
J. Fluid Mech. (2023), vol. 959, A2, doi:10.1017/jfm.2023.89

Viscous effects in Mach reflection of shock waves
and passage to the inviscid limit
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The influence of viscosity on the Mach reflection of shock waves in a steady flow
of a monatomic gas is studied by solving the Navier–Stokes equations numerically.
Based on the nested block grid refinement technique, the flow near the shock wave
intersection is simulated, and its behaviour with increasing Reynolds number is studied.
The computations are performed for the interaction of both strong (free-stream Mach
number M∞ = 4) and weak (M∞ = 1.7) shock waves. In the strong reflection of shock
waves at all Reynolds numbers in the examined range, it is found that there exists a
small-size zone behind the shock wave intersection where the flow parameters differ from
those predicted by the Rankine–Hugoniot relations and hence deviate from the predictions
of the inviscid three-shock theory. The structure of this zone is self-similar: in coordinates
normalised to the mean free path of molecules in the free stream. The structure is identical
at all Reynolds numbers considered in the study. As the Reynolds number increases, the
size of this zone in physical coordinates decreases, but the maximum difference between
the viscous and inviscid solutions in this zone remains constant, reaching approximately
10 % for pressure. In the weak reflection of shock waves, the flow structure behind
the shock wave intersection is not self-similar, i.e. the flow fields at different Reynolds
numbers do not coincide in the normalised coordinates, but converge, as the Reynolds
number increases, to the parameters predicted by the inviscid three-shock theory.

Key words: shock waves, gas dynamics, supersonic flow

1. Introduction

It is well known that interaction of two oblique shock waves in a steady two-dimensional
flow can be regular or irregular, depending on the flow Mach number and angles of the
incident shock waves (Ben-Dor 2007). In a regular reflection, two reflected shock waves
and a slip surface (if the angles of incidence are not identical) emanate from the reflection
point. In an irregular reflection, two triple points located at a certain distance from each
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other are formed. Each triple point is the point of meeting of the incident and reflected
shock waves, as well as another shock wave called the Mach stem. A slip surface also
emanates from each triple point. The Mach stem connects two triple points, and there is a
closed zone of a subsonic flow behind it.

Such shock wave configurations can be analysed theoretically with the inviscid Euler
equations. Under this approximation, a shock wave is a discontinuity without internal
structure. It follows from the mass, momentum and energy conservation laws that the
gas-dynamic variables on both sides of the discontinuity satisfy certain algebraic relations
known as the Rankine–Hugoniot relations. With the Rankine–Hugoniot relations for all
shock waves, it is possible to determine local slopes of the discontinuities at the points
of their intersection and the flow parameters behind them. The discontinuities in the near
vicinity of the triple point are assumed to be planar (straight lines in the two-dimensional
case). If the discontinuity curvature is taken into account, then additional expressions
relating the derivatives of the gas-dynamic variables upstream and downstream of the
discontinuity should be used (Adrianov, Starykh & Uskov 1995; Emanuel 2013; Mölder
2016). The above-described approach has been employed to predict the parameters of
two-shock and three-shock configurations formed in the regular and irregular reflections,
respectively (von Neumann 1943).

Further investigations have shown that theoretical predictions agree well with
experimental data only for reflection of sufficiently strong shock waves where the
free-stream Mach number M∞ is approximately 3 or higher (referred to hereinafter as the
strong reflection). As for shock wave configurations formed due to interaction of weaker
shock waves (referred to below as the weak reflection), there is a range of parameters
where three-shock configurations are theoretically impossible, but an irregular reflection
with clearly visible triple points is observed in experiments. This contradiction between
theory and experiments is known as the von Neumann paradox or the triple point paradox.

Trying to resolve this paradox within the model of an inviscid non-heat-conducting gas,
Guderley proposed a four-wave model (Guderley 1947, 1962). This model implies that
a centred expansion wave additionally emanates from the shock wave intersection point
in the irregular reflection, and a local supersonic region is adjacent to this wave. The
additional wave allows one to find the solution of the system of conservation laws. The
first confirmation of this model was obtained only half a century later by solving the Euler
equations numerically (Vasilev & Kraiko 1999). Further investigations (Hunter & Brio
2000; Tesdall & Hunter 2002; Hunter & Tesdall 2004; Tesdall, Sanders & Keyfitz 2007,
2008; Defina, Susin & Viero 2008a; Defina, Viero & Susin 2008b; Vasilev & Olhovskiy
2009; Tesdall, Sanders & Popivanov 2015; Vasil’ev 2016) showed that, depending on
problem parameters, configurations formed due to interaction of weak shock waves can
have even more complicated structures and contain additional elements of small size. The
experiments by Skews & Ashworth (2005) and Skews, Li & Paton (2009) performed in
a large shock tube revealed the existence of a configuration similar to that predicted by
Guderley and observed in the inviscid studies mentioned above. However, the size of local
supersonic regions observed in those experiments was greater by an order of magnitude
than that predicted by numerical solutions of the Euler equations.

As the theoretical inviscid solution contains structures that are very small in comparison
to the characteristic length scales of the problem, such as the Mach stem length, the
question about possible roles of viscosity and heat conduction arises. As is well known,
if viscosity and heat conduction are taken into account, then the discontinuity transforms
into the shock transition zone of finite thickness. A steady solution of one-dimensional
Navier–Stokes equations for the internal structure of a normal shock wave can be easily
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obtained numerically (Gilbarg & Paolucci 1953). The structure of an oblique shock wave
can be calculated as a superimposition of this one-dimensional normal shock solution and
a uniform flow directed along the shock wave.

A comparison with the experimental data shows that the theory based on the
Navier–Stokes equations provides a quantitatively correct description of the shock wave
structure only for weak shock waves. Starting approximately from M∞ = 2, the molecular
velocity distribution function departs from the Maxwellian equilibrium form (see e.g. Bird
1994); hence the kinetic approach – direct numerical solution of the Boltzmann equation
or the direct simulation Monte Carlo (DSMC) method (Bird 1994) – should be employed
for the shock wave structure problem (see e.g. Malkov et al. 2015).

It seems feasible to apply the Navier–Stokes equations to analysing the possible
influence of dissipative effects in the shock wave reflection problem, at least as the first
approximation. It should be kept in mind, however, that while the Navier–Stokes equations
ensure a qualitatively correct description of the viscous shock wave structure, the shock
wave thickness and the distributions of gas-dynamic parameters inside the shock wave can
be quantitatively different from those predicted by the kinetic approach, especially at high
free-stream Mach numbers.

The internal structure of interacting shock waves far from their intersection is described
well by the one-dimensional solution mentioned above. Behind the viscous shock
transition, the variables approach asymptotically the constant values predicted by the
inviscid Rankine–Hugoniot relations. However, the situation is essentially different in
the shock interaction region. The Rankine–Hugoniot relations do not hold exactly inside
the zone of an essentially two-dimensional flow formed as a result of the interaction
of oblique shock waves of finite thickness, which have their own internal structure.
This fact was noticed for the first time by Sternberg (1959), who coined the term
‘non-Rankine–Hugoniot zone’ to denote the region of interaction of shock waves in the
viscous flow. Later, Sichel (1963) derived, for Mach numbers close to unity, a simplified
system of equations to describe fluid motion in such a zone. Sakurai (1964) considered the
phenomenon of the non-Rankine–Hugoniot zone and the role of viscous effects with the
approximate solution of the Navier–Stokes equations. More recently, the flow field near
the triple point was studied numerically by Sakurai et al. (2011) and compared with the
developed analytical model, which takes viscous effects into account.

An attempt was made in the experiments of Siegenthaler & Madhani (1998) to detect
the differences in the flow parameters in the weak reflection from those predicted by
the classical inviscid model, and the authors declared that such differences were indeed
observed. Later, the authors tried to explain the results obtained by modifying the
Rankine–Hugoniot relations in such a way that the total enthalpy of the flow behind the
shock wave was not equal to the free-stream total enthalpy (Siegenthaler & Madhani 2001).

Based on the numerical solution of the Navier–Stokes equations and DSMC simulations,
the non-Rankine–Hugoniot zone was observed in low-Reynolds-number flows for both the
weak and strong reflections (Khotyanovsky et al. 2009; Ivanov et al. 2010a; Chen, Zhang
& Liu 2016; Liu et al. 2019). Similar deviations from the theoretical solution were also
reported by Ben-Dor, Takayama & Needham (1987), who solved the Euler equations with
a shock-capturing scheme in order to study unsteady reflection of the shock wave from
a wedge. However, the deviations in Ben-Dor et al. (1987) were induced not by physical
viscosity but by numerical dissipation inherent in any shock-capturing scheme.

