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The instability of an incompressible boundary-layer flow over an infinite swept wing
in the presence of disc-type roughness elements and free-stream turbulence (FST) has
been investigated by means of direct numerical simulations. Our study corresponds to
the experiments by Örlü et al. (Tech. Rep., KTH Royal Institute of Technology, 2021,
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291874). Here, different dimensions of
the roughness elements and levels of FST have been considered. The aim of the present
work is to investigate the experimentally observed sensitivity of the transition to the FST
intensity. In the absence of FST, flow behind the roughness elements with a height above a
certain value immediately undergoes transition to turbulence. Impulse–response analyses
of the steady flow have been performed to identify the mechanism behind the observed
flow instability. For subcritical roughness, the generated wave packet experiences a weak
transient growth behind the roughness and then its amplitude decays as it is advected
out of the computational domain. In the supercritical case, in which the flow transitions
to turbulence, flow as expected exhibits an absolute instability. The presence of FST is
found to have a significant impact on the transition behind the roughness, in particular
in the case of a subcritical roughness height. For a height corresponding to a roughness
Reynolds number Rehh = 461, in the absence of FST the flow reaches a steady laminar
state, while a very low FST intensity of Tu = 0.03 % causes the appearance of turbulence
spots in the wake of the roughness. These randomly generated spots are advected out of the
computational domain. For a higher FST level of Tu = 0.3 %, a turbulent wake is clearly
visible behind the element, similar to that for the globally unstable case. The presented
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results confirm the experimental observations and explain the mechanisms behind the
observed laminar–turbulent transition and its sensitivity to FST.

Key words: transition to turbulence

1. Introduction

Aircraft wings are not smooth surfaces but are subjected to various surface imperfections
that could cause a premature transition of the laminar boundary-layer flow to a turbulent
one and thereby increasing the friction drag. Investigation of effects of the surface
imperfections in the case of a swept wing is of particular importance since most current
commercial aircraft are built with such a configuration.

The boundary layer over a swept wing exhibits a cross-flow velocity component which
is inviscidly unstable due to the presence of an inflection point in that component. The
instability modes are vortices having their axes almost parallel to the outer streamlines.
If the level of free-stream disturbance is sufficiently low, the dominating vortices are
stationary, while in the case of a higher free-stream turbulence (FST) level non-stationary
vortices are promoted (for a review on the subject, see Saric, Reed & White (2003)).

Most of the previous works on the discrete roughness elements in three-dimensional
boundary layers were conducted for roughness heights smaller than approximately 30 %
of the local displacement thickness. Those studies aimed at understanding the receptivity
mechanisms to disturbances which promote unstable steady cross-flow vortices (see the
review by Kurz & Kloker (2014)). Moreover, utilization of shallow roughness elements as
a transition control strategy has been proposed and experimentally confirmed by Saric,
Carrillo & Reibert (1998). This strategy has been validated through direct numerical
simulation (DNS) by, for example, Wassermann & Kloker (2002) and Hosseini et al.
(2013).

The effect of an isolated three-dimensional roughness on transition in two-dimensional
boundary layers has been studied since the 1950s. In the work of Gregory & Walker
(1955), the authors described the formation of horseshoe vortices in front of the roughness
element. The number and characteristics of the vortices where found by Baker (1979) to be
mostly dependent on the aspect ratio of the roughness element. From these vortices, further
downstream, two streamline-oriented counter-rotating vortices are generated which by
lift-up effect (Landahl 1980) create alternated high- and low-speed streaks. The transient
growth associated with these streaks has been investigated by various authors such as
Choudhari & Fisher (2005), Ergin & White (2006), Denissen & White (2008, 2009)
and Cherubini et al. (2013). This growth was found to scale with the square of the
roughness Reynolds number, Rehh = U(h)h/ν, where U(h) is the streamwise velocity of
the unperturbed flow measured at a wall-normal distance equal to the roughness element
height h.

The importance of the parameter Rehh has already been identified in earlier works (e.g.
Gregory & Walker 1955; von Doenhoff & Braslow 1961). In particular, von Doenhoff
& Braslow (1961) collected existing results and plotted Rehh for which transition was
observed (Rehh,cr) as a function of the aspect ratio η = d/h, where d is the diameter of
the roughness element. As is possible to observe in figure 1, when the aspect ratio is
increased transition is triggered for lower value of Rehh. It can also be noticed that for a
fixed η the spread in the value of Rehh,cr is significant.
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Figure 1. Data from von Doenhoff & Braslow (1961) re-plotted by Kurz & Kloker (2016) together with
roughness parameters of experiments by Örlü et al. (2021). Red and green dots correspond to cases where
flow in the experiments remained laminar or transitioned to turbulent, respectively, at the lowest FST level. The
circles represent cases simulated here (red for the case which transitions and green for those which stay laminar
for Tu = 0.0 %).

Ergin & White (2006) found that the location of the maximum of the unsteady
fluctuations, in the wall-normal and spanwise directions, corresponds to that of the
inflection point of the streamwise velocity profile. This suggested that a Kelvin–Helmholtz
instability can be the cause of those fluctuations. The measured frequencies were
consistent with the previous work by Klebanoff, Cleveland & Tidstrom (1992).

More recently, the onset of laminar–turbulent transition in a flow passing a roughness
element has been addressed using global stability analysis (Loiseau et al. 2014; Citro et al.
2015; Kurz & Kloker 2016; Brynjell-Rahkola et al. 2017). Loiseau et al. (2014) performed
DNS of the experiments by Fransson et al. (2005) and made an extensive parametric
study. They found two different instability modes depending on the aspect ratio of the
roughness element: a sinuous one for η < 2 and a varicose one for η ≥ 2. Moreover, they
also showed the role of hairpin vortices in triggering of the transition, as shown in previous
works (e.g. Acarlar & Smith 1987; Rizzetta & Visbal 2007; Zhou, Wang & Fan 2010;
Cherubini et al. 2013). Bucci et al. (2018) reported the appearance of unsteady structures
behind a roughness element in the parameter regime that linear stability theory predicts a
stable flow. Through numerical simulations and performing optimal forcing analysis, those
authors showed that these structures could be triggered by the quasi-resonance of the least
stable varicose mode. Moreover, Bucci (2017) demonstrated that the presence of a small
amount of FST could trigger the generation of hairpin vortices, similarly to the optimally
forced case.

