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Two-dimensional turbulence on a sphere
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Following Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) we undertake a spectral analysis of
a non-divergent flow on a sphere. It is shown that the spherical harmonic energy spectrum
is invariant under rotations of the polar axis of the spherical harmonic system and argued
that a constraint of isotropy would not simplify the analysis but only exclude low-order
modes. The spectral energy equation is derived and it is shown that the viscous term has
a slightly different form than given in previous studies. The relations involving energy
transfer within a triad of modes, which Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) derived
under the condition that energy transfer is restricted to three modes, are derived under
general conditions. These relations show that there are two types of interaction within a
triad. The first type is where the middle mode acts as a source for the two other modes
and the second type is where it acts as a sink. The inequality indicating cascade directions
which was derived by Gkioulekas & Tung (J. Fluid Mech., vol. 576, 2007, pp. 173–189)
in Fourier space under the assumptions of narrow band forcing and stationarity is derived
in spherical harmonic space under the assumption of dominance of first type interactions.
The double cascade theory of Kraichnan (Phys. Fluids, vol. 10, 1967, pp. 1417–1423) is
discussed in the light of the derived equations and it is hypothesised that in flows with
limited scale separation the two cascades may, to a large extent, be produced by the same
triad interactions. Finally, we conclude that the spherical geometry is the optimal test
ground for exploration of two-dimensional turbulence by means of simulations.

Key words: meteorology, turbulence theory

1. Introduction

There are two outstanding papers in the vast literature on two-dimensional turbulence –
the papers by Fjørtoft (1953) and Kraichnan (1967). Fjørtoft (1953) showed that energy
cannot consistently flow in a single direction in wavenumber space, due to the fact that
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there is a second conserved quantity in a two-dimensional non-divergent flow, namely
squared vorticity or enstrophy. Correctly, he predicted that energy on average will flow
from large to small wavenumbers in spherical harmonic space for a two-dimensional flow
on a sphere, meaning that there is an energy transfer from small to large physical scales.
Kraichnan (1967) developed the theory of the double cascade. If a source is injecting
energy in a two-dimensional flow on a plane at spatial scales corresponding to a particular
wavenumber kf , energy will consistently flow in the direction of smaller wavenumbers
and enstrophy in the opposite direction. A constant energy flux range will develop at
wavenumbers smaller than kf , with a Fourier energy spectrum of the form

EF(k) = C|ΠE|2/3k−5/3, (1.1)

where C is a non-dimensional constant and |ΠE| is the upscale energy flux, while a
constant enstrophy flux range will develop at larger wavenumbers, with an energy spectrum
of the form

EF(k) = κΠ
2/3
E k−3, (1.2)

where κ is a non-dimensional constant and ΠE is the downscale enstrophy flux. In a
subsequent paper Kraichnan (1971) suggested that (1.2) also should contain a logarithmic
correction. Essential parts of the theory have been confirmed in experiments (e.g. Paret &
Tabeling 1997; Kellay & Goldburg 2002) and numerical simulations (e.g. Boffetta 2007;
Boffetta & Musacchio 2010). Energy flows upscale and enstrophy flows downscale relative
to a source and the energy spectrum often develops close to the predictions, although
the k−3 spectrum in the enstrophy cascade range only can be reproduced in simulations
with extremely high resolution (Lindborg & Vallgren 2010). For an excellent review on
experiments and simulations, see Boffetta & Ecke (2012). One of the most fascinating
predictions made by Kraichnan (1967) is that a ‘condensate’ will be formed when the
upscale energy cascade reaches the lowest-order wavenumber mode k0, corresponding
to the physical length scale of the domain confinement. When this happens, the flow
undergoes a transition from a chaotic to a more ordered state – a prediction that has been
verified by numerical simulations (Smith & Yakhot 1994; Chertkov et al. 2007).

There are several unresolved issues connected to the double cascade theory. In addition
to the studies that seem to confirm the theory, there are a number of numerical studies
(Boure 1994; Danilov & Gurarie 2001; Tran & Bowman 2004; Scott 2007; Vallgren 2011)
that display conflicting results. In all these simulations, the spectrum is considerably
steeper than k−5/3 and in all simulations a multitude of coherent vortices are formed in
the upscale cascade range. A more complete review of these results is given by Burgess
& Scott (2017). There is also an issue regarding locality of triad interactions. Kraichnan
(1967) pointed out that his theory requires that the cascades are sufficiently local in
Fourier space and raised concerns as to whether this is true for the enstrophy cascade.
Numerical studies (e.g. Ohkitani 1990; Maltrud & Vallis 1991) have confirmed that the
enstrophy cascade is, indeed, dominated by highly non-local interactions. There is also
numerical evidence (Vallgren 2011) that the upscale energy cascade is driven by highly
non-local interactions. It is not clear if such a high degree of non-locality as observed in
the simulations is consistent with the double cascade theory. Finally, there are also open
questions related to the condensate hypothesis. Given a forcing wavenumber kf and an
energy injection rate P, at what time does the condensate start to form? Will the condensate
encompass all wavenumbers from k0 to kf as suggested by the simulation by Chertkov et al.
(2007), or just a limited wavenumber band close to k0, as suggested by the simulation of
Smith & Yakhot (1994)?
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Two-dimensional turbulence on a sphere

With few exceptions (e.g. Falkovich & Gaweȩdzki 2014) most theoretical and numerical
studies of two-dimensional turbulence have investigated the standard case of a flow
confined to a plane with double periodic boundary conditions. There are two features
of such a flow that makes it a very attractive object of investigation. First, the Fourier
description is very transparent from an analytical point of view. Second, using the fast
Fourier transform it is relatively easy to design efficient pseudo-spectral codes simulating
such a flow. However, it is no longer extremely demanding to carry out highly resolved
simulations of a flow on a sphere. Quite recently, it has been shown (Wedi, Hamrud &
Mozdzynski 2013) that a fast spherical harmonic transform can be effectively implemented
in a global circulation model. There is also a GPU accelerated version of the slow
transform which is highly competitive (private communication with N. Wedi). This
development has not been matched by a corresponding analytical development. Since the
study of Boer (1983) there have been few advancements of the spectral analysis of a flow
on a sphere. The aim of the present study is to bring the spherical harmonic description to
the same degree of transparency as the Fourier description and thereby pave the way for
studies in which the unresolved issues of two-dimensional turbulence can be investigated
by means of simulations of a flow on a sphere.

2. Kinetic energy spectrum on a sphere

In turbulence theory, the kinetic energy wavenumber spectrum is often defined as a Fourier
transform of the covariance function of velocity measured at two different points and
an assumption of isotropy is often made to simplify the description. Boer (1983) has
advanced such an approach to the analysis of two-dimensional incompressible turbulence
on a sphere, with the Fourier transform replaced by the spherical harmonic transform.
We will adopt a different approach and argue that the constraint of isotropy does not lead
to any simplifications but only to restrictions. Fortunately, the spherical geometry offers
another attractive mode of description where the spatial mean value over the entire sphere
is the only statistical measure that is used and no assumption of isotropy is invoked.

We let ψ be a real scalar function defined on a sphere with radius a, (ex, ey, ez) the
unit vectors associated with a Cartesian coordinate system with origin at the centre of the
sphere, and (θ, φ) the corresponding polar coordinates, where the z-axis is the polar axis,
θ is the colatitude and φ is the longitude. We expand ψ in spherical harmonics as

ψ(θ, φ) =
∞∑

l=0

ψl(θ, φ), (2.1)

ψl(θ, φ) =
l∑

m=−l

almYm
l (θ, φ), (2.2)

where we have separated the summation into two different equations to emphasise that the
l- and m-numbers have different significance. The spherical harmonics are defined as

Ym
l (θ, φ) =

√
(2l + 1)

(l − m)!
(l + m)!