Sternberg (1959) assumed that the von Neumann paradox is an example of the flow
where the viscous solution does not approach the inviscid solution as the Reynolds number
tends to infinity. Generally speaking, examples of such flows are known. One example is
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the Jeffery–Hamel flow between two plane diverging walls (Jeffery 1915; Hamel 1916). In
this case, the solution of the Navier–Stokes equations does not approach any certain limit
as Re → ∞, and does not converge to the inviscid solution.

However, Ivanov et al. (2012) demonstrated by solving the Navier–Stokes equations
numerically that in the case of the von Neumann paradox, the non-Rankine–Hugoniot
zone size decreases and the values of the flow variables downstream from this zone
become closer and closer to the inviscid four-wave solution of Guderley (1947, 1962) as the
Reynolds number increases. At the same time, the numerical results revealed that viscosity
significantly affects the flow even at very high Reynolds numbers (up to Re ≈ 109). It can
be concluded that under conditions observed in nature or real technical systems, the flow
field near the interaction region of weak shock waves may be quite far from the theoretical
inviscid solution, though it is expected to approach the latter with increasing Reynolds
number.

For the strong reflection, the passage from the viscous solution to the inviscid-limit
three-shock solution has not been investigated. Such a study has not been conducted for
the weak reflection either in the case where the inviscid theory predicts the existence of a
three-shock configuration, i.e. outside the range of the von Neumann paradox conditions.
The goal of the present paper is to fill this gap by performing such a numerical investigation
for the irregular shock wave reflection in steady flows. The study focuses mainly on
the strong reflection, but the case of weak reflection outside the von Neumann paradox
conditions is also addressed. The flow is modelled with the Navier–Stokes equations.
Despite the fact that the length scales of interest are comparable with the shock wave
thickness, previous studies (Khotyanovsky et al. 2009; Ivanov et al. 2010a) demonstrated
clearly that the Navier–Stokes solution for the shock interaction region agrees well with
DSMC results for both strong and weak reflections.

The paper is organised in the following way. Section 2 describes the problem
formulation. The procedure for constructing the inviscid three-shock solution with the
shock polar technique is discussed in § 3. The numerical method used for investigating the
viscous structure of the flow near the triple point is presented in § 4. The results of the
numerical study of the strong reflection are given in § 5, while the results for weak shock
waves are reported in § 6. Section 7 contains a discussion of the results, and conclusions
are formulated in § 8. Appendix A is provided to demonstrate that at the Prandtl number
Pr = 3/4, the total enthalpy is constant everywhere inside the planar shock wave front
(shock transition zone). This property of the Navier–Stokes equations is used in the paper
when discussing the numerical results.

2. Problem formulation

We consider a steady flow between two symmetrically arranged wedges immersed in a
uniform supersonic stream. The flow field is also assumed to be symmetric. In the present
study, we consider the flow field portion located above the symmetry plane as shown in
figure 1. The wedge with the windward side w generates the incident shock wave. For a
fixed specific heats ratio γ , various shock wave configurations can be formed depending
on the free-stream Mach number M∞, the wedge inclination angle θw, and the distance
between the wedge trailing edge and the symmetry plane g. The resultant configuration
consists of the incident (IS) and reflected (RS) shock waves, the Mach stem (MS), and
the shear layer (SL). An expansion fan (EF) emanates from the trailing edge of the wedge
(point 3) and interacts with the reflected shock wave and the shear layer. Owing to this
interaction, the shear layer becomes curved, and a virtual nozzle is formed (Hornung &
Robinson 1982). The subsonic flow behind the Mach stem enters the converging part of
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Figure 1. Flow pattern and computational domain for the strong reflection.

the virtual nozzle. The flow becomes supersonic passing through the throat cross-section,
and accelerates further in the diverging part of the virtual nozzle.

The flow of a monatomic gas with the ratio of specific heats γ = 5/3 is studied
numerically in the present work. Two cases are considered: the strong and weak reflection.
In the strong reflection, the free-stream Mach number is M∞ = 4, and the wedge angle
is θw = 25◦. The distance between the trailing edge of the wedge and the symmetry
plane g = 0.75w is chosen in such a way that the expansion fan EF does not interact
with the incident shock wave and meets the reflected shock wave sufficiently far from
the region of shock wave interaction. In the weak reflection, M∞ = 1.7, θw = 8.5◦ and
g = 0.756w. Numerical simulations are performed at different values of the Reynolds
number Rew calculated using the free-stream parameters and the length of the inclined
part of the wedge w; the latter is used hereinafter as the reference scale. A power-law
dependence of dynamic viscosity on temperature μ = Tω with ω = 0.81 in accordance
with available data for argon (Bird 1994) is assumed. The Knudsen number Knw based on
the free-stream parameters and the length of the wedge for variable hard sphere molecules
can be calculated as (Bird 1994)

Knw = 2(5 − 2ω)(7 − 2ω)

15π1/2

(γ

2

)1/2 M∞
Rew

. (2.1)

The range of the Reynolds numbers Rew is considered from 104 to 108 for the strong
reflection, and from 4 × 103 to 2 × 108 for the weak reflection. It corresponds to the range
of the Knudsen numbers Knw from approximately 5 × 10−4 to 5 × 10−8 for the strong
reflection, and from 5.3 × 10−4 to 10−8 for the weak reflection.

3. Inviscid three-shock solution

A shock polar of the incident shock wave (I-polar, figure 2) is the locus of all possible
combinations of the flow deflection angle θ and the ratio of gas pressure to its free-stream
value p/p∞ behind all possible oblique shock waves at fixed M∞ and γ . Point (0, 1)

corresponds to the free stream, and point A to the parameters behind the Mach stem in the
symmetry line (an example of the strong reflection is illustrated in figure 1).

A shock polar of the reflected shock wave (R-polar) is plotted from point D
corresponding to the flow parameters behind the incident shock wave (see point D in
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Figure 2. Shock polars: (a) strong reflection, M∞ = 4, γ = 5/3 and θw = 25◦; (b) weak reflection,
M∞ = 1.7, γ = 5/3 and θw = 8.5◦.

figure 1). The intersection point of the I-polar and the R-polar corresponds to the flow
parameters behind the intersection point of the shock waves IS, RS and MS (triple point;
see figure 1). Hereinafter, the term ‘triple point’ is used for both inviscid and viscous
flows for simplicity (though, strictly speaking, there is a finite shock interaction region in
the viscous case). In the inviscid case, the pressure and the flow deflection angle do not
change across the slip line emanating from the triple point; therefore points B and C in
the flow field correspond to the same point in the (θ, p/p∞) plane. After determining the
flow deflection angle and the pressure at point B(C), one can apply the Rankine–Hugoniot
relations to find the slopes of the shock waves and the slip line at the triple point, and also
the flow parameters behind them. The combination of all these parameters will be referred
to below as the three-shock solution (Ben-Dor 2007).

When moving along the Mach stem from the symmetry plane to the triple point
(segment AB in figure 1), the slope of the Mach stem MS changes from 90◦ to the
angle predicted by the three-shock solution. The flow parameters behind the Mach stem
also change when passing over the segment AB of the I-polar. The pressure and the
deflection angle do not change across the slip line. In further motion upwards along the
reflected shock wave, the flow parameters behind this wave should lie on the R-polar.
The above-described inviscid solution implies that all three shock waves are infinitely thin
and intersect each other at one point. This assumption allows one to use the classical
Rankine–Hugoniot relations on oblique shock waves. Obviously, the above-mentioned
non-Rankine–Hugoniot zone does not exist in this inviscid formulation.

The inviscid solutions presented in figure 2 are constructed for two principally different
cases, namely, the strong (figure 2a) and weak (figure 2b) reflections. From the physical
perspective, the main difference between the strong and weak reflections is that the flow
behind the reflected shock wave is usually supersonic in the former case (point B(C) lies
on the lower ‘weak’ branch of the R-polar; see figure 2a), while it is usually subsonic in
the latter case (point B(C) lies on the upper ‘strong’ branch of the R-polar; see figure 2b).
The free-stream Mach numbers (M∞ = 4 and M∞ = 1.7) are the same as in our previous
studies of the strong (Khotyanovsky et al. 2009) and weak (Ivanov et al. 2010a) irregular
reflections. The wedge angles are chosen in such a way that the shock polar intersection
points are on the left of point D in both cases. As was observed in the previous studies,
the mutual arrangement of the shock polars defines the qualitative character of the flow.
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Variations of the free-stream parameters, the wedge angle and the ratio of specific heats
may induce only quantitative changes (Ivanov et al. 2010a; Chen et al. 2016; Liu et al.
2019) and therefore are not considered in the present work.