The works on roughness elements with a height of the order of the local displacement
thickness immersed in a three-dimensional boundary layer are limited. Kurz & Kloker
(2016) studied the transition triggered by the roughness elements on a swept wing
for a compressible flow. Those authors compared the vortex system created in three-
and two-dimensional boundary layers highlighting effects of the cross-flow velocity
component which is responsible for the loss of symmetry. The instability mechanism in
the recirculation or in the near-wake area was found to be either absolute or convective,
depending on the height of the roughness element. The value of Rehh,cr appeared
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(mm) UMTL (m s–1) Tu = 0.03% Tu = 0.3% Tu = 0.8%

0.2
9 8 16 32 8 16 32
18 8 16 32 8 16 32
27 8 16 32 8 16 32 8 16 32

0.4

9 8 16 32 8 16 32 8 16 32
15 16
17 8
18 8 16 32 8 16 32 8 16 32
22 16 16
27 8 16 32 8 16 32 8 16 32

0.8
9 8 16 32 8 16 32
18 8 16 32 8 16 32
27 8 16 32 8 16 32

Height

Table 1. A summary of results reported by Örlü et al. (2021). The numbers inside the cells represent the
diameter of the roughness element (mm). Green cases are those with no observable effect, lighter blue those
with slight effect, orange those with stronger effect and red those where transition was observed.

not to be significantly influenced by the compressibility or the three-dimensionality
of the flow. Brynjell-Rahkola et al. (2017) considered roughness elements placed in a
cross-flow-dominated Falkner–Skan–Cooke boundary layer. Those authors found the flow
instability shifted from convective to global when the relative height of the roughness
was greater than a certain value (h/δ∗ ≈ 1.3, Rehh ≈ 458, where δ∗ is the displacement
thickness at the roughness location). Moreover, they showed that the numerical solution is
very sensitive to the numerical details and in particular to the domain size as the simulated
cross-flow vortices were continuously growing.

Örlü, Tillmark & Alfredsson (2021) performed an experimental campaign where
different roughness dimensions and FST levels were investigated. For each case, based on
infrared camera and hot-wire signals, the authors evaluated if transition was taking place
behind the roughness. The results are reported in table 1 and compared with data from
Gregory & Walker (1955) and von Doenhoff & Braslow (1961) in figure 1. Increasing the
height of the roughness or the the value of the incoming velocity, and thus Rehh, has a
destabilizing effect on the wake behind the roughness. The scenario is more complex if
we consider effects of the diameter or the level of FST. If we focus on cases with wind
tunnel inlet velocity UMTL = 9 m s−1 and h = 0.8 mm, increasing the FST intensity from
Tu = 0.03 % to Tu = 0.3 % has a stabilizing effect for d = 32 mm, while for d = 8 mm
and d = 16 mm the trend is opposite. If the FST level is kept constant and the diameter
is increased we can observe both stabilizing and destabilizing effects. Note that UMTL is
different from the free-stream velocity close to the wing due to the installation of contoured
side walls.

In the present work, we investigate the configuration and some flow cases from the
experiments by Örlü et al. (2021) through DNS. The main objective of our work is
to understand the interaction of FST with roughness elements and its effect on the
characteristics and nature of the flow instability, as well as explaining some of the observed
trends in the experiments. In both the experiments and the cases addressed here, roughness
elements with high aspect ratios are considered for which numerical analyses are
scarce.
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Figure 2. (a) Swept wing with NACA 671-215 profile and a schematic representation of the different
coordinate systems. (b) Pseudocolour of the Cartesian streamwise velocity from RANS solution with the
numerical domain corresponding to the wind tunnel test section (total extension of the RANS domain in
streamwise direction is [−3.5, 3.5]). Solid line shows the boundary layer of the two-dimensional DNS. Dashed
line represents three-dimensional DNS.

2. Flow configuration and simulated cases

The flow configuration follows that of the experiment by Örlü et al. (2021) where a wing
model with a constant cross-section (modified NACA 671-215) was used. The model was
installed at a sweep angle Φ = 35◦ and an angle of attack α = −5◦ (measured in a plane
normal to the leading edge). On the upper surface, at a distance from the leading edge
corresponding to 15 % of the chord length (close to the first branch of the neutral stable
curve), disc-type roughness elements were placed and their effect on the stability of the
boundary layer was studied. Different upstream velocity, roughness dimensions and FST
intensity were considered. In figure 2, the airfoil shape and different coordinate systems
used here are shown. A Cartesian coordinate system (x, y, z) is used where the x axis is
oriented perpendicular to the leading edge of the wing, the z axis parallel to the leading
edge and the y axis normal to these two. Some results are presented in a curvilinear
reference system (τ, n, z), where τ is the chordwise direction tangent to the wing surface
and n normal to the surface of the wing. The corresponding velocity components are
(uτ , vn, w). For visualization purposes, a third reference system obtained by rotating the
Cartesian one 30◦ around the y axis, denoted as (x′, y, z′), is also employed.

For the cases studied here, the Reynolds number is Re = U∞c/ν = 581 100. Here,
U∞ = 11.1 m s−1 is the total free-stream velocity, ν is the kinematic viscosity and c =
800 mm is the cord length measured normal to the leading edge. This value of the Reynolds
number corresponds to the wind tunnel inlet velocity UMTL = 9 m s−1 in table 1.

The main geometrical parameters of the roughness elements studied here are
summarized in table 2. With the exception of case D, the sizes of the roughness elements
are the same as in the experiment. In particular, case A corresponds to h = 0.4 mm and
d = 16 mm, and cases B, C and E have a height h = 0.8 mm and diameters d = 8, 16
and 32 mm, respectively. By choosing these roughness sizes the effects of the height and
diameter of the roughness on the flow can be studied independently. These cases have been
selected based on the observed flow behaviour in the experiments. Cases B, C and E all
have a roughness Reynolds number Rehh = 461 which is close to the critical value reported
by Brynjell-Rahkola et al. (2017) and below the critical value reported by Kurz & Kloker
(2016). The flow in the experiments shows different behaviour for different aspect ratios
d/h, while Rehh is constant. Also a small amount of FST seems to have a strong effect on
transition. Therefore, first, simulations without FST were performed to find the threshold
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Case h∗ (mm) d∗ (mm) h d h/δ∗ d/h Rehh u′
τ,max u′