Pm
l (cos θ)eiφ, (2.3)
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where Pm
l are the associated Legendre functions. They are eigenfunctions of the Laplace

operator and orthogonal with respect to integration over the sphere,

∇2Ym
l = − l(l + 1)

a2 Ym
l , (2.4)

1
4π

∫
Ym

l Yp
s
∗ dΩ = δlsδmp, (2.5)

and have the symmetry property

Y−m
l = (−1)mYm

l
∗
, (2.6)

where Ω is solid angle and superscript ∗ denotes the complex conjugate. The fact that ψ
is real imposes the constraint

al(−m) = (−1)malm
∗, (2.7)

on the expansion coefficients for ψ , implying that ψl(θ, φ) also is a real function.
As pointed out by Tang & Orszag (1978), the l-number is more significant than the

m-number since it is only l that enters into the eigenvalue of the Laplace operator.
The significance of the l-number is more clearly revealed by using a result from group
representation theory to show that ψl(θ, φ) is invariant under a coordinate transformation
between systems with different polar axes. A new Cartesian coordinate system is defined
as R[(ex, ey, ez)] = (ex′, ey′, ez′), where R(α, β, γ ) is a rotation defined by the Euler
angles (α, β, γ ). We let (θ ′, φ′) be the polar coordinates corresponding to the primed
system, with the z′-axis being the new polar axis. For a given R(α, β, γ ) there is a
coordinate transformation (θ, φ) → (θ ′, φ′), meaning that (θ ′, φ′) and (θ, φ) are two pairs
of coordinates referring to the same points on the sphere. In the primed system we can
expand ψ as

ψ(θ ′, φ′) =
∞∑

l=0

ψ ′
l (θ

′, φ′), (2.8)

ψ ′
l (θ

′, φ′) =
l∑

p=−l

blpYp
l (θ

′, φ′). (2.9)

A powerful result of group representation theory (see chapter 15 in Wigner 1959) states
that

Yp
l (θ

′, φ′) =
l∑

m=−l

D(l)pmYm
l (θ, φ), (2.10)

Ym
l (θ, φ) =

l∑
p=−l

D(l)pm
∗
Yp

l (θ
′, φ′), (2.11)

where D(l)pm(α, β, γ ) is a unitary matrix of order 2l + 1, the so called ‘Wigner D-matrix’,
which is an irreducible representation of the SO(3) group. Using (2.10) and orthogonality
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we find

blp = 1
4π

∫
Yp

l (θ
′, φ′)∗ψ dΩ

= 1
4π

∫ l∑
m=−l

D(l)pm
∗
Ym

l (θ, φ)
∗ψ dΩ =

l∑
m=−l

almD(l)pm
∗
. (2.12)

Substituting (2.12) into (2.9) and using (2.11) we obtain

ψ ′
l (θ

′, φ′) =
l∑

p=−l

l∑
m=−l

almD(l)pm
∗
Yp

l (θ
′, φ′) =

l∑
m=−l

almYm
l (θ, φ) = ψl(θ, φ). (2.13)

Since (θ, φ) and (θ ′, φ′) are two pairs of coordinates referring to the same points on the
sphere, (2.13) shows that ψ ′

l is exactly the same function as ψl. In other words, for each l,
ψl is a coordinate invariant scalar field.

We will now let ψ play the role of a streamfunction. A standard way of doing this
would be to define the velocity field as u = −er × ∇ψ , where er is the radial unit vector.
However, since er is not an intrinsic vector of the geometry such an approach would lead
us into complications when differentiation is carried out on u. We will adopt another
approach, also used by Eriksson & Nordmark (2020), which greatly simplifies differential
operations, but comes with a price – the introduction of a notation which is rarely used in
fluid mechanics. We let ∇ denote the surface gradient operator acting along the tangent of
the sphere and � the so-called ‘Hodge star operator’ (see e.g. Bishop & Goldberg 1980;
Schutz 1980) which produces the Hodge dual of the element that it is operating on. In our
case the star is simply rotating a tangent vector on the sphere counter-clockwise a right
angle about er. Equipped with these tools we define the velocity field as

u ≡ �∇ψ, (2.14)

ensuring that it is divergence free, ∇ · u = ∇ · �∇ψ = 0. With (2.14) we have the opposite
sign convention for ψ as compared with the standard given by u = −er × ∇ψ . The
operational rules including {∇, �, ·} are given in Appendix A. The advantage of the
notation becomes clear when the vorticity field is to be defined. Instead of acting on u
with the curl operator and then project on the radial unit vector – a procedure that would
bring us into trouble (see Krishnamurthy 2019) – we define the vorticity as the divergence
of the rotated velocity, that is

ω ≡ ∇ · �u = ∇ · ��∇ψ = −∇2ψ, (2.15)

where we have used �� = −1. Just as in the case of ψ , the sign convention of ω,
as defined in (2.15), will be the opposite compared with the standard. Readers who
feel uncomfortable with this can restore the standard sign conventions of ψ and ω by
introducing a non-standard sign convention of the Hodge star by letting it perform a
clockwise instead of a counter-clockwise rotation. That (2.15) is an appropriate definition
of vorticity on the sphere is clear from the fact that it permits us to calculate the circulation
along any closed curve on the sphere as the corresponding surface integral of ω, in
accordance with Stokes’ theorem.

933 A60-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1130


E. Lindborg and A. Nordmark

The velocity and vorticity fields can be expanded as

u =
∞∑

l=1

ul, ω =
∞∑

l=1

ωl, (2.16a,b)

where

ul = �∇ψl, ωl = l(l + 1)
a2 ψl. (2.17a,b)

For each l, ul is a coordinate invariant vector field and ωl is a coordinate invariant scalar
field. That a non-divergent velocity field on a sphere can be completely decomposed as
in (2.16a,b) follows from the more general result that vector spherical harmonics form a
complete set (Freeden & Gutting 2008).

The mean kinetic energy and enstrophy over the sphere can now be expressed as

Ē = 1
4π

∫
1
2

u · u dΩ =
∞∑

l=1

E(l), (2.18)

Ē = 1
4π

∫
1
2
ω2 dΩ =

∞∑
l=1

l(l + 1)
a2 E(l), (2.19)

where

E(l) = l(l + 1)
2a2

l∑
m=−l

alma∗
lm = l(l + 1)

2a2

l∑
m=−l

blmb∗
lm, (2.20)

is the kinetic energy spectrum. From (2.20) it is clear that E(l) is invariant under coordinate
transformations between systems with different polar axes. It should be emphasised that
the result is derived without making any assumption regarding the structure of the flow
field. For example, the flow may consist of a single localised structure on the sphere, such
as a vortex or an equatorial jet. Energy spectra calculated using spherical harmonic systems
whose polar axes are oriented differently relative to the structure will all be equal.

2.1. Isotropy
Since the invariance of E(l) with respect to rotations of the polar axis is a property
that is satisfied for any flow field, isotropy must constrain the energy distribution even
further. The statistics of an isotropic field should contain no information on the direction
of the polar axis. Strictly speaking, isotropy therefore implies that the energy distribution
among modes with different m and the same l also must be invariant under rotations.
It is easy to see that there is no such distribution for a finite l and that isotropy, in a
strict sense, therefore can be fulfilled only in the limit l → ∞. This is analogous to
a flow field on a plane with periodic boundary conditions, for which isotropy can be
only approximately fulfilled for finite wavenumbers. Likewise, for large but finite l, say
l > 100, the distribution of energy among modes with the same l and different m may
become approximately invariant under rotations, with increasing accuracy for larger and
larger l. According to the analysis of the two-point covariance function by Boer (1983)
isotropy implies that the variance of the expansion coefficient should be independent of
m. Expressed in a different language kinetic energy should be equipartitioned among
m-modes with the same l. Intuitively, it is quite clear that this must be the case. In a
neighbourhood of a pole, we can make a flat Earth approximation and pass over to plane
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polar coordinates, as long as curvature effects are small. The θ -coordinate of the spherical
description will transform to a radial coordinate r = |θ |a, while φ retains the role of an
azimuth. Looking at the flow field from the pole, isotropy means statistical independence
of the azimuthal coordinate for a fixed radial coordinate, which in spectral space translates
to independence of m for a fixed l. Since the polar axis can be chosen freely, this reasoning
can be applied generally.