4. Numerical procedure

Numerical simulation of the Mach reflection is performed by solving the Navier–Stokes
equations with the CFS solver developed at ITAM SB RAS. This solver was used earlier
by Khotyanovsky et al. (2009) and Ivanov et al. (2010a) for simulating irregular reflection
at low Reynolds numbers, together with the SMILE software system (Ivanov, Markelov
& Gimelshein 1998) based on the DSMC method (Bird 1994). The data obtained with
two different approaches were found to agree well with each other. As the free-stream
conditions of the present study are close to those in Khotyanovsky et al. (2009) and
Ivanov et al. (2010a), no significant differences in the DSMC and Navier–Stokes results
are expected (this is one of the reasons why additional DSMC computations are not
performed).

The Navier–Stokes equations are solved numerically in the present study in the
dimensionless form using the following dimensionless variables:

x = (x, y) = x∗

w
, u = (u, v) = u∗

a∗∞
, t = t∗a∗∞

w
, ρ = ρ∗

ρ∗∞
,

p = p∗

ρ∗∞(a∗∞)2 , T = T∗

T∗∞
, E = E∗

ρ∗∞(a∗∞)2 , μ = μ∗

μ∗∞
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

Here, x is the vector of the spatial coordinates, w is the wedge length, u is the fluid
velocity, a is the speed of sound, t is the time, ρ is the density, p is the pressure, T
is the temperature, E is the total energy per unit mass, and μ is the dynamic viscosity.
The dimensional quantities are marked by an asterisk, and the free-stream parameters are
labelled by the subscript ∞.

In view of (4.1), the Navier–Stokes equations in the conservative form are

∂Q
∂t

+ ∂F
∂x

+ ∂G
∂y

= M∞
Rew

(
∂F v

∂x
+ ∂Gv

∂y

)
, (4.2)

Q =

⎛
⎜⎝

ρ

ρu
ρv

E

⎞
⎟⎠ , F =

⎛
⎜⎝

ρu
ρu2 + p

ρuv

(E + p)u

⎞
⎟⎠ , G =

⎛
⎜⎝

ρv

ρuv

ρv2 + p
(E + p)v

⎞
⎟⎠ ,

F v =

⎛
⎜⎝

0
τxx
τxy
βx

⎞
⎟⎠ , Gv =

⎛
⎜⎝

0
τxy
τyy
βy

⎞
⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

The components of the viscous stress tensor τij are

τxx = 2μ

3

(
2

∂u
∂x

− ∂v

∂y

)
, τxy = μ

(
∂u
∂y

+ ∂v

∂x

)
, τyy = 2μ

3

(
2

∂v

∂y
− ∂u

∂x

)
,

(4.4a–c)
while βx and βy contain the viscous dissipation and heat flux terms:

βx = uτxx + vτxy + μ

(γ − 1) Pr
∂T
∂x

, βy = uτxy + vτyy + μ

(γ − 1) Pr
∂T
∂y

. (4.5a,b)
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Here, Pr is the constant Prandtl number equal to 2/3 everywhere except in § 5.3.
The perfect gas law is used to close this system of equations:

p = ρT
γ

. (4.6)

The Navier–Stokes equations are solved on a structured rectangular mesh using the
fifth-order weighted essentially non-oscillatory (WENO) scheme (Jiang & Shu 1996)
for the convective terms, the fourth-order central difference scheme (Kudryavtsev &
Khotyanovsky 2005) for the diffusion terms, and the second-order Runge–Kutta scheme
to march in time. Time integration is performed until the steady-state solution is reached.

The computations are performed at various Reynolds numbers Rew using the
nested-block grid refinement technique, which was applied earlier in several studies
(Defina et al. 2008a; Tesdall et al. 2008; Ivanov et al. 2012) for modelling flows near
the triple point. The zeroth level of nesting corresponds to the rectangular domain
marked as Block 0 in figure 1. The uniform free-stream supersonic flow with the Mach
number M∞ is specified as the boundary condition at the left (inflow) boundary 1–2.
The parameters calculated from the Rankine–Hugoniot relations behind the IS are set on
the upper boundary segment 2–3, while segment 3–4 is a solid wall. Inviscid boundary
conditions are imposed on segment 3–4 because the wedge boundary layer effects are not
of interest for the present work. The right (outflow) boundary 4–5 is located sufficiently
far downstream so that the flow is supersonic there, and all variables are extrapolated from
the interior of the computational domain. The lower boundary 1–5 is the symmetry line.

In the strong reflection, the computational domain length is 1.5w, while its height is
equal to g = 0.75w. A uniform rectangular mesh in Block 0 consists of 1600 × 800 cells.
In the weak reflection, the length of the computational domain is 1.4w, its height is 0.756w,
and the number of cells is 2400 × 1200. The computation starts from the free-stream
uniform flow.

The numerical solution in Block 0 allows one to resolve the internal structure of shock
waves only at sufficiently low Reynolds numbers. Smaller blocks with a more and more
refined grid are added consecutively to increase the resolution near the triple point at high
Reynolds numbers. Each next block is entirely situated inside the previous one. As a result,
the internal structure of shock waves can always be resolved using reasonable computer
resources.

The first level of nesting is shown in figure 1 and denoted as Block 1. The numerical
solution obtained in Block 0 is interpolated onto a new computational domain, which is
Block 1. The interpolated flow field is prescribed as initial conditions for computations in
Block 1. As earlier, the free-stream parameters are set on the left boundary. The boundary
conditions obtained as a result of interpolation of the numerical solution in Block 0 are
imposed on the upper boundary. At the supersonic parts of the lower and right boundaries,
all variables are extrapolated from the interior of Block 1. At the subsonic parts of the lower
and right boundaries, the pressure interpolated from Block 0 is specified, while all other
variables are extrapolated from the interior of Block 1. In Block 1, the mesh is refined near
the triple point, while the cell sizes on the interface between two blocks are comparable.
The computation in Block 1 is continued on a finer mesh. The density contours obtained
in Block 0 and Block 1 at Rew = 104 are shown in figure 1. A three-shock configuration
consisting of the incident IS and reflected RS shock waves and the Mach stem MS is
clearly visible in both cases. A slipstream emanates from the triple point; the thickness of
this slipstream gradually increases in the downstream direction. The next levels of nesting
are constructed consecutively in the same manner until the number of cells across the
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Figure 3. Mesh and pressure contours in the vicinity of the shock wave intersection for the strong reflection
at Rew = 108 in Block 17. Each second line of the mesh is shown.

shock waves reaches 40 or more, which is sufficient for an accurate description of the flow
in the region of shock wave interaction. For the maximum value of the Reynolds number
Rew = 108, 17 levels of nesting are required for the adequate resolution of flow details.

Figure 3 shows the mesh and the pressure contours in Block 17 for the strong reflection
at the Reynolds number Rew = 108 in coordinates normalised to λ∞, the mean free path
of molecules in the free stream calculated with the variable hard sphere model. There are
approximately 70 cells across the IS, 90 cells across the RS, and 40 cells across the MS.

5. Numerical results: the strong reflection

5.1. Effects of viscosity
The pressure field obtained in Block 0 at Rew = 104 is shown in figure 4(a). The
Navier–Stokes numerical solution is compared with the shock polars in figure 4(b). The
notations ‘Block 0, MS’ and ‘Block 0, RS’ are used to label the distributions of the
corresponding quantities behind the Mach stem and the reflected shock wave along the
lines shown in figure 4(a). The notation ‘Block 3’ refers to the distributions of parameters
behind the Mach stem and the reflected shock wave near the triple point on the third –
maximum for this Reynolds number – level of nesting.

In accordance with the inviscid theory, the MS slope is expected to change from 90◦
at the symmetry line to the angle predicted by the three-shock solution near the triple
point, when moving upwards along the MS. Correspondingly, the flow deflection angle
should change from zero to the value equal to the slope of the slip line in the three-shock
solution. The numerical data in figure 4 show that when moving up the Mach stem, the
angle increases at first, and in the (θ, p/p∞) plane, the data point moves exactly along the
I-polar. Further up, closer to the three-shock intersection, the data point starts to move in
the opposite direction along the I-polar, so that the flow deflection angle decreases and
reaches a local minimum at some point B. When it starts to increase again, the point
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Figure 4. (a) Pressure contours at Rew = 104. (b) Comparison of the Navier–Stokes numerical solution with

the shock polars.

leaves the I-polar. Now both the pressure and the flow deflection angle increase, pass
through local maxima, then start to decrease, and finally reach the R-polar at point D.
However, point D does not coincide with the shock polar intersection point: it corresponds
to a slightly higher value of the RS slope than that predicted by the three-shock solution.
During further motion along the reflected shock wave, the data point moves along the
R-polar, reaches the shock polar intersection point, and remains at this point until the
reflected shock wave meets the first characteristic of the expansion fan EF. Further, the
pressure and the flow deflection angle decrease rapidly.