τ,min

A 0.4 16 0.00050 0.02 0.72 40 125 0.0621 −0.0454
B 0.8 8 0.00100 0.01 1.44 10 461 0.1881 −0.2133
C 0.8 16 0.00100 0.02 1.44 20 461 0.2238 −0.2113
D 1.12 16 0.00139 0.02 2.00 14.39 712 0.2677 −0.4657
E 0.8 32 0.00100 0.04 1.44 40 461 0.1988 −0.2292

Table 2. Geometrical and flow parameters measured at x = 0.15 for different roughness sizes. Displacement
thickness at this location is δ∗ = 6.96 × 10−4. Velocities u′

τ,max and u′
τ,min are the maximum and minimum

chordwise perturbation velocities measured in the n–z plane at x = 0.2.

for the occurrence of the global instability. In the experiments for case C, depending on the
level of FST intensity, either a clear transition or some visible effects on the heat transfer
were observed. This makes it a suitable case to explore the effects of FST intensity on
instability of the wake behind the roughness. Finally, some cases were studied from a flow
stability point of view by means of an impulse–response analysis.

3. Numerical approach

We assume the flow evolution is described by the incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + f , ∇ · u = 0, (3.1)

where u = {u, v, w}T is the velocity vector, p the pressure and f is the body force.
Here, U∞ is used as reference velocity and c as reference length. In order to integrate
(3.1) the spectral element method proposed by Patera (1984) is used. In particular,
we employed the code Nek5000 of Fischer, Lottes & Kerkemeier (2008). In this
formulation, the equations are solved in the weak form and the numerical domain is
partitioned using hexahedral elements. Within each element, Lagrange interpolants on
Np + 1 Gauss–Lobatto–Legendre nodes are used to discretize the velocity while Np − 1
Gauss–Legendre nodes are used for the pressure in order to avoid spurious modes. In
the present work, we have used Np = 11 for most of the simulations. The equations are
advanced in time treating the nonlinear terms explicitly using a third-order extrapolation
scheme (EXT3) whereas the viscous terms are discretized with a third-order backward
differentiation scheme (BDF3).

3.1. Computational domain and boundary conditions
Different computational domains used in the current work are presented in figure 2(b).
The solid line denotes the domain used for the laminar base flow simulations and the
dashed line denotes the boundary for the simulations including the roughness elements.
The spanwise extension of the domain is Lz = 0.07. This width is sufficient to ensure
that the stability of the recirculation bubble behind the roughness element is not affected
by the employed periodic boundary condition in the spanwise direction (von Doenhoff &
Braslow 1961). The relation between Lz and the spanwise wavelength of the instability
modes is discussed in § 3.4. The whole mesh consists of 14 750 spectral elements for the
base-flow computations and 216 144 elements for cases including the roughness elements.
Its structure at z = 0 is shown in figure 3(a). Details of the mesh around a roughness
element are given in figure 3(b).
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Figure 3. Distribution of spectral elements in the numerical domain (a) and around a roughness element (b).

The boundary conditions for DNS are found as follows. First, a Reynolds-averaged
Navier–Stokes (RANS) simulation of the experimental set-up (with the wing model placed
in the wind tunnel including the test section walls) is performed assuming homogeneous
flow along the wing span. In these calculations, transition was prescribed at x ≈ 0.7 on the
upper surface and at x ≈ 0.2 on the lower one. These locations correspond to those in the
experiments where the boundary layer was tripped. Then, a DNS is performed to obtain
the laminar base flow in the domain corresponding to the solid line in figure 2(b). Data
from this simulation are then used to set the boundary conditions in the main simulations.

Here, Dirichlet conditions are prescribed for velocities at the inflow boundary. In DNS
of the laminar base flow, the following values have been used:

{u, v, w}T = {urans, vrans, wrans}T . (3.2)

At the outflow, a modified version of the natural boundary condition is used:

1
Re

∂u
∂x

− p = −pa,
∂v

∂x
= 0,

∂w
∂x

= 0, (3.3a–c)

where the value of pa is computed from the RANS solution:

pa = prans − 1
Re

∂urans

∂x
. (3.4)

These boundary conditions are similar to those employed by Shahriari, Kollert & Hanifi
(2018) where a similar multiple outflow configuration was used. On the upper and lower
boundaries a Dirichlet condition is used for the chordwise and spanwise directions whereas
a modified natural condition is prescribed for the cross-stream component v:

u = urans,
1

Re
∂v

∂y
− p = −pa, w = wrans. (3.5a–c)

Further, on the lateral boundaries a periodic boundary condition is set. In all present
simulations a sponge region is prescribed at the outflow to avoid numerical instabilities.
In this region, the flow is forced to the steady state of the smooth-wing simulations. This
is done by adding a forcing on the right-hand side of the momentum equations that reads

F (x, t) = Afλf
[
U f (x) − u(x, t)

]
. (3.6)

Here, U f (x) is the target velocity field taken from the RANS simulations, λf a smooth step
function and Af the amplitude of the forcing, chosen to be Af = 100.
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Figure 4. Turbulence intensity Tu as a function of x extracted at a distance of 0.02 from the upper surface of
the wing (blue) and power-law fitting (red circle) Tu ∝ (x − x0)

n with n = −0.83.

3.2. Free-stream turbulence
In order to numerically generate the FST, we superimpose a number of Fourier modes to
the base flow at the inlet. In order to have a homogeneous and isotropic turbulence, we
divide the wavenumber space into 80 concentric shells where each shell represents the
amplitude associated with a given wavenumber. Then, 40 points are randomly chosen on
each shell giving the components of the wavenumber vectors. Finally, amplitudes of these
modes are chosen to match the von Kármán spectrum:

E(k) = 2
3

1.606 (kΛ)4

[1.350 + (kΛ)2]17/6 Λ Tu2. (3.7)

Here, E is the energy density, k the wavenumber and Λ the integral length scale. This
procedure is described in detail in Schlatter (2001) and has been used in simulations
of pitching wings (Negi et al. 2018) and wind turbines (Kleusberg 2019). Similar to the
experiments, the FST level is evaluated in the free stream above the roughness elements.
Here, we have considered FST intensities Tu = 0.03 % and Tu = 0.3 % which correspond
to the natural level of FST in the wind tunnel and the lowest intensity of the grid-generated
turbulence studied in the experiments, respectively. The integral length scale was not
measured in the experiments. We have used a value of Λ = 2.5 × 10−3 to make sure
that the relevant part of the von Kármán spectrum, including scales with the maximum
energy, can be resolved in our simulations. The amplitude of the spectrum at the inflow
boundary is chosen such that the desired FST intensity is achieved at the location of the
roughness elements. The quality of the developed FST is checked through examination of
its decay rate. In figure 4 the FST intensity as a function of chordwise coordinate for the
case of Tu = 0.3 % is given. There, a power-law fitting Tu ∝ (x − x0)

n with n = −0.83 is
also included, validating correct decay rate of the simulated FST.