It is evident that isotropy cannot be even approximately fulfilled for low-order modes.
Consider the l = 1 mode. With reference to a specific coordinate system, (ex, ey, ez), we
have

ψ1(θ, φ) = a1(−1)Y−1
1 (θ, φ)+ a10Y0

1 (θ, φ)+ a11Y1
1 (θ, φ). (2.21)

By (2.10) there exists another coordinate system, (ex′, ey′, ez′), where

ψ ′
1(θ

′, φ′) = b10Y0
1 (θ

′, φ′) = b10
√

3 cos θ ′, (2.22)

with b1(−1) = b11 = 0. The corresponding velocity field can be written as

u1 = b10

√
3

a
sin θ ′eφ′, (2.23)

which is a solid body rotation around the z′-axis. It is quite clear that ψ1 must be put to
zero under the constraint of isotropy, and so must ψ2 and ψ3 and so forth up to a certain
l for which it may be assumed that isotropy is approximately fulfilled. The constraint of
isotropy would thus force us to refrain from studying large scale dynamics and for this
reason we deem it as too restrictive.

3. The spectral energy equation

The incompressible Navier–Stokes equations in a rotating frame of reference on a sphere
with radius a can be written as

∂u
∂t

= −u · ∇u − ∇( p/ρ)− f � u + ν
(
�u + u

a2

)
, (3.1)

where ∇ is the gradient operator acting along the tangent of the sphere, f = 2Ω · er is the
Coriolis parameter, Ω is the rotation vector and

�u = − �∇(∇ · �u)+ u
a2 , (3.2)

is the vector Laplace of u (see Appendix B). The centrifugal force is included in the
pressure term. Compared with the standard form of the Navier–Stokes, there is an extra
metric term, νu/a2, on the right-hand side of (3.1). In Appendix B we show how this
term arises from the spherical geometry by using tensor analysis on a two-dimensional
manifold. At the request of one of the reviewers we also show in Appendix C how the
viscous term in (3.1) can be derived from the expression of the viscous term of the
three-dimensional equation by considering a fluid layer within a thin spherical shell with
stress free boundaries.

The equation for E(l) can be derived by taking the scalar product between each term in
(3.1) and ul and averaging over the sphere. In this way, we obtain the time derivative of
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E(l) from the left-hand side of (3.1),

1
4π

∫
ul ·

∞∑
n=1

∂un

∂t
dΩ = 1

4π

∫
ul · ∂ul

∂t
dΩ = ∂E(l)

∂t
. (3.3)

The spectral term emanating from the nonlinear term in (3.1) we name the transfer term

T(l) = − 1
4π

∫
(u · ∇u) · ul dΩ, (3.4)

in accordance with standard vocabulary in isotropic turbulence theory. Energy
conservation is expressed as

∞∑
l=1

T(l) = − 1
4π

∫
∇ ·

(
u

1
2

u · u
)

dΩ = 0. (3.5)

Enstrophy is conserved, because vorticity is conserved at a fluid particle. Using the rules
in Appendix A we have

u · ∇u = −(∇ · �u) � u + 1
2∇(u · u), (3.6)

∇ · �(u · ∇u) = −∇ · �[(∇ · �u) � u]

= u · ∇(∇ · �u)+ (∇ · �u)∇ · u = u · ∇ω. (3.7)

Enstrophy conservation imposes a constraint on T(l)which can be derived in the following
way:

T(l) = − 1
4π

∫
(u · ∇u) · �∇ψl dΩ = 1

4π

∫
∇ · [�(u · ∇u)ψl] dΩ

− 1
4π

∫
∇ · �(u · ∇u)ψl dΩ = − a2

l(l + 1)
1

4π

∫
(u · ∇ω)ωl dΩ, (3.8)

where we have used (3.7), (2.17a,b) and the rules in Appendix A. Multiplying both sides
by l(l + 1) and summing over l we find

∞∑
l=1

l(l + 1)T(l) = − a2

4π

∫
∇ ·

(
u

1
2
ω2
)

dΩ = 0, (3.9)

which is the expression for enstrophy conservation.
The contribution from the pressure term to the spectral energy equation is trivially zero,

− 1
4π

∫
∇( p/ρ) · ul dΩ = − 1

4π

∫
∇ · ( pul/ρ) dΩ = 0. (3.10)

As found in previous investigations based on the vorticity equation (e.g. Tang & Orszag
1978) the Coriolis term does not make any contribution to the spectral energy equation.
We confirm this by direct integration in the system whose polar axis coincides with the
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rotation axis,

− 1
4π

∫
f � u · �∇ψl dΩ = − 1

4π

∫
∇ · (ufψl) dΩ

+ 1
4π

∫
∇f · �∇ψψl dΩ = − 1

4π

∫
2|Ω| sin θeθ ·

(
−∂φψeθ

a sin θ
+ ∂θψeφ

a

)
ψl dΩ

= 1
4πa

∫
2|Ω|

∞∑
n=1

∂ψn

∂φ
ψl dΩ = 0. (3.11)

That (3.11) is zero can be seen as follows. For n = l, useψl∂φψl = 0.5∂φ(ψ2
l ) and integrate

in φ. For n /= l, use ∂φYm
n = imYm

n and orthogonality of the spherical harmonics. That the
Coriolis term does not contribute to the spectral energy equation can also be understood
from the fact that it may be incorporated into the l = 1 mode, by transforming the equation
back to a non-rotating frame of reference. The mean angular momentum with respect to
the polar axis of a chosen spherical harmonic system can be calculated as

Lz = 1
4π

∫ 2π

0

∫ π

0

√
3 sin3 θa10 dθ dφ = 2√

3
a10, (3.12)

where the contributions from all other modes vanish by Rodrigues’ formula. Clearly, in
the absence of drag, Lz is a conserved quantity and a10 is therefore conserved and so is u1,
since the mean angular momentum with respect to any axis is conserved.

The calculation of the contribution from the viscous term is straightforward. First,

�ul = − �∇(∇ · ��∇ψl)+ ul

a2 = �∇(∇2ψl)+ ul

a2

= − l(l + 1)
a2 �∇ψl + ul

a2 = − [l(l + 1)− 1]
a2 ul. (3.13)

Then, using this expression we find that the contribution from the viscous term in (3.1) to
the spectral energy equation is

− 2ν[l(l + 1)− 2]
a2 E(l). (3.14)

Previous studies (e.g. Fjørtoft 1953; Tang & Orszag 1978; Boer 1983) gave an expression of
the form −2νl(l + 1)E(l)/a2. That this cannot be completely accurate can be understood
from the fact that there can be no viscous dissipation in the l = 1 mode.