The above-described behaviour of the numerical data in the (θ, p/p∞) plane is similar to
what was observed previously by Khotyanovsky et al. (2009), Chen et al. (2016) and Shoev
& Ivanov (2016) at low Reynolds numbers. As was noted above, similar deviations from the
three-shock solution were also obtained in inviscid computations by Ben-Dor et al. (1987),
where they were caused by numerical viscosity inevitably present in shock-capturing
schemes. In the present study, the deviations from the inviscid solution are caused by
the sole influence of physical viscosity because the effects of numerical viscosity on
the solution are made negligible by using sufficiently fine meshes resolving the internal
structure of the shock waves. The deviation of the numerical data in Block 3 illustrates the
influence of physical viscosity on the flow structure near the triple point, and confirms the
existence of the non-Rankine–Hugoniot zone in the strong Mach reflection.

Let us consider the structure of this region in more detail. The numerical solution at
Rew = 104 obtained in Block 3 with complete resolution of the internal structure of shock
waves is shown in figure 5. Figure 5(a) shows the Mach number field, where the black solid
lines indicate the positions of the shock waves and slip line predicted by the three-shock
solution. According to the three-shock solution, the predicted values of the Mach number
behind the reflected shock wave and the Mach stem are 1.15 and 0.51, respectively. The
viscosity leads to a small (within 3 %) decrease in both values.

The pressure field is shown in figure 5(b). The inviscid three-shock solution predicts
a constant-pressure region behind the triple point where p/p∞ = 19.56. In the viscous
case, however, the constant-pressure region behind the triple point is not observed. There
is a small region near point C where the pressure is approximately 10 % higher than
that predicted by the three-shock theory. Further downstream from the shock waves, the
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Figure 5. Comparison of the viscous numerical solution with the inviscid solution near the triple point:
(a) Mach number; (b) pressure contours; (c) numerical data and shock polars in the (θ, p/p∞) plane;
(d) distributions of the flow deflection angle.

pressure decreases, but there are some differences from the three-shock predictions even
at a distance of 40–60λ∞. The points along the dashed line in figure 5(b) correspond to
the points in the (θ, p/p∞) plane in figure 5(c). On the segment AB, the numerical data
almost coincide with the I-polar, though the polar is passed in the opposite direction in
this case. Starting from point B, the numerical data deviate significantly from the shock
polars, and the flow deflection angle and the pressure increase. The pressure is maximum
at point C, located immediately behind the shock wave intersection.

The numerical data return to the R-polar only at point D. The segment DE coincides with
the R-polar; however, the data point does not reach the shock polar intersection because of
the limited size of Block 3. Thus the numerical data lie on the segments AB and DE of the
I- and R-polars, where one can speak about the existence of separate shock waves. The flow
parameters behind these waves can be calculated from the Rankine–Hugoniot relations.
At the same time, the slopes of these waves differ from those predicted by the three-shock
solution. The segment BCD does not lie on any shock polar. Here, it is impossible to
distinguish among the incident, reflected and Mach shock waves, so in the viscous case, a
finite-size zone with an essentially two-dimensional flow replaces the inviscid triple point.
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In the physical space, the segment BCD is situated behind the non-Rankine–Hugoniot
zone introduced by Sternberg (1959) in order to resolve the von Neumann paradox.
The size of BCD is approximately 10–20λ∞, which is comparable with the shock wave
thickness. The segments AB and DE lie inside the ‘equalisation zone’ in accordance with
the terminology of Sternberg (1959). It is not the non-Rankine–Hugoniot zone, but it is
still affected by the latter. The shock waves in the equalisation zone are clearly discernible.
The parameters behind these waves in the equalisation zone can be calculated from the
Rankine–Hugoniot (R–H) relations, but they differ from those predicted by the three-shock
theory. The reason for this difference is fairly simple: the existence of the region of the
essentially two-dimensional viscous flow alters the shapes of the adjacent shock waves.
In particular, an inflection point appears on the Mach stem, and the wave above this point
becomes convex with respect to the free stream. This phenomenon will be investigated
in § 5.4.

Figure 5(d) shows the distributions of the flow deflection angle at three values,
y/λ∞ = 861, 867 and 871. In figure 5(b), they correspond to the horizontal lines passing
through points B, C and D, respectively. The dashed line shows the flow deflection angle
predicted by the three-shock theory. The distributions at y/λ∞ = 861 and 867 reveal that
the flow passing through the shock waves deflects up to values higher than that predicted
by the three-shock theory. At y/λ∞ = 871, the flow first passes through the IS and deflects
by 25◦, which exactly corresponds to the wedge angle θw. After that, the flow passes
through the reflected shock RS and deflects back to a value lower than that predicted by
the three-shock theory. Further downstream, the flow deflection gradually approaches the
predicted value in all three cases.

Figure 6 shows the temperature distributions near the triple point. The maximum
temperature is observed between the Mach stem and the shear layer (figure 6a). The
temperature peak is clearly visible in figures 6(b,c) where the distributions along the lines
y/λ∞ = 850, 860.4 and 890 are presented. They pass through the Mach stem below the
temperature maximum, through the maximum itself, and through the incident and reflected
shock waves above the maximum, respectively. The values predicted by the three-shock
theory behind the shock waves are also shown and labelled as ‘IS, 3ST’, ‘MS, 3ST’ and
‘RS, 3ST’.

The distributions at y/λ∞ = 850 and 860.4 demonstrate that the temperatures behind
the Mach stem are higher than the value MS, 3ST. The distribution at y/λ∞ = 890 shows
that the temperature behind the incident shock wave agrees well with the theoretical value
IS, 3ST, while the temperature behind the reflected shock wave is slightly higher than
RS, 3ST.

Figure 6(c) illustrates these differences in more detail. It is clearly seen that both
distributions at y/λ∞ = 850 and 860.4 display peaks exceeding the three-shock solution
by 0.04 and 0.08, respectively. It should be noted that the temperature peak at
y/λ∞ = 860.4 exceeds even the temperature behind the normal shock wave, ‘Normal
shock, R–H’. A similar behaviour of temperature was also observed in the inviscid
computation with a shock-capturing scheme (Ben-Dor et al. 1987) where numerical
viscosity apparently acts similarly to physical viscosity.

A well-known specific feature of the viscous shock wave structure is the entropy
maximum inside the wave. At the same time, the entropy behaviour inside the region
where several shock waves merge has not been studied, though it is of considerable interest.
Figure 7 shows the entropy contours and distributions near the triple point. All shock waves
are clearly visible in figure 7(a), and the maximum value of entropy is observed inside the
Mach stem. The entropy distributions along the horizontal lines y/λ∞ = 850, 870 and
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Figure 6. (a) Temperature contours near the triple point. (b) Distributions along the horizontal lines y/λ∞ =
890, 860.4 and 850 as compared to the three-shock solution. (c) Distributions along the horizontal lines
y/λ∞ = 860.4 and 850 as compared to the three-shock and normal shock solutions close to the temperature
peak.

890 reveal the entropy peaks inside each shock wave (figure 7c). At y/λ∞ = 870, two
entropy peaks belonging to the IS and the RS are so close to each other that there is no
entropy plateau between them. The entropy field inside the region where three shock waves
meet is shown enlarged in figure 7(b). It is seen here that the contours inside the IS and
the RS merge and transform into a single maximum inside the Mach stem. The entropy
distributions along the horizontal lines through the region are plotted in figure 7(d). At
y/λ∞ = 869, it is still possible to distinguish separate peaks inside the incident (IS) and
reflected (RS) shock waves. At lower values of y/λ∞, two entropy maxima merge into one
corresponding to the Mach stem.

In order to quantify the size of the observed small viscous flow region in comparison to
the macroscopic length scales of the flow, the density isolines in the whole computational
domain (Block 0) are presented in figure 8(a). First, note that the three-shock solution
at the macroscopic level clearly predict the angles of all shocks well. The angle of the
slip line of the three-shock solution agrees well with that of the shear layer obtained in
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Figure 7. (a) Entropy contours near the triple point; (b) entropy contours in the enlarged region near the triple
point; (c) distributions at various y/λ∞; (d) distributions at various y/λ∞ in the enlarged region near the triple
point.

the computation, at least up to distances of approximately 10 % of the wedge length from
the triple point. The area where the pressure and flow deflection angle are within a 1 %
margin from the three-shock solution is shown in green. This is a significant region behind
the reflected shock and above the shear layer. Its size, which is approximately 15 % of
the wedge length, is nearly independent of the Reynolds number. There is another narrow
portion of the flow field on the lower boundary of the shear layer where the parameters
are close to the three-shock solution, yet it is much smaller than the upper one. The other
part of the flow behind the Mach stem is not predicted by the three-shock solution. The
fact that the intrinsically local solution is not valid here can be expected even without
taking viscosity into account, because the Mach stem is curved and the flow behind it is
subsonic. The high-pressure region behind the shock wave intersection discussed above is
shown in red (again a 1 % margin has been chosen). It can be considered a region where
the three-shock solution is clearly invalid due to viscosity effects. The region size is at
least one order of magnitude smaller than that of the green area, and as will be shown
below, is defined mainly by the mean free path length scale and therefore decreases with
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selected streamlines: green area indicates parameters are within 1 % of the three-shock solution; blue and red
areas indicate parameters are lower or higher than 1 % from the three-shock solution.

the Reynolds number. Note that we cannot speak strictly about the size of the regions,
because the choice of 1 % margin is rather arbitrary.