3.3. Validation of laminar base flow
In figure 5(a) the normalized pressure distributions obtained from DNS of the laminar base
flow, the RANS simulations and the experiment are shown. For the sake of comparison,
we have adopted the same normalization for the pressure coefficient Cpn as employed in
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Figure 5. (a) Comparison between the pressure coefficient obtained from RANS (red circles) and DNS (solid
black line) and experiment (blue asterisks). (b) The chordwise velocity uτ profiles from the boundary layer
solver (BL) compared to the DNS results at x = {0.075, 0.150, 0.225, 0.300, 0.375, 0.450, 0.525, 0.600}.
(c) Wall-normal maximum value of velocity in the direction perpendicular to the local inviscid streamline
ucross.

the experiment (Örlü et al. 2021):

Cpn = p − pref

p∞ + 0.5ρU2∞ − pref
. (3.8)

The pressure at x = 0.43 is used as pref in (3.8), and U∞ and p∞ are the values
of the incoming velocity and pressure, respectively. As can be seen in figure 5(a), a
good agreement between the data is found confirming correct treatment of the boundary
conditions. Small differences observed here can be attributed to the presence of the
traverse system in the experiments.

In order to check the accuracy of the computed boundary-layer flow, DNS data are
compared with the profiles obtained with a boundary-layer code using the pressure
distribution from the DNS. In figure 5(b), the chordwise velocity uτ profiles inside the
boundary layer are shown. As can be seen, a close agreement is found, indicating the
boundary layer in the DNS being well resolved.

Further, grid convergence studies have been performed by varying the polynomial order.
Results of these studies are presented in Appendix A.

To further characterize the flow in the absence of roughness elements, the wall-normal
maximum value of velocity in the direction perpendicular to the local inviscid streamline,
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Figure 6. The N-factors based on the maximum of the chordwise velocity perturbation for (a) steady
cross-flow vortices and unsteady perturbations at (b) x = 0.3 and (c) x = 0.6.

the cross-flow component, is shown in figure 5(c). This quantity reaches its maximum
value of 6.9 % for x = 0.041 and then decreases to 5.0 % towards the end of the numerical
domain.

3.4. Stability characteristics of the undisturbed flow
A nonlocal stability analysis of the mean flow has been performed using the NoLoT PSE
code (Hanifi et al. 1994; Hein et al. 1994). A summary of the results is given in figure 6. As
can be observed there, for the conditions of the experiments, amplification of the steady
and unsteady cross-flow modes is low. The steady cross-flow vortices have their maximum
growth (N ≈ 0.8) for β ≈ 200 and the unsteady perturbations reach an amplification
of N ≈ 2 for β ≈ 350 close to the end of the computational domain at x = 0.6. This
indicates that in the absence of the roughness elements these perturbations will not cause
transition over the smooth surface. This has actually been the reason behind the choice of
flow parameters in the experiments. The disturbance amplifications reported here are in
agreement with those measured experimentally by Borodulin et al. (2019) for the same
geometry and flow conditions. The spanwise extension of the computational domain,
Lz = 0.07, corresponds to a spanwise wavenumber of β ≈ 90. The isolated roughness
elements used here will also trigger other spanwise wavenumbers. However, none of these
would reach high amplitudes due to the linear growth of the cross-flow modes, as suggested
by the results presented in figure 6. With the resolution of our simulations, the unstable
portion of the spectrum can be computed with a high accuracy.

4. Results

We start our investigation by comparing the flow behaviour for different sizes of
the roughness elements in the absence and presence of FST. Further, the instability
mechanisms behind the observed flow behaviour are studied through impulse–response
analysis.

4.1. Flow behaviour in the absence of FST
First, we examine the critical roughness size for a laminar inflow (Tu = 0). A summary of
the obtained results is presented in figure 7 where the flow fields from the analysed cases
are shown. In all cases, except case D, a steady laminar solution is reached and the effect
of the roughness is limited to the creation of streaky flow patterns which are described in
the following sections. The results indicate that for cases with Rehh ≤ 461 (A, B, C and
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Figure 7. Isosurface of instantaneous chordwise velocity uτ for (a) case A, (b) case B, (c) case C, (d) case D
and (e) case E (Tu = 0.0 %).

E) the flow remains laminar. In case D, transition is triggered due to the global instability
since numerical noise is thought to be extremely low (this is investigated further through
impulse–response analysis). Our observations indicate that, for the current flow case, the
critical roughness Reynolds number Rehh,cr is between 461 and 712 for all aspect ratios
studied.
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Figure 8. Illustration of the separation bubbles around the roughness element for case C. (a) Pseudocolour of
chordwise velocity uτ . Contour of zero velocity for Np = 7 (green) and Np = 11 (red). (b) Isosurface of zero
chordwise velocity uτ .

Concentrating on the flow around the roughness elements, we can identify two
recirculation zones upstream and downstream of them, similar to those found by Kurz
& Kloker (2016). In figure 8(b), the isosurface of the velocity uτ = 0 shows a weak
asymmetry due to the presence of the cross-flow component which is about 6 % at
the location of the roughness (figure 5c). In figure 8(a), extensions of the recirculation
zones obtained with polynomial order Np = 7 and Np = 11 are compared showing a good
agreement, confirming grid convergence.

4.1.1. Effects of roughness element height
In this section, we analyse the effects of roughness height by comparing the steady
solutions for cases A, C and D. In these cases, the roughness diameter is d = 0.02 (16 mm)

and the aspect ratios are d/h = 40, 20 and 14.39, respectively, corresponding to h/δ∗ =
0.72, 1.44 and 2.0. We visualize the structures created by the roughness elements by
subtracting the reference velocity field (smooth geometry) from the steady solutions. As
mentioned above, in case D the flow does not reach a steady state and laminar–turbulent
transition takes place close to the roughness. In this case, a steady base flow is
obtained using the BoostConv algorithm proposed by Citro et al. (2017). For the sake
of completeness, a description of the method is given in Appendix B.