To summarise, we have derived the spectral energy equation on a sphere
∂E(l)
∂t

= T(l)− 2ν[l(l + 1)− 2]
a2 E(l), (3.15)

where conservation of angular momentum, energy and enstrophy can be expressed as

T(1) = 0, (3.16)
∞∑

l=2

T(l) = 0, (3.17)

∞∑
l=2

l(l + 1)T(l) = 0. (3.18)

The l = 1 mode represents a stationary solid body rotation. A linear Ekman drag force,
−αu, added to the right-hand side of (3.1), modelling the interaction between the fluid and
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E. Lindborg and A. Nordmark

a solid ground, would give rise to a term −2αE(l) on the right-hand side of (3.15). Such
a term would act on all modes, including the l = 1 mode, attenuating the mean angular
momentum of the fluid. The (3.15) is similar to the corresponding equation for the energy
spectrum of two-dimensional homogeneous isotropic turbulence on a plane. An important
difference is that (3.15) has been derived without invoking assumptions of homogeneity
and isotropy.

4. Triad interactions

The transfer term can be written as a sum of interactions involving triad of modes

T(l) = −
∞∑

s=2

∞∑
n=2

1
4π

∫
(us · ∇un) · ul dΩ. (4.1)

Using a formula derived by Gaunt (1929), involving the integral of the product between
three associated Legendre polynomials, Silberman (1954) brilliantly proved that the
nonlinear interaction within a triad of modes, {l, n, s}, is zero, unless

l + n + s = odd integer, (4.2)

|l − n| < s < l + n, (4.3)

where it should be noted that the triangle inequality (4.3) is strict. Below, it will be shown
that the interaction is also zero if any two of {l, n, s} are identical. Fjørtoft (1953) derived
relations involving energy exchanges within a triad under the assumption that energy
exchanges take place only in a single triad, that is at initial time for initial conditions
consisting of only three modes. It will now be shown that his relations hold generally, for
energy exchanges within any triad of modes independently of all other exchanges.

We define the energy transfer from n to l in the interaction involving s as the third mode,
as

TE(s, n, l) = − 1
4π

∫
(us · ∇un) · ul dΩ. (4.4)

The transfer is antisymmetric with respect to interchange of n and l, that is

TE(s, n, l) = −TE(s, l, n), (4.5)

meaning that the gain of l is the loss of n. This follows from

0 =
∫

∇ · (usun · ul) dΩ

=
∫
(us · ∇un) · ul dΩ +

∫
(us · ∇ul) · un dΩ, (4.6)

where we have used ∇ · us = 0. In a similar way we define the transfer of enstrophy from
n to l, in the triad interaction involving s as the third mode, as

TE(s, n, l) = − 1
4π

∫
(us · ∇ωn)ωl dΩ

= − l(l + 1)n(n + 1)
a4

1
4π

∫
�∇ψs · ∇ψnψl dΩ. (4.7)
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Two-dimensional turbulence on a sphere

It is clear that

TE(s, n, l) = −TE(s, l, n), (4.8)

TE(s, s, l) = 0, (4.9)

implying that the transfer is zero if two modes in a triad are identical.
We define the total gain of energy and enstrophy in unit time of mode l at the expense

of modes n and s as

G(l, n, s) = TE(s, n, l)+ TE(n, s, l), (4.10)

H(l, n, s) = TE(s, n, l)+ TE(n, s, l). (4.11)

In the next step we show that

H(l, n, s) = l(l + 1)
a2 G(l, n, s). (4.12)

First, a straightforward calculation gives

H(l, n, s) = − 1
4π

l(l + 1)
a2

∫
(us · ∇ωn + un · ∇ωs)ψl dΩ, (4.13)

where we have used (2.17b). Then, a corresponding calculation gives

G(l, n, s) = − 1
4π

∫
(us · ∇un + un · ∇us) · �∇ψl dΩ

= 1
4π

∫
∇ · [�(us · ∇un + un · ∇us)ψl] − ∇ · �(us · ∇un + un · ∇us)ψl dΩ

= 1
4π

∫
∇ · �[(∇ · �us) � un + (∇ · �un) � us]ψl dΩ

= − 1
4π

∫
(un · ∇ωs + us · ∇ωn)ψl dΩ, (4.14)

where we have used the rules in Appendix A and ∇ · un = ∇ · us = 0. Now, (4.12) follows
from (4.13) and (4.14). Energy and enstrophy conservation follow from (4.5) and (4.8),

G(l, n, s)+ G(n, s, l)+ G(s, l, n) = 0, (4.15)

H(l, n, s)+ H(n, s, l)+ H(s, l, n) = 0. (4.16)

From (4.12) and (4.16) we also have

l(l + 1)G(l, n, s)+ n(n + 1)G(n, s, l)+ s(s + 1)G(s, l, n) = 0. (4.17)

For a triad of modes, {l, n, s}, such that l < n < s, the Fjørtoft (1953) relations now follow
from (4.15) and (4.17),

G(l, n, s)
G(s, l, n)

= s(s + 1)− n(n + 1)
n(n + 1)− l(l + 1)

> 0,

G(n, s, l)
G(l, n, s)

= l(l + l)− s(s + 1)
s(s + 1)− n(n + 1)

< 0,

G(s, l, n)
G(n, s, l)

= n(n − 1)− l(l + 1)
l(l + 1)− s(s + 1)

< 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

The relations (4.18) are analogous to the relations for energy exchanges within a triad,
{k, p, q}, of Fourier modes, derived by Kraichnan (1967, equation (2.7)). Apart from the
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different in notation – our G(l, n, s) corresponds to T(k, p, q) of Kraichnan – the difference
is in the eigenvalue of the Laplace operator, which is k2 in Fourier space and l(l + 1) in
spherical harmonics space.

Nowhere in the derivation of (4.18) have we used that the elementary mode for each l
has been defined as a sum over the contributions from all m, as in (2.16a,b). The relations
(4.18) would therefore hold also for a triad of single spherical harmonic modes. Such
a triad can be specified as {(l,m), (n, p), (s, q)}, corresponding to spherical harmonics
Ym

l , Yp
n and Yq

s . However, the distribution of energy between modes with the same l and
different m depends on the chosen coordinate system and for this reason it appears to be
of limited interest that (4.18) actually hold even though no summation over m is carried
out. A related but more interesting result, is that for a chosen coordinate system there is
no net enstrophy or energy exchange within a triad where all three modes have the same
l. With a slight generalisation of the notation in (4.7) we can define the enstrophy gain of
mode (l,m) at the expense of mode (n, p) in the triad interaction involving (s, q) as the
third mode as

TE [(s, q), (n, p), (l,m)] = − 1
4π

∫
(usq · ∇ωnp)ωlm dΩ

= − l(l + 1)n(n + 1)
a4

1
4π

∫
�∇ψsq · ∇ψnpψlm dΩ. (4.19)

Clearly, we have

TE [(s, q), (l,m), (n, p)] = −TE [(s, q), (n, p), (l,m)], (4.20)

TE [(s, q), (s, p), (l,m)] = −TE [(s, p), (s, q), (l,m)]. (4.21)

The enstrophy gain of mode (l,m) at the expense of the two other modes is

H[(l,m), (s, q), (n, p)] = TE [(s, q), (n, p), (l,m)] + TE [(n, p), (s, q), (l,m)]. (4.22)

It now follows that

H[(l,m), (l, q), (l, p)] = 0, (4.23)

which shows that there is no net enstrophy or energy exchange within a triad where all
three modes have the same l.