One can look at this high-pressure region more closely in figure 8(b). The size of this
region is approximately 100 mean free paths, and it is located mainly behind the reflected
shock, although some part of it is located behind the shear layer. Farther from the shock
intersection, the pressure is close to the three-shock solution behind both the Mach stem
and the reflected shock, up to distances of approximately 150 mean free paths for the
streamline passing through the triple point. A similar field for the deflection angle in
figure 8(c) demonstrates that in the vicinity of the shock intersection, the flow deflection
angle is lower than that predicted by the three-shock theory except for the streamline
passing through the triple point, where it is greater than the three-shock theory value.
It can also be demonstrated by comparing the positions of points A, B, C, D and E in
the flow fields with their positions on the polar in figure 5(c). Note, on the one hand, that
the direction of streamline passing through point C agrees well with the direction of the
slip line in the three-shock solution; on the other hand, there is more than 1 % difference
in the deflection angle: the flow in the shear layer is deflected more than is predicted by
the shock wave solution. It corresponds to the position of point C on the polar. There is a
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very narrow region on the lower boundary of the shear layer where the flow direction is
predicted by the inviscid theory, while this region is much bigger above the shear layer,
which is in agreement with figures 8(a,b). Again comparing the positions of the points in
the flow fields and on the polar, one can conclude that the non-Rankine–Hugoniot zone
is significantly (almost by one order of magnitude) smaller than the equalisation zone
where non-Rankine–Hugoniot relations are satisfied but the flow parameter values clearly
contradict the three-shock theory. In particular, this is true for the segment DE and even
for some part of the reflected shock above.

5.2. Passage to the inviscid limit
The free-stream mean free path λ∞ is the only independent length scale in the problem of
the internal structure of the shock wave. For this reason, naturally, the solution obtained in
coordinates normalised to λ∞ does not depend on the Reynolds number. In the irregular
reflection of shock waves, there are additional length scales: the wedge length w, and the
distance from the wedge trailing edge to the symmetry line g. In fact, the independent
dimensionless parameters are the Reynolds number based on one of the length scales (e.g.
Rew) and the ratio g/w. The following question is natural: does the flow field inside the
region of shock wave interaction depend on these parameters? Of primary interest is the
dependence on the Reynolds number Rew, which can vary within a wide range.

The flow fields near the triple point at Rew = 104 and 108 are compared in figure 9.
Here, the coordinates are normalised to the mean free path of molecules in the free stream
for the corresponding Reynolds number. The flow fields are shifted so that the shock wave
intersection positions match each other. This shift is necessary because the Mach stem
heights, and hence the triple point positions, are different at different Reynolds numbers.

Figure 9(a) shows the flow field near the triple point with size approximately
100λ∞ × 100λ∞. It is seen clearly that the pressure contours inside the region with
size approximately 30λ∞ × 30λ∞ coincide completely both inside the shock waves and
behind them. Noticeable differences in the pressure contours obtained at different Rew are
observed only at a larger distance downstream from the interaction region. The region
with size approximately 30λ∞ × 30λ∞ is zoomed out in figures 9(b,d). The zone of
increasing pressure (figure 9b), which is not described by the inviscid three-shock theory,
is observed even at Rew = 108. In fact, figure 9(b) shows the vicinity of point C presented
in figure 5(b), where a significant difference between the viscous and inviscid solutions is
observed. Figures 9(c,d) show the Mach number and deflection angle flow fields, where
the shear layer emanating from the shock wave interaction region is visible, in contrast to
the pressure field. As is seen, the isolines coincide completely in a small vicinity of the
triple point inside the shear layer.

For a more detailed quantitative comparison of flow fields at different Reynolds
numbers, figure 10 shows the numerical data in the (θ, p/p∞) plane along with the
shock polars (figure 10a) and the pressure distributions at various y/λ∞ along with the
three-shock theory prediction (figure 10b). The pressure and deflection angle distributions
along the black dashed curve in figure 9(a) are plotted in figure 10(a). It is seen clearly that
the numerical data at all Rew values agree well with each other. As concerns the pressure
distributions along the horizontal lines, they also coincide at different Rew. In all cases,
the pressure behind the shock waves is higher than that in the three-shock solution. Along
the line y/λ∞ = 870 passing through the non-Rankine–Hugoniot zone, the pressure in the
region close to point C in figure 10(a) exceeds the inviscid solution by almost 10 %. The
results computed at the intermediate Reynolds number Rew = 106 also confirm that the
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Figure 9. Comparison of flow fields near the triple point at two Reynolds numbers: (a) pressure; (b) pressure
in the enlarged region; (c) Mach number in the enlarged region; (d) flow deflection angle in the enlarged region.

flow pattern around the triple point in coordinates normalised to λ∞ remains unchanged
despite the change in the Reynolds number. The contours and the pressure distributions
at Rew = 106 are not shown because in the coordinates (x/λ∞, y/λ∞), they are not
distinguishable from the results presented for other Reynolds numbers.

It should be emphasised that the mean free paths at Rew = 104 and 108 in
non-normalised coordinates differ by 104 times. The entire range of the x coordinate over
which the pressure distribution at Rew = 108 is presented (figure 10b) is smaller than
the mean free path at Rew = 104. Nevertheless, being normalised to λ∞, they coincide
completely.

Note that the maximum Reynolds number 108 considered in the present study is
somewhat close to the upper limit attainable in ground-based aerodynamic experiments.

5.3. Total enthalpy behaviour in the non-Rankine–Hugoniot zone
For a more detailed study of the non-Rankine–Hugoniot zone, we consider the total
enthalpy distribution. According to the Rankine–Hugoniot relations, the total enthalpy is
constant across the shock wave in a steady flow of an inviscid and non-heat-conducting
fluid. For a viscous heat-conducting fluid, the total enthalpy changes inside the shock
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Figure 10. Comparison of the numerical solutions at different Reynolds numbers: (a) the (θ, p/p∞) plane;
(b) pressure distributions at various y/λ∞.
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Figure 11. Numerical solution at the Prandtl number Pr = 2/3: (a) total enthalpy field near the triple point;
(b) total enthalpy distributions at various y/λ∞.

wave, but its values ahead of and behind the shock wave are equal (for more details, see
e.g. Shoev, Timokhin & Bondar 2020).

Figure 11(a) shows the total enthalpy field near the triple point. As shown in the previous
subsection, the flow fields near the three-shock intersection in coordinates normalised to
the mean free path λ∞ are identical at different Reynolds numbers, so the results reported
in this subsection are relevant for a wide range of Rew. The total enthalpy increases inside
the shock wave, reaches the maximum value, and then decreases; behind the shock wave,
the total enthalpy is again equal to its free-stream value. A noticeable exception is the shear
layer, where the viscosity effects lead to the non-uniform distribution of the total enthalpy.

The total enthalpy distributions along the lines y/λ∞ = 850, 870 and 890 are shown in
figure 11(b). At y/λ∞ = 890, one can see perfect recovery of the total enthalpy behind
the IS and RS because the line is far from the shock wave intersection. The characteristic
peaks inside the IS and RS are separated by a distance much greater than the shock wave
thickness. At y/λ∞ = 870, the total enthalpy behind the incident shock wave does not
have enough space to return to its free-stream value; instead, it passes smoothly to the
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distribution inside the reflected shock wave. In the region of shock wave intersection,
the distance along the x axis between the total enthalpy peaks is comparable with the
shock wave thickness. The total enthalpy behind the RS is not recovered because of the
non-uniform shear layer flow. Further downstream, the line y/λ∞ = 870 leaves the shear
layer because the shear layer is not aligned with the horizontal axis. As a result, the
total enthalpy approaches its free-stream value at a distance of approximately 50λ∞. At
y/λ∞ = 850, the peak of the total enthalpy inside the MS is significantly higher than
peaks inside other shock waves. It is explained by a greater shock strength of the MS. The
total enthalpy is recovered behind the MS, then it changes in the shear layer.

According to the Navier–Stokes solution for the viscous shock transition, the total
enthalpy is strictly constant everywhere, including the shock transition interior if Pr = 3/4
(see also Appendix A). This property is used below to better visualise the location of the
non-Rankine–Hugoniot zone.