The structures of the generated vortices behind the roughness elements are presented in
figure 9. The first observation is that these are not symmetric as in the case of the Blasius
boundary layer (see Loiseau et al. 2014). This is due to the existence of the cross-flow
velocity component. In the studies by Kurz & Kloker (2016) and Brynjell-Rahkola et al.
(2017) the generated high-speed streaks behind the roughness elements merged to a single
one. But, in the cases studied here, we did not observe the coalescence of the high-speed
streaks. This can be due to the fact that the generated vortices in the present work are
weaker and present limited growth of their amplitude (figure 10). Moreover, their lateral
distance (due to the high aspect ratio) is larger than those in the previous works.

The strengths of the observed streaks are measured at x = 0.2 and reported in table 2.
These are defined as the maximum (u′

τ,max) and the minimum (u′
τ,min) of the chordwise

perturbation velocity u′
τ in the planes normal to the surface. As expected, the strength

of the vortices increases with increasing roughness height. However, on increasing the
height of the roughness, the velocity deficit grows much faster than the amplitude of the
high-speed streaks. As is evident from table 2, the amplitude of the central low-speed
streaks, in the range of our study, seems to increase with the square of roughness height.
Comparing cases D and C, low-speed streak amplitude increases by a factor of 2 while the
ratio of the roughness heights is 1.4. Similar behaviour is observed when comparing cases
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Figure 9. Effects of roughness element height on generated vortices. Pseudocolour of chordwise perturbation
velocity u′

τ for (left) y = 10−3 and (right) x = 0.4, corresponding to (a) case A, (b) case C and (c) case D
(Tu = 0.0 %). Lines are contours of the chordwise component of the steady flow uτ .
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Figure 10. Plots of u′
τmax

(red) and u′
τmin

(blue) as a function of x. Dashed lines represent the values for case C
and solid lines for case D.

A and C: the ratio of the low-speed streaks is about 4.6 while the ratio of the roughness
element heights is 2.

Case A has the lowest roughness height which results in the lowest streak amplitude as
reported in table 2. In figure 9(a) (left-hand column), we can see how the streaks develop
in the numerical domain. They grow in amplitude with increasing x with the exception
of the leftmost high-speed streak whose amplitude starts to decay close to the end of the
domain.

In figure 9(b), for case C, we see that at x ≈ 0.2 one major low-speed streak develops
behind the roughness element. At its side, two high-speed and two weaker external
low-speed streaks develop, too. Initially, the two high-speed streaks next to the central
low-speed one have a similar amplitude but the rightmost one becomes dominant while
developing downstream. Both the central and the leftmost low-speed streaks become
weaker further downstream while the rightmost one increases its amplitude.
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Figure 11. Effects of roughness element height on generated vortices. Pseudocolour of ∂uτ /∂z at x = 0.2,
corresponding to case A (a), case C (b) and case D (c).

As can be seen in figure 9(c), the structure of disturbances in case D is very similar to
that of case C but with higher streak amplitudes. This is also confirmed in figure 10 where
the maximum and minimum values of u′

τ behind the roughness are reported for cases C
and D. In particular, the strength of the high-speed streak does not change significantly for
x > 0.2 and in both cases reaches a maximum at x ≈ 0.3.

As mentioned above, case D is the only one in which flow turns to turbulent in the
absence of FST. In order to see the differences between the cases studied here, we choose to
look at the spanwise shear which was found to be more sensitive to variation of roughness
size. Figure 11 shows the spanwise derivative of the tangential velocity (∂uτ /∂z) at x = 0.2
for selected cases. As can be seen there, spanwise shear in case A is much weaker than in
other cases. In case C, the maximum value of spanwise shear is located between the central
low-speed streak and the right-hand high-speed one. In case D, the negative spanwise shear
is the dominating one. Further, in this case a double-vortex structure generating higher
shear is observed. This concentrated high spanwise shear gives the major contribution to
the growth of the instabilities as indicated by the energy budget reported in § 4.2.2.

4.1.2. Effects of roughness element diameter
In this section we compare cases B, C and E, where the roughness height is kept constant
and the diameter is varied between d = 0.01 and 0.04. In all these cases a steady flow
was found for Tu = 0.0 %. As is evident from table 2, the values of u′

τ,max and u′
τ,min are

weakly affected by the variations of the roughness diameter which can also be seen in
figure 12. We can see that increasing the diameter results in generation of wider streaks,
in particular the central low-speed streak becomes larger. Even here, none of the streaks
merge as in contrast to what was observed by Kurz & Kloker (2016) and Brynjell-Rahkola
et al. (2017). Further, the central low-speed streak in case E grows all the time while in
cases B and C it starts to decay after an initial phase of growth.

In figure 13, values of ∂uτ /∂z for cases B, C and E are plotted. As can be seen there, the
maximum and minimum values of the spanwise shear do not differ between those cases.
However, increasing the roughness diameter results in slightly lower spanwise shear. This
is due to the fact that the streak amplitudes are mainly affected by the roughness height and
not by its diameter, and that the streaks get wider when increasing the roughness diameter.

4.2. Unsteady solution and effects of FST
As mentioned above, in case D the flow does not reach a steady state and transition to
turbulence takes place in the vicinity of the roughness element. Similar flow behaviour is
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Figure 12. Effects of roughness element diameter on generated vortices. Pseudocolour of chordwise
perturbation velocity u′

τ for (left) y = 10−3, (middle) x = 40.0 and (right) ∂uτ /∂z for x = 20.0, corresponding
to (a) case B, (b) case C and (c) case E (Tu = 0.0 %). Lines are contours of the chordwise component of the
steady flow uτ .
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Figure 13. Effects of roughness element height on generated vortices. Pseudocolour of ∂uτ /∂z at x = 0.2,
corresponding to case B (a), case C (b) and case E (c).

observed for case C in the presence of FST. In this section the mechanisms behind this
transition are investigated.

4.2.1. Flow structures
Figure 14(a) shows the isosurface of spanwise velocity for case D. The transition process
starts with disturbances being generated in the low-speed region behind the roughness
which soon become chaotic. This is similar to what was found in simulations by Kurz &
Kloker (2016) for the case of a compressible swept-wing boundary layer.

