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In a number of recent papers, especially by Wilansky (4; 6), Zeller (8), and 
Peyerimhoff (3), the sequence-to-sequence transformation 

oo 

A : yn = X ankXk (n = 0, 1, . . .) 
k=0 

has been studied under certain conditions, designated by FAK, PMI, etc. 
(see §3). The purpose of this note is to point out some relations among these 
conditions, and to show that some theorems previously obtained hold under 
weaker assumptions. 

We begin with a remark concerning Mazur's well-known consistency 
theorem. This has been proved by several authors, (Mazur (2, Theorem 7), 
Banach (1, p. 95, Theorem 12), Wilansky (4, Theorem 3.3.1), Peyerimhoff 
(3, Theorem 4.2)) under various conditions and by various methods of proof. 
We give here a simple direct proof of the theorem, using only the assumptions 
that A is co-regular and reversible, as defined below. 

Notation. We shall assume throughout the paper that A satisfies the "row-
norm" condition: there is a constant M such that 2&|aJ < M (n = 0, 1, . . .). 
We denote the column limits of A by 

ak = limank (k = 0, 1, . . .), 
W->oo 

the row sums by 
Oin = X ank {n = 0, 1, . . .)> 

k 

and we put 
a = lim an, pA — a — 2l ak> 

If A limits every convergent sequence, or equivalently, if ak, a exist, A is called 
conservative; if pA ^ 0, A is co-regular, while if a = 1, ak = 0 (k = 0, 1, . . .) so 
that limw yn = limA xk for each convergent sequence {xk}, A is regular. Similarly 
we denote the column limits of a matrix B by bk, and so on. We define 

ô*= {%} = { 0 , 0 , . . . , 0 , 1 , 0 , . . . } , 

and a* = {a, a, . . .} for any real number a. We denote the set of all sequences 
ôk by A, and the same with 1* adjoined, by <£. The set of all sequences {xk} for 
which {yn} converges is denoted by (^4), and the set of all {xk} such that 
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yn —> 0 by (A)o. A summability method is reversible if to each convergent se
quence {yn} there corresponds a unique sequence {xk}. It is well known that if 
A is reversible, (A) and (A)o are Banach spaces under the norm 

\\x\\ = SUpw|X On***I» 

and that the general continuous linear functional (c.l.f.) on (A) is given by 

(1) /(*) = ^ ( X ) + Y,tnAn(x), 
n 

where An(x) = 2kankxk, ^4(x) = limw^4w(x) = A-Y\mxk, and ^\tn\ < oo. If 
two methods A, B agree on (A) C\ (B), they are called consistent. Evidently 
if A is conservative and (B) 3 (A), then £ is also conservative. 

THEOREM 1. Let A be reversible and co-regular. Then in order that A be consis
tent with every method B such that 

(B) 3 (A) andBix) = A{x) on $, 

i/ is necessary and sufficient that for any sequence {tn}, 

£ w < » ] 
M E A A . - 0 ( 4 - 0 , 1 , . . O ^ * " " 0 ( « - 0 ' 1 - - - - ) -

Proof. Every method B with (5) 2 (-4) represents a c.l.f. on (yl), since 
each xk is a c.l.f. (1, p. 47) and therefore so is limw 2kbnk xk (1, p. 23, Theorem 
4). Conversely every c.l.f. on (A) can be represented by a matrix method B 
with (B) 2 (-4), for example with/(#) as in (1) we may let bnk = t0aok + ha\k 

+ . . . + tn-ian-itk + fowfc. Hence, for A to have the property stated it is 
necessary and sufficient that every c.l.f. which vanishes on $ should vanish 
throughout {A), that is, 

^ ' 4 | < ~ " | 4 = 0 (» = 0, 1 , . . . ) 
Mi tak + J2 ntrAnk = 0 (k = 0, 1, . . .) i imply 

ta + S A<*w = 0 
But Mi is equivalent to M. For we have by absolute convergence, 

k n n k n 

Hence the left-hand side of Mi is equivalent to 

E Vn\ < «, 
tak + 53 ftfflnk = 0 (& = 0, 1, . . .), 

t(a - 53 *#*) = 0. 
Since a — 3ïkak 9^ 0, the assertion now follows. This proves the theorem. 
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Several theorems previously stated for normal matrices (that is, triangular 
with non-zero diagonal terms) can easily be extended to reversible matrices. 
We give one example (compare Peyerimhoff, (3, Theorem 4.4)). It is known 
(1, p. 50) that if yp = 2kapkxk with A reversible, there exist constants ck, ckp 

with 2p\ckp\< co for each k, such that for each convergent sequence {yp} we have 

(2) xk = ck lim yP+ YJ WP-
V V 

THEOREM 2. Let A be reversible and let xk be represented as in (2). If the matrix 
(ckp) has bounded columns, then M holds. 

Proof. Assume s[t,| < » , ^ntnank = 0 (k = 0, 1, . . .).Then 2kckp 2ntnank = 0. 
By absolute convergence we have 2ntn 2kankckp = 0. Now by a lemma of 
Wilansky (5, Lemma 3), we have 2kankckp = ôp

n. Hence tp = 0 (p = 0, 1, . . .) 
and so M holds. 