The total enthalpy field computed with Pr = 3/4 (all other parameters are the same)
is shown in figure 12. The black solid contours (figure 12a) are the pressure isolines
p/p∞ = 1.01, 9.1, 9.15 and 19.6, which approximately show the boundaries of the shock
waves. The total enthalpy inside the shock waves is indeed constant everywhere except
for the region of shock wave intersection. It is seen in figure 12(a) that the shear layer is
formed inside the region where all shock waves merge together in the vicinity of the point
(x/λ∞, y/λ∞) = (673, 867). The flow parameters behind this region cannot be predicted
by the Rankine–Hugoniot relations because it is impossible to identify a separate shock
wave. The one-dimensional viscous shock transition solution is not applicable in this
region either because the flow here is essentially two-dimensional. Therefore, a deviation
of the total enthalpy from a constant value could be expected. A noticeable change in
the total enthalpy is observed inside the region of shock wave confluence between the
pressure contours p/p∞ = 1.01 and 19.6. In fact, it visualises the non-Rankine–Hugoniot
zone. It is important to note that in contrast to the inviscid case, the shear layer in the
Navier–Stokes computations does not originate from a point; instead, it emerges as a
finite-size spot (approximately 10λ∞; see figure 12a) immediately behind or even inside
the region of shock wave interaction. The distributions at y/λ∞ = 850, 870 and 890 are
presented in figure 12(b), where the total enthalpy is plotted on the same scale as for
Pr = 2/3. At y/λ∞ = 890, the total enthalpy is constant with high precision because this
line is taken far from the region where the shock waves and the shear layer interact. At
y/λ∞ = 870, the total enthalpy increases inside the reflected shock wave and the shear
layer, then it decreases further downstream. Finally, at y/λ∞ = 850, the total enthalpy
increases only slightly inside the Mach stem, while further downstream it first decreases
and then increases again in the shear layer. It should be noted that the increase in the
Prandtl number from Pr = 2/3 to 3/4 reduces the total enthalpy deviation inside the shear
layer from the free-stream value. For example, at y/λ∞ = 850, the minimum value is
−0.013 at Pr = 2/3 (figure 11b) and −0.009 at Pr = 3/4 (figure 12b).

The total enthalpy is not equal to its free-stream value inside the shear layer downstream
from the non-Rankine–Hugoniot zone. The shear layer thickness grows downstream. The
total enthalpy distribution across the shear layer is non-monotonic (figure 12c). It is seen
that the shear layer consists of two parts, where the total enthalpy values are lower and
higher than its free-stream value, respectively.

Let us consider in more detail the region where the shock waves meet (figure 13).
Figures 13(a,c) additionally show the vertical blue lines corresponding to several x/λ∞
values, and the inclined pink lines Lb, Lc, Lt along which the total enthalpy distributions
are plotted in figures 13(b,d). The total enthalpy is constant along the line x/λ∞ = 669 in
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Figure 12. Numerical solution at the Prandtl number Pr = 3/4. (a) Total enthalpy field near the triple point.
The black solid contours indicate the shock wave boundaries. (b) Total enthalpy distributions at various y/λ∞.
(c) Total enthalpy distributions along lines L1, L2 and L3 crossing the shear layer.

figure 13(b) because the shock waves do not yet interact there and are clearly separated
from each other. However, slightly (only by λ∞) downstream, the total enthalpy noticeably
deviates from the constant value: a small peak appears inside the incident shock wave
in the distribution at x/λ∞ = 670. The minimum and maximum are visible in the
next distribution at x/λ∞ = 671, inside the shock wave confluence. Further downstream
(x/λ∞ = 673 and 676), the total enthalpy deviates from its free-stream value more and
more noticeably. As was demonstrated in figure 12, these peaks of the total enthalpy persist
inside the shear layer far beyond the region of shock wave interaction. It should be noted
that there is a local maximum in the total enthalpy field inside the region of shock wave
interaction, which is evidenced by the presence of a closed isoline (through which the line
Lc passes; figure 13c).

5.4. Curvature of the sonic line inside the Mach stem
Passing through the Mach stem, the supersonic flow is decelerated to a subsonic velocity
so that the Mach stem in the inviscid case is also a sonic line. The slope of the Mach stem
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Figure 13. Numerical solution at Pr = 3/4. (a,c) Total enthalpy field in a small vicinity of the triple point.
The black solid contours approximately indicate the shock wave boundaries. (b,d) Total enthalpy distributions
along several vertical and inclined lines.

changes from 90◦ near the symmetry line to the angle predicted by the three-shock theory
at the triple point. In a viscous flow, the Mach stem is a finite-thickness shock transition,
whereas the sonic line remains infinitely thin. The sonic line inclination can serve as a
convenient quantity to characterise the change in the Mach stem shape from the symmetry
line to the triple point.

It was shown above that viscous effects lead to noticeable deviations of the flow
parameters behind the Mach stem from the I-polar (point B in figure 10a). Visualisation
of the sonic line reveals an important feature of the viscous flow: the sonic line has
an inflection close to the triple point (figure 14). Figure 14(a) shows the shape of the
sonic line xson( y); the inflection point is the point where the second derivative vanishes,
∂2xson/∂y2 = 0. The existence of the inflection point is hardly visible in figure 14(a);
however, it is evident from figure 14(b), where ∂2xson/∂y2 is plotted. Here, point B is
the same as in previous figures. As was shown by Tan, Ren & Wu (2006), the existence of
the MS inflection near the triple point is more pronounced at other free-stream parameters.

The fields of the mass flux components ρu and ρv (figures 14c,d) reveal two regions
with closed contours of ρu separated by a line passing through the inflection point.
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Figure 14. (a) Deflection angle flow field near the triple point. The black solid curve is the sonic line. The
streamlines are indicated by arrows. (b) Second derivative ∂2xson/∂y2 versus y/λ∞. (c,d) Fields of the mass
flux components ρu (c) and ρv (d).

At the same time, a closed isoline of ρv in figure 14(d) is located well above the inflection
point and corresponds to the closed contour in the field of the flow deflection angle seen
in figure 9(d). The inflection point on the MS observed in the Euler computations of Tan
et al. (2006) was connected, most probably, with not physical but numerical viscosity,
which is an inherent feature of shock-capturing schemes. Generally speaking, the form
of the numerical viscosity differs from the viscous terms of the Navier–Stokes equations;
nevertheless, the numerical viscosity still works in such a way that shock waves acquire an
internal structure. Therefore, it can be assumed that the mechanisms of the emergence of
the inflection point in these two cases are similar, and its existence is a specific feature of
the irregular interaction of finite-thickness shock waves. This assumption can be verified
by solving the Euler equations with a shock-fitting scheme, as was done e.g. by Ivanov
et al. (2010b) and Ivanov, Paciorri & Bonfiglioli (2010c) for other flow conditions.
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Figure 15. Pressure fields near the triple point at M∞ = 1.7, γ = 5/3, θw = 8.5◦: (a) Rew = 4 × 103;
(b) Rew = 4 × 104; (c) Rew = 8 × 106; (d) Rew = 2 × 108. The black solid lines show the shock wave locations
predicted by the three-shock solution.

6. Numerical results: the weak reflection

6.1. Effects of viscosity and passage to the inviscid limit
As was noted above, a numerical study of the weak reflection in a steady viscous flow
was undertaken earlier by Ivanov et al. (2012), and the passage to the inviscid limit was
investigated. In that paper, however, only the case where the three-shock solution does
not exist (the von Neumann paradox conditions) was considered. In the present paper,
we have performed similar computations for a more common situation when the I- and
R-polars intersect, and the three-shock solution exists. The essential difference between
the considered strong and weak reflections is that the flow behind the RS is subsonic in
the latter case.

The computations are performed at the following values of the flow parameters:
M∞ = 1.7, γ = 5/3, θw = 8.5◦, and various Rew. The shock polars for θw = 8.5◦ are
shown in figure 2(b); the three-shock solution corresponds to point B(C).

The pressure fields near the triple point at various Reynolds numbers (from
Rew = 4 × 103 to Rew = 2 × 108) are shown in figure 15. The black solid lines show the
locations of the shock waves and the slip line predicted by the three-shock theory. It is
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Figure 16. Numerical solutions of the Navier–Stokes equations at different Reynolds numbers. Flow deflection
angle field at (a) Rew = 4 × 103, and (b) 2 × 108. The black solid curves show the shock wave locations
predicted by the three-shock theory. (c) Distributions of the flow deflection angle along several horizontal
lines. The slope of the slip line predicted by the three-shock solution is shown as SL. (d) Numerical data
plotted in the (θ, p/p∞) plane along with the shock polars.

seen that the slopes of RS and MS at Rew = 4 × 103 do not agree well with the inviscid
solution. As the Reynolds number is increased, the agreement between the numerical
solution and the three-shock theory becomes better and better. Despite a significant change
in the shock wave slopes with an increase in the Reynolds number, there are only minor
changes (∼0.5 %) in pressure behind these shock waves.