For configuration of case C, once a FST of Tu = 0.3 % is imposed at the inflow, the
transition is triggered in the wake of the roughness similar to what is observed in case
D. The flow structures are plotted in figure 14(b). It can be noticed that the wake of the
roughness is a highly receptive flow region as mostly this area is affected by FST. This
observation is consistent with the findings of Bucci et al. (2018) for a two-dimensional
boundary-layer flow. The transition scenario in case C is significantly modified when a
lower value of FST intensity (Tu = 0.03 %) is selected. This value corresponds to the
natural level of FST in the MTL wind tunnel in which the experiments of Örlü et al.
(2021) were performed. In figure 15, the isosurface of the spanwise velocity is reported
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Figure 14. Isosurface of instantaneous spanwise velocity w coloured by instantaneous chordwise velocity uτ

for (a) case D and Tu = 0.0 % and (b) case C and Tu = 0.3 %.
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Figure 15. Isosurface of instantaneous spanwise velocity w coloured by instantaneous chordwise velocity uτ

for case C and Tu = 0.03 % at different time (increasing time from (a) to (d)).

for different time instants. As seen there, there is no fixed transition point behind the
roughness, but some turbulent spots appear randomly. In the first snapshot, we can observe
a large turbulent spot close to the outflow boundary and a smaller one in middle of the
domain. In the other snapshots we can follow the evolution of the latter spot in time.
While the developed turbulent spots leave the domain, new ones are generated which in
turn propagate downstream. So, although such a low level of FST does not trigger the
transition directly after the roughness, it can change the flow behaviour significantly.

In figure 16, the instantaneous friction coefficient Cf is plotted for case C with Tu =
0.0 % and 0.3 % as well as case D with Tu = 0.0 %. In the first case, we can recognize
the footprint of the high- and low-speed streaks demonstrated as the region of the higher
and lower Cf , respectively. In case C with Tu = 0.3 % and case D with Tu = 0.0 %, first
traces of some spanwise vortices are observed. Once transition takes place, a region of
elongated chordwise structures with mainly higher values of Cf appears and the turbulent
region spreads in the spanwise direction as it propagates downstream.

To further investigate the observed unsteady flows, we subtract the steady solution from
the instantaneous flow fields and visualize the structures. The isosurfaces of negative and
positive chordwise velocity u′

τ are shown in figure 17. Again, this indicates that initially
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Figure 16. Instantaneous friction coefficient for (a) case C, (b) case D and (c) case C (Tu = 0.3 %).
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x
Figure 17. Isosurface of negative (blue) and positive (red) instantaneous chordwise perturbation velocity u′

τ .
Shaded pseudocolour represents friction coefficient. (a) Case D and (b) case C (Tu = 0.3 %).

structures are concentrated around the low-speed streaks. In case D, some hairpin-like
structures can be observed close to the roughness element which eventually break down
into a more complex and chaotic flow pattern. The perturbation field close to the roughness
element in case C does not exhibit structures as organizedas in case D. However,
similar hairpin-like structures can still be recognized there. In order to understand if
the fluctuations in these cases are dominated by similar structures, the time signal, the
mean and the root-mean-square (r.m.s.) values in the transitional region are computed at
x = 0.185 and shown in figures 18 and 19. If the structures responsible for the transition
are the same, the time signal should have a similar spectral content and the same should
hold for the spatial support of the perturbations. In figure 18, the time signals and their
power spectral density (PSD) for case C with Tu = 0.3 % and case D with Tu = 0.0 % are
presented. As can be seen there, the perturbations in case C with Tu = 0.3 % are stronger
(due to the forcing by FST) than in case D but they have a similar frequency content, as
shown in figures 18(b) and 18(d). In case C the maximum of PSD is found for f ≈ 56
and in case D for f ≈ 71. These values, if scaled with the roughness height and the total
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Figure 18. Time signals (a,c) and PSD (b,d) of the velocity fluctuations of uτ around the mean value. Probe
location is (x, n, z) = (0.185, 0.001, 0.0). (a,b) Case D and (c,d) case C with Tu = 0.3 %.

velocity at the location of the roughness height, are fh = f ∗h∗/Q∗(h∗) = 0.076 and 0.113,
respectively. If instead the diameter of the roughness element is used as the reference
length, the non-dimensional frequencies are fd = f ∗d∗/Q∗(h∗) = 1.5 and 1.6, respectively.
Further, case C presents relatively high fluctuations also for 10 < f < 30 which are not
present in case D. This may be due to the noise generated by FST. In figure 19, we can
see that also the r.m.s. fields present similarities. In both cases the high r.m.s. values are
located close to z = 0 where also the highest values of ∂uτ /∂z were found (see figure 11).
At this spanwise position, the mean value of the chordwise velocity is ūτ ≈ 0.7.

4.2.2. Impulse–response analysis
In order to further study the stability characteristics of the flow behind the roughness
elements, we performed an impulse–response analysis similar to the one carried out by
Brandt et al. (2003), Peplinski, Schlatter & Henningson (2015) and Brynjell-Rahkola
et al. (2017). We introduced a wave-packet disturbance, as in Bech, Henningson & Henkes
(1998), upstream of the roughness element and monitored its evolution. This is done in a
linear framework where the steady solutions discussed in previous sections are used as the
base flow. In particular, we analyse evolution of the disturbance kinetic energy to obtain
some insights about the linear behaviour of small perturbations.

In figure 20, the evolution of the total kinetic energy KT (integrated in the whole domain)
of the wave packet as a function of time is given for cases B, C, D and E. As can be seen
there, in all cases KT decreases initially and then it starts growing for t ≈ 0.1. With the
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Figure 19. Mean value (a,c) and r.m.s. (b,d) of uτ at x = 0.185. (a,b) Case D and (c,d) case C with
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Figure 20. Time evolution of the energy of the wave packet. Blue line represents case B, red line case C,
green line case D and black line case E.

exception of case D, KT decreases again for t > 0.2. The evolution of the wave packet
for case D is very different. While the energy of the wave packet in cases B, C and E
exponentially decays after it has reached its maximum, in case D it grows exponentially
continuously after an initial transient stage. This indicates that flow in case D may be
globally unstable.