5. Vanishing kinetic energy dissipation and cascade directions

Apart from the simultaneous conservation of energy and enstrophy by the nonlinear
term there is a rigorous result which is encapsulating the difference between two- and
three-dimensional turbulence, and that is the vanishing of kinetic energy dissipation in the
limit ν → 0. The mean kinetic energy and enstrophy equations can be written as

dĒ
dt

= −ε, (5.1)

dĒ
dt

= −η, (5.2)

933 A60-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1130


Two-dimensional turbulence on a sphere

where

ε ≡
∞∑

l=2

2ν(l(l + 1)− 2)
a2 E(l), (5.3)

η ≡
∑
l=2

2ν(l(l + 1)− 2)l(l + 1)
a4 E(l), (5.4)

are the mean kinetic dissipation and mean enstrophy dissipation, respectively. We now
have

ε < 2νĒ, (5.5)

implying that there can be no Richardson energy cascade in two-dimensional turbulence.
In order to say something more on energy and enstrophy transfer in wavenumber space

some additional assumption is needed. A deep insight of Fjørtoft (1953) was that the
inequalities (4.18) imply that there are two types of triad interactions. The first type is
where the middle wavenumber n acts as a source for each of the other two modes l and s,
and the second type is where it acts as a sink. He assumed that first type interactions
are dominant and argued that as a consequence more energy will flow upscale than
downscale. As pointed out by Merilees & Warn (1975) his arguments were partly flawed,
since they are based on the assumption that more energy is transferred to the smallest
wavenumber mode l than to the largest wavenumber mode s in a triad interaction, which is
not generally true. Kraichnan (1967) developed the notion of two separated infinitely broad
constant flux ranges – a downscale enstrophy flux range at large wavenumbers where the
energy flux is zero and an upscale energy flux range at small wavenumbers where the
enstrophy flux is zero. In both ranges, first type interactions are dominant, in accordance
with the assumption of Fjørtoft (1953). Most subsequent studies (e.g. Eyink 1996; Tran &
Shepherd 2002; Gkioulekas & Tung 2007) have used an assumption of stationarity in the
analysis of cascade directions, which can be invoked only if some extra terms are added
to (3.1). Usually, the added terms are forcing acting in a narrow wave number band and
dissipation acting at small and large wave numbers. Of particular interest is an inequality
derived by Gkioulekas & Tung (2007) under the assumption of stationarity and forcing
in a wavenumber band [k1, k2]. In Fourier space, the ‘Danilov inequality’, named by
Gkioulekas & Tung (2007) after the researcher who communicated it to them, reads

ΠE(k)− k2ΠE(k) > 0, (5.6)

where ΠE(k) andΠE(k) are the spectral enstrophy and energy fluxes respectively, and k is
the magnitude of the wavenumber vector. As shown by Gkioulekas & Tung (2007) (5.6)
holds for a stationary flow at all wavenumbers outside [k1, k2]. It will now be shown that a
corresponding inequality can be derived in spherical harmonic space under the assumption
of dominance of first type of interactions for which it holds at all wavenumbers.

In spherical harmonic space, we define spectral energy and enstrophy fluxes as

ΠE(k) ≡
∞∑
l=k

T(l) = −
k−1∑
l=2

T(l), (5.7)

a2ΠE(k) ≡
∞∑

l=k

l(l + 1)T(l) = −
k−1∑
l=2

l(l + 1)T(l). (5.8)

There are some basic mathematical facts that deserve to be pointed out. First, it is evident
that the fluxes cannot be completely constant in a range unless T(l) is identically zero in the
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same range. The notion of a constant flux range is therefore an idealisation which should
be adopted with caution. Second, the maxima and minima of ΠE(k) coincide with the
maxima and minima of ΠE(k). If we permit ourselves to think about T(l) as a continuous
function, the maxima and minima of the fluxes are the zeros of T(l).

Following a similar derivation as carried out by Kraichnan (1967) we can use the
conservation and symmetry properties of G(l, n, s) to rewrite the fluxes as

ΠE(k) =
∑

A1(k,l,n,s)

G(s, n, l)−
∑

A2(k,l,n,s)

G(l, n, s), (5.9)

a2ΠE(k) =
∑

A1(k,l,n,s)

s(s + 1)G(s, n, l)−
∑

A2(k,l,n,s)

l(l + 1)G(l, n, s), (5.10)

where

A1(k, l, n, s) = {{l, n, s}; 1 < l < n < k ≤ s < l + n; l + n + s = odd}, (5.11)

A2(k, l, n, s) = {{l, n, s}; 1 < l < k ≤ n < s < l + n; l + n + s = odd}. (5.12)

A detailed derivation of (5.9) is carried out in Appendix D and a derivation of (5.10) can be
carried out in the same way. We note that in the summation over A1, G(s, n, l) is the gain
of the largest mode s and in the summation over A2, G(l, n, s) is the gain of the smallest
wavenumber mode l. If the first type of interaction is dominant for all wavenumbers, the
sums over A1 in (5.9) and (5.10) give positive contributions to the fluxes while the sums
over A2 give negative contributions. For such a flow we will have

a2ΠE(k)− k(k + 1)ΠE(k) ≥ 0, (5.13)

for all k. The inequality (5.13) implies that T(l) must be positive both in the limit of small
and large l. Therefore, T(l) must have at least two maxima, one at small and one at large
l. Assume that there are only two maxima. Then, there is a middle range where T(l) is
negative and has a minimum. If we permit ourselves to think about the fluxes as continuous
functions, they will both have a single zero. The enstrophy flux will be positive at the zero
of the energy flux and the energy flux will be negative at the zero of the enstrophy flux.
With narrow band forcing and a sufficiently large separation of length scales it can also
be shown that the amount of energy which is flowing to the small wavenumber region
is larger than the amount of energy flowing to the large wavenumber region and that the
opposite is true for enstrophy (Eyink 1996; Gkioulekas & Tung 2007).

If the second type of interaction were dominant the opposite inequality

a2ΠE(k)− k(k + 1)ΠE(k) ≤ 0, (5.14)

would hold for all k. In this case, T(l) must be negative in the limit of small as well
as large wavenumbers and have at least two minima. Assume that there are just two
minima. Then there is a middle wavenumber region where T(l) is positive and has a
maximum. Energy and enstrophy will flow from large and small wavenumbers into the
middle region. Even though it is possible that such a transfer function can be generated
for a short period of time from some initial conditions – for example an initial E(l)
having a broad minimum in a middle wavenumber range – it must be highly improbable.
In particular, it seems extremely unlikely that enstrophy would flow from the region of
very large wavenumbers where viscosity is acting into the middle wavenumber region.
Two-dimensional turbulence cannot relax towards a stationary or quasi-stationary state as
long as the transfer is dominated by the second type of interaction.
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Two-dimensional turbulence on a sphere

Thus, it seems that the Fjørtoft (1953) assumption of dominance of the first type of
interaction may be the key to a deeper understanding of the problem of cascade directions.
Whether the assumption can be rooted in some deeper principle is a very interesting
question. Kraichnan (1967) suggested that first type interactions represent ‘a statistical
plausible spreading of the excitation in wave number: out of the middle wave number
into the extremes’. Waleffe (1992) developed a stability argument suggesting that energy
is generally flowing from the mode in which the gain/loss is largest. In two dimensions
this is always the middle mode. In three dimensions, on the other hand, the dominant
triad interaction is the one where the smallest wavenumber mode is loosing energy to the
two larger ones. The argument is appealing, because the upscale energy transfer in two
dimensions and the downscale transfer in three dimensions are derived from the same
principle.

6. The double cascade theory expressed in spherical harmonic space

Kraichnan (1967) formulated the equations of motions in an infinitely large quadratic
domain with period boundary conditions in which case the discrete Fourier description
passes over to an integral description. Formally, the description is valid only in the
limit Lk → ∞, where L is the side length of the domain and k is the magnitude of the
wave vector. Under the assumption of isotropy he carried out a similarity analysis of the
expressions for the energy fluxes, in which he made ingenious use of the conservation
laws for triadic interactions. Based on this analysis he predicted that there are two possible
similarity ranges – an upscale energy flux range in which the enstrophy flux is zero and
a downscale enstrophy flux range where the energy flux is zero. It should be realised that
such ranges are mathematical idealisations which only can be approached in the limit of
large separation of length scales. In the constant energy flux range, the Fourier energy
spectrum scales as (1.1) and in the constant enstrophy flux range it scales as (1.2), with a
possible logarithmic correction.