The fields of the flow deflection angle computed at Rew = 4 × 103 and 2 × 108 are
shown in figures 16(a,b). As is seen clearly, in contrast to pressure, the flow deflection
angle changes significantly: the maximum value increases from approximately 4.2◦ to
approximately 6.484◦. At higher Reynolds numbers, the shear layer is thinner, and its
slope tends to the slip line angle predicted by the three-shock theory. For a more detailed
analysis of the flow near the triple point, we plot in figure 16(c) the flow deflection angle
distributions along lines L1, L2, L3 (figure 16(a), Rew = 4 × 103) and L1*, L2*, L3*
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(figure 16(b), Rew = 2 × 108). The distributions at low and high Reynolds numbers are
shown by solid curves and symbols, respectively.

Lines L1 and L1* pass through the IS and RS. It is seen clearly that inside the IS
(this region is indicated as the ‘IS profile’) the distributions along L1 and L1* completely
coincide when plotted in the x/λ∞ coordinates. As for the RS, the distributions inside it at
different Rew coincide up to a certain point. After that, the distributions diverge so that the
flow deflection angle behind the RS is noticeably smaller at the lower Reynolds number.
The curvature of the RS in the normalised coordinates is larger at low Rew. As a result, the
slope of the RS at the intersection with L1 is noticeably different from that predicted by
the three-shock solution. This difference is much smaller at higher Rew since the RS shape
is closer to the straight line.

Lines L2 and L2* pass through the region of shock wave confluence. The distributions
along L2 and L2* already differ inside the IS. More exactly, the profiles also coincide up
to a certain point and diverge rapidly behind it. At high Reynolds numbers, the distribution
along L2* has a small peak, which almost reaches the theoretical value at the triple point
labelled as SL in figure 16(c).

A similar behaviour is also observed for the distributions along lines L3 and L3* passing
through the MS. At first, they almost coincide inside the MS; however, farther downstream
they diverge significantly. As earlier, this is explained by a larger curvature of the MS (in
the normalised coordinates) at low Rew.

It should be noted that the flow deflection angle at high Reynolds number is nearly the
same in the whole region behind the shock waves. It is somewhat lower than SL value,
the theoretical value at the triple point. A different behaviour is observed at low Reynolds
number: behind the shock waves, the distributions along the lines L1 and L2 are fairly close
to each other, whereas the distribution along L3 behind the MS is noticeably different from
them.

The results computed at five different Reynolds numbers are compared in figure 16(d)
in the (θ, p/p∞) plane. It is seen clearly that an increase in the Reynolds number leads
to an increase in the maximum flow deflection angle, whereas the pressure remains nearly
the same, which was actually demonstrated above in considering the isobars near the triple
point. At Rew = 2 × 108, the numerical data approach closely the shock polar intersection,
which represents the three-shock solution. It can be expected that the inviscid solution
will be reached in the limit Rew → ∞. This behaviour is qualitatively consistent with that
obtained previously in studying the weak reflection shock waves under the von Neumann
paradox conditions. In both cases, the viscous solution tends to the inviscid configuration
as the Reynolds number increases, with only one difference: this is a configuration
corresponding to the four-wave solution in the case of the von Neumann paradox and a
simpler, three-shock, configuration in the present case. On the other hand, the numerical
simulations also show that the viscosity plays an important role in the formation of the
flow structure near the triple point in a wide range of Reynolds numbers, and significantly
changes the mechanism of interaction of three intersecting shock waves.

Figure 17 shows the density near the triple point at Rew = 2 × 108 and five density
distributions at various Reynolds numbers along lines Lt, Lc and Lb. The lines are parallel
to the slip line of the three-shock solution and chosen so that Lt passes across the IS
and RS, Lc passes through the shock interaction region entering the shear layer, and
Lb passes across the MS. The Lc line passes through the origin (the triple point of the
three-shock solution), while Lt and Lb intercept the y axis 40 mean free paths above and
below the origin, respectively. The distributions along Lt show that the density behind
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Figure 17. Density contours and distributions at various Rew. (a) Density contours at Rew = 2 × 108. The
black solid lines show the three-shock solution. Lines Lt, Lc and Lb are parallel to the slip line of the three-shock
solution. (b–d) Density distributions at various Rew along lines (b) Lt, (c) Lc, and (d) Lb. Lines labelled
‘Three-shock solution RS’, ‘RS’ and ‘Three-shock solution MS’, ‘MS’ show the density according to the
three-shock solution behind the RS and MS, respectively. The dashed curves, showing the deviation from the
three-shock solution, are labelled ‘Deviation’.

the RS tends to the three-shock solution as the Reynolds number increases. The deviation
from the three-shock solution decreases with Rew; in particular, it is less than 0.2 % at
Rew > 8 × 105. The density distributions along Lc show that in the plotted region inside
the shear layer, the numerical viscous solution at Rew > 8 × 105 predicts almost a constant
density value between the values predicted by the three-shock solution behind the RS and
MS. At Rew < 8 × 105, the density does not reach a plateau and decreases downstream
from the triple point. In an inviscid flow, the density has a jump across the slip line
likewise in a shock wave, therefore in a viscous flow, the density inside the shear layer
has a value somewhere in between the values across the slip line. It is necessary to note
that the pressure and deflection angle have no jumps across the slip line in an inviscid
flow. That is why the numerical data in the (θ, p/p∞) plane tend to the shock polar
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intersection point (inviscid three-shock solution) as the Reynolds number grows. The
density distribution along Lb also shows convergence of the numerical viscous solution to
the inviscid three-shock solution with an increase in the Reynolds number. More exactly,
the deviation of density behind the MS is smaller than 0.4 % at Rew > 8 × 105.

7. Discussion

The results of the numerical simulations of the irregular reflection show that the viscous
effects remain substantial near the triple point even at very high Reynolds numbers. In
both cases of the strong and weak reflections, there is a non-Rankine–Hugoniot zone
downstream of the intersection of the incident shock wave, the reflected shock wave,
and the Mach stem. The flow inside the non-Rankine–Hugoniot zone is essentially
two-dimensional, and the flow parameters inside it cannot be calculated from the
Rankine–Hugoniot relations. The performed numerical simulations show that the
solutions of the Navier–Stokes equations in this region behave differently in the limit
Rew → ∞ for strong and weak shock waves.

In the strong reflection, all the shock wave slopes near the triple point are well predicted
by the three-shock theory and remain unchanged as the Reynolds number increases.
Moreover, there is a substantial region of the supersonic flow behind the reflected
shock, where the parameters are very close to those predicted by the three-shock theory.
The size of this region is determined by the macroscopic flow structure and equals a
fraction of the wedge length (approximately 15 %). On the other hand, for any sufficiently
large Reynolds number, there exists a much smaller flow region behind the shock wave
intersection (equalisation zone) where certain differences from the inviscid three-shock
solution are observed; in particular, the pressure there is substantially higher than at
the inviscid triple point. In an even smaller part of this region (non-Rankine–Hugoniot
zone), the parameters behind the reflected shock and Mach stem are not predicted by
the Rankine–Hugoniot relations. The size of this zone is inversely proportional to the
Reynolds number and is of the order of magnitude of dozens of mean free paths. The
structure of the non-Rankine–Hugoniot zone is similar for various Reynolds numbers.
In coordinates normalised with the free-stream mean free path, the numerical solution
inside the zone does not depend on the Reynolds number. The numerical data presented
in the (θ, p/p∞) plane are identical at all examined values of the Reynolds number and
do not approach the shock polar intersection even as Rew increases. This means that the
numerical solution of the Navier–Stokes equations in this region is always different from
the three-shock solution, even as Rew → ∞. This deviation is fairly noticeable, e.g. the
difference in pressure is approximately 10 % for the considered flow parameters. Thus the
assumption of Sternberg (1959) that the viscous solution does not tend to the inviscid one
as μ → 0 in the strong reflection can be considered as valid. More exactly, the pointwise
convergence takes place in physical coordinates; however, the uniform convergence is not
observed. In the mean free path coordinates, outside the shock waves downstream from
the triple point, the solution does not depend on Rew and is different from the inviscid one,
so there is neither uniform nor pointwise convergence to the inviscid solution.

At the same time, in the weak reflection, a different scenario of the transition to the
inviscid limit is observed. Even at the examined (quite high) Reynolds numbers, the flow
fields near the triple point are not similar and do not coincide in the coordinates normalised
to the internal viscous scale, such as e.g. the mean free path of molecules. As the Reynolds
number increases, the numerical data presented in the (θ, p/p∞) plane get closer and
closer to the inviscid solution being the shock polar intersection in the case discussed
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here. It is valid both at the von Neumann paradox conditions (Ivanov et al. 2012) and in a
more typical case considered in the present paper when the three-shock solution exists. At
relatively low Reynolds numbers, the shock wave slopes near the triple point are clearly
different from those predicted by the three-shock theory, but converge to the inviscid
theoretical prediction with increasing Reynolds number. One cannot say that the flow fields
converge uniformly to the solution of the Euler equations because the shock waves always
have a finite thickness at any finite Reynolds number. The magnitude of this difference is
of the order of the jump of gas-dynamic variables across the shock wave. Nevertheless,
the flow parameters near the triple point outside the shock waves approach the inviscid
three-shock theory predictions as the Reynolds number increases. One should, however,
keep in mind that the numerical solution approaches the three-shock theory values only in
the near vicinity of the shock intersection; the parameters behind both the Mach stem and
reflected shock are not constant, and a macroscopic flow region with parameters predicted
by the three-shock theory typical of the strong reflection is not observed. In fact, there is
not a single point in the flow behind the shocks where the deflection angle reaches exactly
or exceeds the three-shock theory value even at the highest Reynolds number modelled.