In order to further analyse the response of the flow to the impulse, we monitor the
disturbance kinetic energy of the wave packet K (integrated in the n–z plane) as a function
of space and time. Results for cases C and D are presented in figure 21. The same analysis
for cases B and E showed a similar behaviour of K. Figure 21(a) shows the evolution
of K as a function of chordwise coordinate x for case C. The disturbance energy grows
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Figure 21. Energy in the wall-normal planes against the chordwise coordinate (a) for case C and (b) for case
D, and (c) against the propagation velocity cg for case D.

downstream until it reaches its maximum at some x position and then decays. The location
of this maximum moves downstream with increasing time. The maximum over time and
space is reached for t ≈ 0.25 and x ≈ 0.25. As can be seen there, for x ≤ 0.20 the energy
decreases in time suggesting that the wave packet does not stay in place but it travels
downstream and it is eventually advected out of the domain. This indicates the convective
character of the flow instability in case C. In case D a different behaviour is observed.
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(a)

(b)

0.15 0.25 0.35 0.45

x
Figure 22. Isosurface of negative (blue) and positive (red) chordwise velocity of the wave packet for (a) case

C and (b) case D. Pseudocolour represents the friction coefficient at the wall.

As shown in figure 21(b), the disturbance energy, which is significantly larger than in case
C, grows contentiously in time.

In the case where the flow is globally unstable, the wave packet will travel in both
upstream and downstream directions, while if it is convectively unstable, disturbances
will propagate downstream and eventually leave the computational domain. In the latter
scenario, the velocity of the trailing edge of the wave packet will be positive, whereas
in the case of global instability it will be negative (Schmid & Henningson 2001). In
order to find the propagation velocity of the wave packet, we plot K as a function of
cg = (τ − τ0)/t, where τ0 is the tangential coordinate of a point just behind the roughness
element. Figure 21(c) shows the disturbance energy K as a function of cg for different
time instants. We can observe that the rear part of the curves for t > 0.15 crosses at a
negative value of cg, which indicates that the wave packet travels upstream. Hence, this
case appears to be globally unstable. This result is consistent with that of the nonlinear
simulations where flow transitioned to turbulent in the absence of external disturbances
(Tu = 0.0 %).

In figure 22, the wave packets for cases C and D at t = 0.25 are given showing the
isosurfaces of negative and positive chordwise velocity. As seen there, in both cases
the wave is located in the low-speed region behind the roughness element. In case C,
the wave packet evolves forming elongated low- and high-speed regions inclined to the
direction of the vortices created by the roughness element. In case D, the structure is
almost perpendicular to the axis of the vortex with a shorter wavelength. One can see a
similarity between these structures and those found in our nonlinear simulations illustrated
in figure 17. These structures also bear similarities to the global modes found in the works
of Kurz & Kloker (2016) (figure 27 therein) and Brynjell-Rahkola et al. (2017) (figure 10
therein). The one observed in case C corresponds to the low- to moderate-frequency
modes (of the z-mode type ) in those works, while the structure in case D is similar to
the high-frequency global modes. The similarity to results of global mode analysis in
the mentioned works is also confirmed by the results presented in figure 18, where the
dominant frequencies in the flow are shown.

4.2.3. Energy budget analysis
Here, we analyse the energy budget of the wave packet discussed above by computing the
contributions from the production and dissipation terms of the Reynolds–Orr equations
(Schmid & Henningson 2001):

∂KT

∂t
= −D +

9∑
i=1

Pri, (4.1)
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where the dissipation term D is given by

1
Re

∫
Ω

u′ : u′ dΩ, (4.2)

with u′ being the perturbation velocity.
The production terms are the following:

Pr1 = −
∫

Ω

u′2
τ

∂uτ

∂τ
dΩ, Pr2 = −

∫
Ω

u′
τ u′

η

∂uτ

∂η
dΩ, Pr3 = −

∫
Ω

u′
τ u′

z
∂uτ

∂z
dΩ,

Pr4 = −
∫

Ω

u′
ηu′

τ

∂uη

∂τ
dΩ, Pr5 = −

∫
Ω

u′2
η

∂uη

∂η
dΩ, Pr6 = −

∫
Ω

u′
ηu′

z
∂uη

∂z
dΩ,

Pr7 = −
∫

Ω

u′
zu

′
τ

∂uz

∂τ
dΩ, Pr8 = −

∫
Ω

u′
zu

′
η

∂uz

∂η
dΩ, Pr9 = −

∫
Ω

u′2
z

∂uz

∂z
dΩ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)
Here, {uτ , uη, uz} are the three velocity components of the stationary solution. In the case
where the sum of the production terms is greater than the dissipation, the energy of the
perturbation grows in time. The production terms can be either positive or negative causing
destabilization or stabilization of the perturbations, respectively. In figure 23(a) we report
the ratio between the total production and the dissipation for cases C and D. As seen there,
in case D the ratio is always greater than one, apart from at the first instants, and thus we
have a positive contribution to the growth of the perturbation. On the contrary, in case C
we can see that the dissipation terms are greater than the sum of the production ones for
t > 0.22 and so the kinetic energy of the perturbation decreases. Up to that time, also in
case C we can observe an initial growth of the perturbation which is in agreement with the
study of a two-dimensional boundary layer performed by (Cherubini et al. 2013). These
observations are consistent with the behaviour of KT shown in figure 20. For case D, the
contribution from each term of (4.1), scaled with the value of the dissipation, is shown in
figure 23. It is found that the term Pr3 gives the largest contribution. This is in agreement
with the observation of Loiseau et al. (2014) for the unstable varicose mode generated by
a roughness element in a two-dimensional boundary layer. The main difference between
their results and those presented in figure 23 is the significant contribution from the term
Pr9. This is due to the fact that here the spanwise velocity component of the base flow has
values comparable to those of the chordwise one.

5. Summary and conclusions

The flow over a swept wing in the presence of disc-type roughness elements has been
investigated by means of DNS. The main goal of this study is to investigate the nature of the
instability caused by the roughness elements with high aspect of ratio and their interaction
with FST. Through our numerical simulations, we try to explain the behaviour of wake
flow behind the roughness elements (the heat transfer investigated using infrared images)
and its sensitivity to FST intensity observed in the experiments of Örlü et al. (2021). To do
so, FST with the same intensity and integral length scale as in the experiments is imposed
at the inflow.