From the similarity between the spectral energy equation (3.15), the Fjørtoft (1953)
relations (4.18) and the flux expressions (5.9) and (5.10), on the one hand, and the
corresponding expression in Fourier space, on the other hand, it is clear that there is a very
close correspondence between the two descriptions in the limit of large wavenumbers.
A heuristic demonstration of how they are related in this limit can be developed in
the following way. Assume that the spherical harmonic spectrum peaks at l � 1 and
the Fourier spectrum peaks at k � 1/L, and both spectra fall off exponentially at large
wavenumbers. Then, for n ≥ 0 we have

∞∑
l=1

a−2n[l(l + 1)]nE(l) ≈
∞∑

l=1

(l/a)2nE(l) ≈
∫ ∞

0
k2nEF(k) dk, (6.1)

with increasing accuracy for increasing n. The reason why (6.1) must hold is that the two
sides are expressions of the same physical quantity. For n = 0, (6.1) is the mean energy,
for n = 1 the mean enstrophy and for n = 2 the mean palenstrophy. With a broad band
spectrum peaking at l � 1, we can approximate the sum in the middle term of (6.1) with
an integral. There is only one straightforward way to do this, and that is

∞∑
l=1

(l/a)2nE(l) ≈
∫ ∞

0
k2nE(ak)a dk ≈

∫ ∞

0
k2nEF(k) dk. (6.2)
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Since this must hold for all finite n, it can be argued that the spherical harmonic spectrum
must converge to the Fourier spectrum in the limit of large l, where we must have

E(l) = EF(l/a)
a

. (6.3)

For the same reason it can be argued that G(l, n, s) must converge to the corresponding
triadic transfer function (see Kraichnan 1967), T(k, p, q), in Fourier space in the limit of
large wavenumbers, where we must have

G(l, n, s) = T(l/a, n/a, s/a)
a3 . (6.4)

The triangle inequality (4.3) of Silberman (1954), which is a necessary condition for
non-zero triad interactions in spherical harmonic space, corresponds exactly to the triangle
inequality |k − p| < q < k + p, which is the condition in Fourier space. Thus, it is quite
clear that the double cascade theory can equally well be formulated in spherical harmonic
space as in Fourier space. If we use the expressions (4.18) in (5.9) and (5.10), make the
approximation l(l + 1) ≈ l2 and let the sums pass over to integrals, the similarity analysis
of Kraichnan (1967) can be repeated in every detail in spherical harmonic space. It may
be objected that the approximation l(l + 1) ≈ l2, which must be made in order for the
similarity assumption to be consistent, indicates that the theory cannot be as accurately
expressed in spherical harmonic space as in Fourier space. However, the assumptions of
isotropy and similarity are only justified in the limit of large wavenumbers and in this limit
the approximation l(l + 1) ≈ l2 is also justified. The theory predicts that the spherical
harmonic spectrum should scale as

E(l) = C|ΠE|2/3(l/a)−5/3

a
, (6.5)

in the constant energy flux range and

E(l) = κΠ
2/3
E (l/a)−3

a
, (6.6)

in the constant enstrophy flux range.

6.1. The two cascades are connected
In a flow with limited scale separation the two cascades are inevitable interconnected to
some degree. Numerical simulations of the double cascade in Fourier space indicate that
there is a stronger connection than may be anticipated from theory. For a given forcing
wavenumber kf , a necessary condition for an efficient upscale energy cascade is that there
is a relatively broad enstrophy cascade range at k > kf . If this condition is not met, as
in the simulations of Xia et al. (2009), more energy is actually flowing in the downscale
direction than in the upscale direction. This is an indication of the importance of non-local
triad interactions. Numerical investigations (Ohkitani 1990; Maltrud & Vallis 1991) show
that the enstrophy flux emanates from highly non-local interactions where the smallest
wavenumber typically lies outside the constant enstrophy flux range and the two other
wavenumbers lie within the same range. This observation is consistent with the hypothesis
of Polyakov (1993) that the enstrophy cascade is dominated by non-local triad interactions
in which the smallest wavenumber mode is infrared. In spherical harmonic space this
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would mean that it is dominated by triads, {l, n, s}, such that l  n < k < s < l + n,
appearing in the sum over A1 in (5.10). Now, for each k such that l < k < n the same triad
which is appearing with a positive sign in the expression for the enstrophy flux, is also
appearing with a negative sign in the sum over A2 in the expression (5.9) for the energy
flux. Thus, the negative energy flux and the positive enstrophy flux may, to a large extent,
emanate from the same set of triads, which would mean that the cascades are produced
by the same physical mechanism. According to Boffetta & Ecke (2012) the mechanism of
the upscale energy cascade is ‘interaction of strain and vortices of different sizes’, while
the downscale enstrophy cascade is the result of ‘large-scale straining of vortices through
vortex-gradient stretching’. The two descriptions may refer to the same phenomenon.

6.2. The condensate may be reached in two different ways
As pointed out in the introduction, a number of numerical investigations show that the
energy spectrum in the constant energy flux range can be considerably steeper than k−5/3,
sometimes as steep as k−3, as in the simulation of Boure (1994). Common features of
these simulations are that viscous damping is weak, both in the enstrophy and the energy
cascade range, allowing for built up of non-local interactions, that a multitude of vortices
is formed in the upscale cascade range and that the peak of the energy spectrum is moving
very slowly towards small wavenumbers. Although the characteristic radius of the coherent
vortices is much smaller than the side, L, of the computational domain, the state is in
several ways similar to the end state in the simulation by Chertkov et al. (2007) of a
condensate, as also pointed out by Boffetta & Ecke (2012). The condensate consists of
two counter-rotating vortices of size ∼L with energy spectrum of the form k−3. Of course,
the latter state has a higher degree of regularity than the former. However, as shown by
Burgess & Scott (2017, 2018), the former has also a quite high degree of regularity, which
reflects itself in the distribution of vortices with respect to radius, which can be predicted
using scaling arguments.

These observations indicate that the condensate is not necessarily reached through
a local cascade as predicted by Kraichnan (1967) but may also be reached through a
non-local cascade with a flow field dominated by coherent vortices and a steep energy
spectrum, which slowly builds up in the direction from small to large wavenumbers, in
contrast to the steep spectrum in the simulation by Chertkov et al. (2007), which was built
up in the opposite way. The high degree of regularity and the steep energy spectrum of the
final state suggest that it is dominated by highly non-local interactions, which is also in
line with the fact that the number of local triads decreases with decreasing wavenumber.
Consider the nonlinear transfer to the lowest-order interacting mode, l = 2, in spherical
harmonic space, which is also equal to the negative energy flux through the mode l = 3,

T(2) = −ΠE(3) =
∞∑

n=3

G(2, n, n + 1). (6.7)

If we use the threshold n/2 ≤ 5 for locality, there are eight local triads, while the rest are
non-local. It would be surprising if local triad interactions were dominant.