Apparently, the different behaviour of the solutions of the Navier–Stokes equations in
the strong and weak reflections is caused by the differences in the mechanisms of shock
wave interaction in these two cases. As has been mentioned already, from the physical
perspective, the most substantial difference between these two cases is that the flow behind
the reflected shock is supersonic for the strong reflection, while it is subsonic for the weak
reflection.

In the strong reflection, the flow in the shock wave interaction region is governed by
two factors: inviscid shock wave interaction effects described by the three-shock theory
(with no characteristic length scale), and viscous effects with the length scale proportional
to the mean free path. It leads to the local viscous solution, which is independent of the
macroscopic length scale of the wedge size (hence independent of the Reynolds number).

In the weak reflection with the subsonic flow behind the reflected shock wave, the shock
wave interaction region can be significantly affected additionally by the downstream flow,
which depends on the macroscopic geometric parameters of the problem: the finite size
of the wedge and the ratio g/w. This third factor leads to the dependence of the local
viscous solution in the shock interaction region on two different length scales: mean free
path and wedge size. This is why the local interaction region solution clearly depends on
the Reynolds number, which is proportional to the ratio of the wedge size and mean free
path. In contrast to the strong reflection, the reflected shock wave is curved, and the length
scale of the wedge size governs its curvature. When the mean free path coordinates are
used, the curvature radius is proportional to the Reynolds number. Only for the highest
Reynolds numbers considered in the present work are the reflected shock and Mach stem
curvatures negligible in the vicinity of the interaction region on the length scales of 100
free-stream mean free paths. For lower Reynolds numbers, the curvature is so substantial
that its radius is commensurable with the shock thickness, and there is a clear deviation
from the three-shock theory in terms of the slopes of the reflected shock and the Mach
stem. With an increase of the Reynolds number, the shock wave angles and the numerical
data in the (θ, p/p∞) plane converge to those predicted by the three-shock theory.

The above reasoning explains in part the difference between the behaviour of the viscous
solution for the strong and weak reflections in the limit Rew → ∞. However, it is not
clear why the uniform convergence to the inviscid solution seems to take place for the
weak reflection while this is not the case for the strong reflection. The case of the highest
considered Reynolds number of the weak reflection is similar to the strong reflection due
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to the fact that all three shock waves in the vicinity of the interaction region are straight
and their slopes coincide with the three-shock solution. However, as can be inferred
from the (θ, p/p∞) results, the viscous solution for the weak reflection converges to the
three-shock theory values, while in the strong reflection one observes a clear deviation
from the inviscid solution (non-Rankine–Hugoniot zone). Probably, this difference can be
explained by much sharper gradients in the strong reflection. In particular, as can be seen
in figure 2(a), the R-polar has a very steep slope near point B(C), so a small deflection of
the flow behind the reflected shock wave leads to a significant change of pressure, while
for the weak reflection (see figure 2b), we cannot expect a significant change of pressure. A
non-Rankine–Hugoniot zone, somewhat similar to that observed in the strong reflection,
can possibly persist in the weak reflection even in the limit Rew → ∞, while just being
not recognisable in the (θ, p/p∞) or flow field data due to really minute deviation from
the inviscid solution.

One of the possible limitations of the present study is that the flow analysis is based
on the Navier–Stokes equations, while the zone of interest is several dozens of mean
free paths in size and local gradients are quite high, especially in the strong reflection,
so non-equilibrium effects are possible. However, one can conclude from previous works
(Khotyanovsky et al. 2009; Ivanov et al. 2010a) that major qualitative differences between
the Navier–Stokes and the DSMC (or the Boltzmann equation) solutions can hardly
be expected in the studied flow region. Another point is that the present work can be
considered a study of the Navier–Stokes solution convergence behaviour as Re → ∞,
which would make sense from the mathematical perspective even if the equations did
not capture the flow phenomena accurately.

8. Conclusions

The influence of viscosity on the flow structure near the triple point in the strong (M∞ = 4)
and weak (M∞ = 1.7) irregular reflection of shock waves has been studied by solving
numerically the Navier–Stokes equations. It has been found that in both cases, the so-called
‘non-Rankine–Hugoniot zone’ emerges due to the interaction of viscous, finite-thickness
shock transitions. The flow in this zone is essentially two-dimensional, so the flow
parameters behind this zone cannot be determined from the Rankine–Hugoniot relations.

The numerical solutions of the Navier–Stokes equations in the strong and weak
reflection of shock waves behave significantly differently as the Reynolds number
increases.

At M∞ = 4, the flow fields near the triple point at different Reynolds numbers are
self-similar and coincide in the coordinates normalised to λ∞, the mean free path of
molecules in the free stream. The flow parameters behind the reflected wave and the
Mach stem differ from those predicted by the inviscid three-shock theory. More exactly,
as Re → ∞, the maximum difference between the inviscid and viscous solutions tends
to a non-zero constant value. Thus the convergence of the Navier–Stokes solutions to the
solution of the Euler equations as Re → ∞ is not uniform. In other words, there is a finite
difference between the Navier–Stokes and Euler solutions inside a flow region behind
the shock intersection; the size of this region decreases in the physical coordinates as
Re → ∞, although it remains constant in the coordinates normalised to λ∞.

At M∞ = 1.7, the flow structure – in particular, the slopes of shock waves – in the
vicinity of the triple point depends on the Reynolds number even in coordinates normalised
to λ∞. The flow parameters behind the reflected shock wave and the Mach stem approach
those predicted by the inviscid theory as Re → ∞ due to adjusting of shock wave slopes.
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Thus in the inviscid limit, the magnitude of the difference between the viscous and inviscid
solutions vanishes, along with the size of the region where this difference is observed.

It can be concluded that there is a substantial distinction in the limit behaviour of the
Navier–Stokes solutions in the strong and weak reflections of shock waves. Presumably,
this distinction is due to the subsonic flow behind the reflected shock wave, and much
weaker gradients in the near vicinity of the shock interaction region in the weak reflection.
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Appendix A

Let us consider a fluid flow intersecting a steady oblique shock wave. As everywhere in the
paper, the fluid is assumed to be a perfect gas with the shear viscosity and heat conductivity
depending on the temperature, and the bulk viscosity equal to zero. The coordinate normal
to the wave front is x, the coordinate along the wave is y, the corresponding velocity
components are u and v, and the density, pressure, temperature and viscosity are ρ, p,
T and μ, respectively. The constant values of flow parameters ahead of and far behind the
shock wave are marked by the subscripts 1 and 2, respectively.

If the shock wave slope is constant and therefore the derivatives of all variables with
respect to y are equal to zero, then the Navier–Stokes equations can be written as follows:

d
dx

(ρu) = 0, (A1)

d
dx

(ρu2 + p) = d
dx

(
4
3

μ
du
dx

)
, (A2)

d
dx

(ρuv) = d
dx

(
μ

dv

dx

)
, (A3)

d
dx

(ρuH) = d
dx

(
μcp

Pr
dT
dx

)
+ d

dx

(
4
3

μu
du
dx

)
. (A4)

Here, H = cpT + (u2 + v2)/2 is the total enthalpy.
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These equations can be integrated once:

m ≡ const = ρu = ρ1u1 = ρ2u2, (A5)

4
3

μ
du
dx

= m(u − u1) + p − p1, (A6)

μ
dv

dx
= m(v − v1), (A7)

μcp

Pr
dT
dx

+ 4
3

μ
d
dx

u2

2
= m(H − H1). (A8)

As x → ±∞, the derivatives on the right-hand sides of (A2)–(A4) vanish, which yields
the Rankine–Hugoniot relations between the flow parameters with the subscripts 1 and 2;
in particular, it follows from (A1), (A2) and (A4) that v1 = v2 and H1 = H2. Then the
solution of (A7) is v = v1 = v2 = const, i.e. the velocity component tangent to the shock
wave is constant everywhere inside the viscous shock transition.

At Pr = 3/4, (A8) is reduced to
4
3

μ
dH
dx

= m(H − H1), (A9)

whence it follows that in this case, the total enthalpy H is constant inside the shock wave
transition and equal to its free-stream value.
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