We now state the conditions referred to in the introduction. If l^akxk con
verges for each x (E (A), the matrix A is said to have maximal inset (6, p. 648). 
If every matrix B with (B) = (A) has maximal inset, A has the property of 
propagation of maximal inset (briefly, A has PMI). 

The conditions of Zeller which will next be stated were defined for elements 
of any FK-space E (7; 8), but in the present paper E will be one or other of the 
Banach spaces (A), (A)0. For a given x = \xk} Ç E, the rth segment (Ab-
schnitt) is the sequence 

X = |Xo, X\, . . . , Xr, U, U, . . . ) . 

The property AK (Abschnittskonvergenz) is that for a given x we have 
x{T) —>x or equivalently H,xk 5

k = x. If this holds for each x Ç E, then E is 
said to have AK, which is equivalent to A being a basis for E (1, p. 110). It is 
known (8, Beispiel 4.2) that if d is the Cesàro method of order 1, (Ci)o has 
AK. Similarly SAK (schwache Abschnittskonvergenz) means /(x ( r )) —>f(x) 
for e a c h / defined on E, or equivalently Xxkf(5

k) = f(x), FAK (funktionale 
Abschnittskonvergenz) that *Zxkf(5

k) converges for each / , not necessarily to 
f(x), and AD (Abschnittsdichte) that x is a limit point of the set of all seg
ments. For E to have AD it is necessary and sufficient that A be fundamental 
in E (1, p. 58). 

As for the relations among these conditions, we have obviously the logical 
implications AK —» SAK —» FAK, and by a standard theorem on weak con
vergence (1, p. 134), SAK —> AD. It has been proved by Wilansky (6, Lemma 
16) that if A is reversible, co-regular and has PMI, then (A) has FAK. We 
shall show that by modifying the proof we may reduce the assumption that A 
is co-regular and arrive at the following result. 

THEOREM 3. Let A be a reversible, conservative matrix. Then A has PMI if and 
only if (A) has FAK. 

Proof, (a) Since every matrix B with (B) = (A) represents a c.l.f. B{x) on 
(A), with B(Ôk) = bk, it is obvious that FAK -> PMI. 
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(b) Let A have PMI, and letf(x) = tA (x) + i:ntnAn(x) be a c.l.f. on (A). 
If 0, 6n denote the solutions of y = Ax when y equals 1*, ôn respectively, we 
have 

It is well known that if / ^ 0, the corresponding matrix B (see the proof of 
Theorem 1) has (B) = (A). (Indeed B = TA, where T is the matrix whose nth 
row is (to, ti, . . . , /n_i, /, 0, 0, . . .) and it can be shown (6, Lemma 1) that T 
sums only convergent sequences.) We then have at once from PMI that 
Xxjcfid10) = 2bkxk converges. If however / = 0, we define g(x) = A{x) + f(x) 
on (A). Then 

g(0) = 1 + / ( * ) , g(6n) =/(tf»), 

so t(g) = g{6) - 2g(8n) 7* 0, and 2xkg(5k) converges. But g(dk) = ak + f(ôk) 
and so 

X xkf(d
k) = X) **#($*) ~ S 0*** 

converges. Hence (A) has FAK. 

THEOREM 4. L ^ 4̂ fre reversible and co-regular. Then A has PMI if and only if 
$ is a basis for {A ). 

This is proved by Wilansky (6, p. 650) under the assumption that A is 
normal. But an examination of the proof shows that this is introduced only 
because at a certain point it is shown that A satisfies condition M, and one 
wishes to conclude that $ is fundamental in (^4). Theorem 1 shows that 
reversibility is sufficient for this. 

THEOREM 5. Let A be reversible and regular. Then (^4)0 has AK if and only if 
(A)o [or equivalently {A)] has FAK. 

Proof. Let (̂ 4)o have AK; then by a general implication already mentioned, 
(i4)o has FAK, whence by an easy deduction (8, Beispiel 4.4), (A) has FAK. 
Conversely, let (A) have FAK. Then by Theorem 3, A has PMI, and by 
Theorem 4, $ is a basis for (^4). But A C (A)0 and 1* $ (A)0} hence A is a 
basis for (A)o, and (A)Q has AK. 

Remark. It is shown by Zeller (8, Theorem 3.4) that for any FK-space E, 
FAK and AD together imply AK. Theorem 5 shows that for certain spaces 
AD can be dropped. 

The relation between M and PMI for a regular reversible method can be 
summarized: M means that A is fundamental in (A)0, or $ in (A); PMI that 
A is a basis for (A)G, or $ for (A). 

THEOREM 6. Let A be reversible, regular, and have PMI. Then for any matrix B 
with (B) 3 (A) we have the representation 

(3) B(x) = pBA(x) + J2 hxk, 

valid for each x Ç (A). 
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Proof. By Theorem 5, (A)o has AK and therefore SAK. Now B(x) is a c.l.f. 
on (A)o and so B{x) = 2xkB(ôk) = 2bkxkiorx 6 (A)0. For any x € (A) with 
A (x) = a, we write x = a* + (x — a*), with x — a* Ç (-4)o. Then 

B(*) = B(<r*) +B(x- <r*) 

which proves the theorem. 

If B is co-regular a simpler argument, based on the matrix (1 /PB) (bnk — bk), 
suffices. The condition PMI is obviously necessary, as without it (3) would not 
be defined even for all B with (B) — {A). 
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