7. Applications

In Earth’s atmosphere, there is a relatively localised kinetic energy source at l ∈ [10, 20]
(see Augier & Lindborg 2013), where available potential energy (Lorenz 1955) is
transferred to kinetic energy in a process involving baroclinic instability (see Vallis 2006).
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The subsequent energy transfer in spherical harmonic space is complicated by the fact that
the velocity field is not strictly rotational (or non-divergent). Although the rotational field is
totally dominant in terms of magnitude, the divergent field is transferring a non-negligible
part of the energy in the downscale direction. On the other hand, the rotational field is
transferring energy only in the upscale direction, which has been shown in a number of
studies (e.g. Boer & Sheperd 1983; Augier & Lindborg 2013; Brune & Becker 2013;
Burgess, Erler & Shepherd 2013). Energy is transferred upscale at a rate ∼1 W m−2,
integrated over the height of the troposphere. This is the mechanism by which the general
circulation of the atmosphere is maintained, as also predicted by Lorenz (1955), based on
an analysis using a mean-field/eddy-field decomposition. There can be little doubt that this
transfer is caused by first type interactions as predicted by Fjørtoft (1953). As shown by
analyses of Boer & Sheperd (1983) and Burgess et al. (2013), the rotational field is also
transferring a substantial amount of enstrophy downscale, which is the other signature of
first type interactions.

The fact that the source is localised at such low wavenumbers, l ∼ 10 − 20, implies
that there is no room for a broad upscale energy cascade range to develop. As for the
enstrophy transfer, the approximate l−3-spectrum which is observed in a quite narrow
range in analyses of general circulation models, may be a sign of something like an
enstrophy cascade range, although the strong non-locality of enstrophy transfer makes
such an interpretation questionable. In any case, three-dimensional effects are becoming
important already at l ∼ 50, so for Earth’s atmosphere the theory of two-dimensional
turbulence cannot be used to make much more predictions than determining the energy and
enstrophy transfer directions for the large scale rotational field. As for large scale vortical
structures, such as cyclones, they do not resemble the very long lived coherent vortices of
two-dimensional turbulence, but are highly three-dimensional structures carrying helicity
(Lilly 1986).

As for the atmosphere of the giant gas planets, Saturn and Jupiter, there is growing
evidence from observations as well as simulations that the theory of two-dimensional
turbulence is highly relevant. Evidence of an upscale energy cascade range has been
extracted from analyses of Jupiter’s tropospheric winds using Cassini near-infrared
imaging (Choi & Showman 2011; Galperin et al. 2014; Young & Read 2017). Since
the dynamics is highly anisotropic and also involves Rossby waves, the assumption of
isotropy which is often used in studies of two-dimensional turbulence, is not applicable.
An extended concept of ‘zonostrophic turbulence’ accounting for Rossby waves and the
formation of jets has been developed by Sukoriansky, Galperin & Dikovskaya (2002).
According to this theory, the zonal mean spectrum, which is the spectrum associated with
all spherical harmonic modes with zonal wavenumber zero, should scale as l−5, while the
spectrum made up by all other modes conforms to the predictions of the Kraichnan (1967)
theory. Recently, it has been shown (Cabanes, Spiga & Young 2020) that the dynamics can
be successfully simulated and the spectra as well as the spectral transfers show all signs of
two-dimensional turbulence, including both an upscale energy cascade and a downscale
enstrophy cascade. However, the prediction of a l−5/3-spectrum in the upscale cascade
range is only partially fulfilled. In the low wavenumber end of the spectrum, there is
indeed a range with l−5/3-scaling, but for somewhat larger wavenumbers there is a local
maximum (see figure 6 in Cabanes et al. 2020) of the same type as seen in simulations
where a multitude of vortices are formed in the upscale cascade range. It remains to be
investigated if the l−5/3-spectrum can be reproduced in different set-ups and to what degree
the observed upscale energy cascade is consistent with the theory of Kraichnan (1967) of
a local cascade.
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8. Conclusion

As mentioned in the introduction there are several unresolved issues of the double cascade
theory which are of general interest from a broad perspective of physics. In particular,
this is true for all problems connected to the upscale energy cascade – locality of triad
interactions in spectral space, formation of coherent vortices and formation of a condensate
when the cascade reaches the scale of the confinement. The reason why these problems
are so interesting from a fundamental point of view, is that the upscale cascade somehow
seems to defy the trend from more to less order which is ubiquitous to systems with
many degrees of freedom, as expressed in the second law of thermodynamics but also
in the Kolmogorov theory of three-dimensional turbulence. Isotropisation is an essential
element of such a trend. As energy is successively transferred from large to small scales
in the three-dimensional energy cascade, information is lost and motions become more
isotropic and less coherent with decreasing scale. In the upscale energy cascade there is
an opposite trend. If a random force generates small scale incoherent motions with no
preferred direction, the upscale cascade will transform these into large scale coherent and
anisotropic motions that will finally condensate into a globally ordered state.

As we have shown, the spherical harmonic spectral energy equation has a similar
form as the corresponding spectral energy equation in Fourier space, with the important
difference that it can be derived without invoking any assumption of isotropy. It describes
the nonlinear transfer between all scales of motion, represented by a discrete set of integer
modes, l = 1, 2, 3, . . ., with associated vector fields ul, which are coordinate invariant.
Needless to say, no artificial boundary conditions have to be implemented on the sphere.
These features make the spherical geometry the ideal test ground for exploration of
two-dimensional turbulence by means of simulations. It is the hope of the authors that
the present work will stimulate such research.
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Appendix A. Operational rules

In this appendix we list the rules that permit us to operate with {∇, �, ·} on scalars and
vectors on a sphere. We let ψ be a scalar field and A and B two vector fields defined on a
sphere with radius a.

(i) Gradient of a scalar, divergence of a vector and divergence of a rotated vector

∇ψ, (A1)

∇ · A, (A2)

∇ · �A. (A3)

(ii) Divergence of a rotated gradient

∇ · �∇ψ = 0. (A4)
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(iii) Scalar and vector Laplace (see Appendix B)

�ψ = ∇ · ∇ψ, (A5)

�A = ∇(∇ · A)− �∇(∇ · �A)+ A
a2 . (A6)

(iv) Commutation and distribution

��A = −A, (A7)

�(ψA) = ψ � A, (A8)

A · B = B · A, (A9)

�A · �B = A · B, (A10)

�A · B = −A · �B, (A11)

∇ · (ψA) = ∇ψ · A + ψ∇ · A, (A12)

∇(A · B) = (∇ · �B) � A + (∇ · �A) � B + (A · ∇)B + (B · ∇)A. (A13)

Appendix B. The viscous term and the vector Laplacian

Here, we will establish the form of the Navier–Stokes equations (3.1) and the expression for
the vector Laplacian (A6). We will do this using tensor notation, and translate to or from
vector notation when needed. Thus we introduce any suitable system of two coordinates
on the sphere, with metric tensor gab.

B.1. The viscous term
The equation of motion for an incompressible fluid of constant density ρ is

ρ

(
∂ua

∂t
+ ubua

;b

)
= τ ab

;b + Fa, (B1)

where F is an external forcing, and for a linear viscous fluid the symmetric stress tensor is

τ ab = 2μeab − gabp, (B2)

where μ is the constant dynamic viscosity, p is the pressure and the symmetric strain rate
tensor is

eab = 1
2

(
gbcua

;c + gacub
;c
)
. (B3)

In particular, the divergence of the viscous stress is

μ
(

gbcua
;cb + gacub

;cb

)
. (B4)

We recognise the first term in the parenthesis as the vector Laplacian. The second term
can be simplified by changing the order of the covariant derivatives, but since the sphere is
a curved manifold, covariant derivatives do not commute, so the change of order involves
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the curvature tensor
ub
;cb =

(
ub
;b
)

;c
− Rb

dcbud = −Rdcud, (B5)

utilising that the fluid is incompressible so ub
;b = 0. For a two-dimensional manifold, the

Ricci tensor can always be expressed in terms of the curvature scalar and the metric as

Rdc = R
2

gdc, (B6)

and for a sphere of radius a, the curvature scalar is

R = − 2
a2 , (B7)

so the divergence of the viscous stress is

μ

(
gbcua

;cb + gac 1
a2 gdcud

)
= μ

(
gcbua

;cb + ua

a2

)
. (B8)

Dividing by ρ, using μ/ρ = ν and shifting to vector notation we have

ν
(
�u + u

a2

)
, (B9)

which is the viscous term found in (3.1).

