ix and Lx = (0), then 7,Ax = (0) so that
x e r(Lx)nIx and thus x e r\Lx). Conversely, if x 6 r\Lx) then r(/Jx = (0)
and Lxx = (0). Since LczLx®r{Ix), we have Xx = (0) and so x e r(L)nIx. By
arguing as above we further obtain r(L) = r^(ZA)@(r(L)nr(7A)). Thus

Since l(r\Lx))^Ix = l\r\Lx)) and /(r(L)nr(7A»3 7/l it follows that

If 7_A = 7A, then clearly l\r\Lx)) = Lx. If LA is proper then l\r\Lx)) = Lx by
Theorem 8. Finally, since l{r{L)) is also a closed modular left ideal,

: XeA})'

A: A e A})"
= L.

The proof is now complete.

4. The B* condition and Banach spaces in normed duality
Let (X, Y, < , » be Banach spaces in normed duality and let x->£, y->y be

the associated natural mappings. It is remarked in (3) that we may have both
the mappings x-*5t, y-*y~ bicontinuous, or only one bicontinuous, or neither
bicontinuous. We show here how the condition that both mappings be
bicontinuous is related to the B* condition on the associated algebra

Y, < , » .
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Theorem 10. Let (X, Y, < , » be Banach spaces in normed duality. If x->x
and y^p are both isometries, then %(X, Y, < , » is a B* algebra. Conversely, if
5(Ar, Y, < , » is a B* algebra, then there are equivalent norms on X and Y for
which JC->£, y-*$ are isometries.

Proof. Suppose that x-*x, y-*$ are isometries. Then | T* \ ^ | T | and so
|| T || = | T\(Te %(X, Y, < , »). Let Te %(X, Y, < , » with | T \ = 1 and
suppose 0 < £ < 1. Then there exists x € X such that || x || = 1 and

l - i £ g || Tx-1) g 1.

Since || Tx || = || Tx ||, there exists ye Y such that || y || = 1 and

1 - 8 £ <Tx,yy^ 1.

Let T# = x®y so that \T# \ = \\x\\\\y \\ = \\ x \\\\y\\ = 1. Fur ther ,
](7T#)" | = <Jx, yy~lTx®y and hence

^ ( l - e ) n ( n = 1,2,...),

so that %(X, Y, < , » is a B# algebra.

The converse follows simply from the argument used in Theorem 6.
We point out that it is not difficult to extend the above theorem to the case

in which JC->JC, y^>y are only bicontinuous. For this we need a weakened B*
condition. We say that %. is a B* algebra if there is a with 0<« ^ 1 such that
given a e 91 with || a \\ = 1 and given e with 0<£<<x there exists a* e % such
that || a* || = 1 and

^ ( a - £ ) " ( « = 1,2,...).

If x->x, y-*p are bicontinuous, then for some a, 5(Ar, Y, < , » is a B* algebra.
Conversely, if ^(X, Y, < , » is a B* algebra, then x->x, y->p are bicontinuous.
The proof of these statements is similar to the proof of Theorem 10.
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