Nonlinear simulations performed with zero FST showed that for roughness elements
with different widths and a height up to 0.8 mm (h/δ∗ = 1.44, Rehh = 461), flow behind
the roughness was steady and no transition was observed. On the contrary, simulations
for h/δ∗ = 2.0 (Rehh = 712) showed a turbulent flow just behind the roughness element.
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Figure 23. (a) Ratio between the sum of the production terms and the dissipation as a function of time for
case C (red) and case D (green). (b) Contribution to the energy budget of each production term Pri scaled with
the dissipation for case D.

In the experiments, with a FST level of Tu = 0.3 % transition was observed at the
location of the roughness for h/δ∗ = 1.44 and d/h = 20. Even at the lowest FST level
(Tu = 0.03 %), a strong effect on transition was observed for this case. These observations
were confirmed by our simulations when the same levels of FST were used.

The common feature of the flow behind the roughness elements, when non-transitional,
is the existence of a series of high- and low-speed streaks formed due to the lift-up effect.
Due to the presence of the cross-flow component of the base flow, the spanwise distribution
of these streaks is not symmetric as in the case of a two-dimensional boundary layer.
The rightmost high-speed streak, as well as the low-speed streaks next to it, grows in
amplitude along the streamwise direction. The central low-speed streak on the contrary
decays. Different from the observation of Kurz & Kloker (2016) and Brynjell-Rahkola
et al. (2017), the vortices generated behind the roughness elements did not merge here.
This can be due to the wider roughness elements used in our studies. Moreover, we have
observed that increasing the diameter does not cause a significant change in the stability
of the flow.

The transition caused by large roughness elements is thought to be a result of
the global instability of the flow generated by these elements (Loiseau et al. 2014;
Kurz & Kloker 2016; Brynjell-Rahkola et al. 2017). Here, we have investigated the
instability characteristics of the flow behind the roughness elements by means of an
impulse–response analysis. For all cases with h/δ∗ = 1.44, the wave packet generated by
the impulse grows weakly downstream of the roughness until x ≈ 0.25 and then decays
and exits the computational domain. The scenario is very different for the case with
h/δ∗ = 2.0, where the wave packet grows by several orders of magnitude and expands in
the space behind the roughness. Further, the trailing edge of the generated wave packet has
a negative propagation velocity meaning the flow is absolutely unstable in this case. The
origin of the flow instability is found to be located in the low-speed flow region behind
the roughness and creates hairpin-vortex-like structures which then rapidly break down.
An energy budget analysis of case D showed, as expected, that the total contribution of
the production terms is greater than the dissipation resulting in growth of the total kinetic
energy. The terms associated with the spanwise gradient of the base flow are the ones
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giving the major contributions. On the contrary, in case C after the initial transient the
dissipation is higher than production and so the perturbation is damped.

Although the impulse–response analysis for case C revealed a weak growth of the wave
packet, a continuous forcing with a FST level of Tu = 0.3 % was found to be sufficient to
trigger the flow transition behind the roughness element. This transition takes place in the
low-speed region as in the unstable case, but the flow pattern appears to be more chaotic.
A comparison between the time signals and their r.m.s. values retrieved in the transitional
region showed that the fluctuations for case C with Tu = 0.3 % and case D have a similar
spectral content and spatial support. This suggests that in both cases those fluctuations
may have been governed by similar instability modes. Outside the wake the flow does
not appear to be significantly affected which indicates that the low-speed region is highly
receptive to the forcing caused by the FST. We also have found that for Tu = 0.03 % flow
exhibits travelling turbulent spots which randomly appear due to the convectively unstable
disturbances. These observations were found to be consistent with experimental findings
(Örlü et al. 2021) where for h/δ∗ = 1.44 and d/h = 20 with Tu = 0.3 % a clear transition
was observed, while for Tu = 0.03 % a strong effect was found but not a clear transition.
Our analysis confirmed a large impact of FST level on the flow behaviour behind the
subcritical roughness elements. A similar conclusion was drawn in Bucci et al. (2018) and
Bucci (2017) for the case of a two-dimensional boundary layer.
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Appendix A. Convergence study

In this appendix we present some results of our convergence studies by showing the
influence of the polynomial order on the steady-state solutions and on the evolution of
the wave packets.

Figure 24 shows contours of the chordwise perturbation velocity in the wall-normal
plane for the polynomial orders Np = 7 (black lines) and Np = 11 (white lines). As can
be seen, there is a good agreement between these two solutions. We performed also a
convergence test for the linear impulse–response analysis which is reported in figure 25.
Also in this case a close agreement is found. In this work the simulations where run using
the polynomial order Np = 11.

Appendix B. BoostConv algorithm

This algorithm is inspired by Krylov-subspace methods and is able to both stabilize and
accelerate the convergence of a dynamical system to a steady solution. The method is
based on a least-squares minimization of the residual of an iterative procedure. Here, we
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Figure 25. Energy in wall-normal planes against streamwise coordinate. Circles represent the solution with
Np = 7, solid lines that with Np = 11.

briefly describe the basic idea of the algorithm. For further details, readers are referred to
Citro et al. (2017) who also applied the method to stabilize the flow behind a hemispherical
roughness element in a two-dimensional boundary layer. Let us consider the linear system

Ax = b. (B1)

If we apply an iterative method to compute the solution, we can write

xn+1 = xn + Brn, (B2)

where rn = b − Ax is the residual at step n and B the matrix that describes the iterative
procedure. Then, (B2) can be rewritten as

xx+1 = (I − BA) xn + Bb. (B3)

The convergence of the iterative procedure depends on the spectrum of the matrix (I −
BA). Often, the convergence is dictated only by a small part of the spectrum, either the
least damped or the most amplified eigenvalues, depending on the system being stable or
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unstable, respectively. The algorithm aims to modify this part of the spectrum. Now, we
consider the evolution equation for the residual:

rn+1 = rn − ABrn, (B4)

which can be obtained from (B2) applying −A and adding b on both sides. The central
idea is to replace the residual rn with a new one ξn(rn). We need to choose ξn such that
ξn → 0 only when rn → 0. If we substitute rn, equation (B4) reads

rn+1 = rn − ABξn(rn). (B5)

Now, the task is to to choose ξn such that rn+1 is minimized. To do so, a least-squares
method is adopted to approximate the solution of ABξn = rn. The value of ξn is
approximated using the subspace of AB built through its repeated action. It should be
noticed that the described procedure requires only the knowledge of the residuals rn to
compute ξn and for that reason can be included as a black box in the original procedure.
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