B.2. The vector Laplacian
We will show that

∇(∇ · A)− �∇(∇ · �A) = − A
a2 +�A, (B10)

by translating the expression first into tensor notation and then back. This is
straightforward, except maybe for the rotation operation on an oriented two-dimensional
manifold. The rotation operation on contravariant vector components Aa can be written in
two equivalent ways using the Levi-Civita symbols

1√
g
εbagbcAc = √

ggabεcbAc. (B11)

Consider the negative of the second term of the left-hand side of (B10). In tensor notation
it can be written as

1√
g
εabgbcgcd

((√
ggef εfgAg

)
;e

)
;d

= εabεfggef Ag
;eb

=
(
δa

f δ
b
g − δa

gδ
b
f

)
gef Ag

;eb = geaAb
;eb − gebAa

;eb, (B12)

where we recognise the second term as the negative vector Laplacian. The whole left-hand
side of (B10) is then

gae
(

Ab
;b
)

;e
− geaAb

;eb + gebAa
;eb = gae

(
Ab

;be − Ab
;eb

)
+ gebAa

;eb

= gaeRecAc + gebAa
;eb = −Aa

a2 + gebAa
;eb, (B13)

again using the curvature of the sphere. Translating back to vector notation, we have the
right-hand side of (B10).
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Appendix C. Derivation of (3.1) from the three-dimensional Navier–Stokes equation

At the request of one of the reviewers we here derive the expression of the viscous
term found in the two-dimensional incompressible Navier–Stokes equation (3.1) from the
three-dimensional incompressible equation. To do this, we consider a thin layer of fluid
within a spherical shell with boundaries at r = a and r = a(1 + ε) and write the velocity
field within the layer as v(r, θ, φ). Boundary conditions of no radial velocity, vr = 0,
and no shear stress, τθr = τφr = 0, are applied on both boundaries. For a given tangential
length scale the radial velocity must then tend to zero throughout the layer as ε → 0. Using
vr = 0, the radial shear stresses associated with v are (see e.g. Kundu, Cohen & Dowling
2016, Appendix B)

τrθ = τθr = μ

(
∂vθ

∂r
− vθ

r

)
= μr

∂ (vθ/r)
∂r

, (C1)

τrφ = τφr = μ

(
∂vφ

∂r
− vφ

r

)
= μr

∂
(
vφ/r

)
∂r

. (C2)

Applying the stress free boundary conditions, and using the same reasoning as above, in
the thin limit the condition

∂ (vθ/r)
∂r

= ∂
(
vφ/r

)
∂r

= 0 (C3)

must hold throughout the layer. This means we can write the velocity field within the layer
as

v(r, θ, φ) = (r/a)u(θ, φ), (C4)

where u(θ, φ) is the purely tangential velocity at r = a. Using the textbook polar
coordinate expression of the viscous term in the three-dimensional incompressible
Navier–Stokes (see e.g. Kundu et al. 2016, Appendix B) we obtain

ν�(3)v|r=a = ν

(
∇2uθ +

(
2 − 1

sin2 θ

)
uθ
a2 − 2 cos θ

a2 sin2 θ

∂uφ
∂φ

)
eθ

+ ν

(
∇2uφ +

(
2 − 1

sin2 θ

)
uφ
a2 + 2 cos θ

a2 sin2 θ

∂uθ
∂φ

)
eφ, (C5)

where �(3) is the three-dimensional vector Laplace operator and

∇2uθ = 1
a2 sin θ

∂

∂θ

(
sin θ

∂uθ
∂θ

)
+ 1

a2 sin2 θ

∂2uθ
∂φ2 , (C6)

with a corresponding expression for ∇2uφ . The radial component of (C5) vanishes by
∇ · u = 0. The term

2ν
u
a2 = 2ν

a2 (uθeθ + uφeφ), (C7)

emanates from the radial derivative of v(r, θ, φ) in the three-dimensional Laplace
operator. If this term is not taken into account (as in Fjørtoft 1953; Tang & Orszag 1978;
Boer 1983) the viscous stress tensor will include a component acting as an external drag
on the sphere, implying that angular momentum is not conserved and that a solid body
rotation will decay.
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A straightforward but somewhat lengthy calculation of the polar coordinate expression
of the viscous term in (3.1) gives

ν
(
�u + u

a2

)
= ν

(
∇(∇ · u)− �∇(∇ · �u)+ 2u

a2

)

= ν

(
eθ

1
a
∂

∂θ
+ eφ

1
a sin θ

∂

∂φ

)(
1

a sin θ
∂

∂θ
(sin θuθ )+ 1

a sin θ
∂uφ
∂φ

)

− ν

(
−eθ

1
a sin θ

∂

∂φ
+ eφ

1
a
∂

∂θ

)(
− 1

a sin θ
∂

∂θ
(sin θuφ)+ 1

a sin θ
∂uθ
∂φ

)

+ ν
2
a2 (uθeθ + uφeφ)

= ν

(
∇2uθ +

(
2 − 1

sin2 θ

)
uθ
a2 − 2 cos θ

a2 sin2 θ

∂uφ
∂φ

)
eθ

+ ν

(
∇2uφ +

(
2 − 1

sin2 θ

)
uφ
a2 + 2 cos θ

a2 sin2 θ

∂uθ
∂φ

)
eφ, (C8)

where we have skipped some obvious steps where we have taken derivatives of sin θ , cos θ
and 1/ sin θ and noticed that terms including mixed derivatives cancel. Comparing (C5)
and (C8) we can thus conclude

ν�(3)v|r=a = ν
(
�u + u

a2

)
, (C9)

showing that the viscous term of two-dimensional equation (3.1) can be derived from the
viscous term of the three-dimensional equation.

Appendix D. Derivation of energy flux relation

In this appendix we derive the energy flux relation (5.9). Using the symmetry G(l, n, s) =
G(l, s, n) and (4.15) we can write the energy flux (5.7) as

ΠE(k) = 1
2

∞∑
l=k

∞∑
n=2

∞∑
s=2

G(l, n, s) = 1
2

∞∑
l=k

(k−1∑
n=2

+
∞∑

n=k

)(k−1∑
s=2

+
∞∑

s=k

)
G(l, n, s)

= 1
2

∞∑
l=k

k−1∑
n=2

k−1∑
s=2

G(l, n, s)+
∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(l, n, s). (D1)

Now we have
∞∑

l=k

k−1∑
n=2

∞∑
s=k

G(l, n, s) = −
∞∑

l=k

k−1∑
n=2

∞∑
s=k

G(s, n, l)−
∞∑

l=k

k−1∑
n=2

∞∑
s=k

G(n, s, l)

= −
∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(l, n, s)−
∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(n, s, l), (D2)

so that
∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(l, n, s) = −1
2

∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(n, s, l). (D3)
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Substituting (D3) into (D1) and relabelling the names of the indices, we obtain

ΠE(k) = 1
2

∞∑
l=k

k−1∑
n=2

k−1∑
s=2

G(l, n, s)− 1
2

∞∑
l=k

k−1∑
n=2

∞∑
s=k

G(n, s, l)

=
∞∑

s=k

k−1∑
n=2

n−1∑
l=2

G(s, n, l)−
k−1∑
l=2

∞∑
s=k

s−1∑
n=k

G(l, n, s). (D4)

All terms in the two sums which do not satisfy n < s < l + n and l + n + s = odd, are
zero. We conclude that the energy flux can be written as in (5.9). The expression (5.10) for
the enstrophy flux can be derived in the same way.
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