THE OSCILLATION OF FOURTH ORDER LINEAR DIFFERENTIAL OPERATORS

ROGER T. LEWIS

Define the self-adjoint operator

$$L_4 y = (r y'')'' - (q y')' + py$$

where r(x) > 0 on $(0, \infty)$ and q and p are real-valued. The coefficient q is assumed to be differentiable on $(0, \infty)$ and r is assumed to be twice differentiable on $(0, \infty)$.

The oscillatory behavior of L_4 as well as the general even order operator has been considered by Leighton and Nehari [5], Glazman [2], Reid [7], Hinton [3], Barrett [1], Hunt and Namboodiri [4], Schneider [8], and Lewis [6].

The operator L_4 is said to be *oscillatory on* $(0, \infty)$ if for every c > 0 there are numbers a and b and a function y, $y \neq 0$, such that b > a > c, $L_4 y = 0$, and

(1)
$$y(a) = y'(a) = 0 = y'(b) = y(b)$$
.

Otherwise, L_4 is said to be *nonoscillatory on* $(0, \infty)$.

Given a > 0, define $\mathcal{D}(b)$ for all b > a to be the set of all real-valued functions y with the following properties:

- (i) y and y' are absolutely continuous on [a, b],
- (ii) y'' is essentially bounded on [a, b], and
- (iii) (1) holds.

THEOREM 1. The following two statements are equivalent.

- (i) The operator L_4 is nonoscillatory on $(0, \infty)$.
- (ii) There exist a > 0 such that for all $b > a, y \neq 0$ and $y \in \mathcal{D}(b)$ implies that

$$\int_{a}^{b} r(y'')^{2} + q(y')^{2} + py^{2} > 0.$$

The reader should consult Reid's paper [7] for a proof of Theorem 1. The left side of the above inequality is referred to as the quadratic functional for L_4 and is denoted by $I_b(y)$.

A consequence of Theorem 1 is the fact that if for all a > 0 we can find a b > a and a function $y \in \mathcal{D}(b)$ such that $y \neq 0$ and

(2)
$$\int_{a}^{b} r(y'')^{2} + q(y')^{2} + py^{2} \leq 0,$$

Received July 23, 1973 and in revised form, March 25, 1974.

then L_4 is oscillatory on $(0, \infty)$. This method of proof was utilized independently by Glazman [2] and Hinton [3]. All of the theorems which follow also utilize this method of proof.

Hunt and Namboodiri [4] showed that if

$$\int^{\infty} x^{2(n-1)} p = -\infty$$
, $p \leq 0$, and $\int^{\infty} r^{-1} = \infty$,

then $(-1)^n (r y^{(n)})^{(n)} + py$ is oscillatory on $(0, \infty)$. The following theorem shows that for n = 2 and r bounded the sign restriction on p is not necessary.

We shall adopt the notation that $f_+(x) = \max \{0, f(x)\}.$

Theorem 2. If $r(x) \leq M$,

$$\int^{\infty} q_{+} < \infty$$
, and $\int^{\infty} x^{2} p = -\infty$,

then L_4 is oscillatory on $(0, \infty)$.

Proof. Given a > 0, define $\omega(x)$ to be the third degree polynomial satisfying $\omega(0) = 0 = \omega'(0), \, \omega(1) = a + 1$, and $\omega'(1) = 1$. Define y(x) as follows:

$$y(x) = \begin{cases} 0, & x < a \\ \omega(x-a), & a \leq x < a+1 \\ x, & a+1 \leq x < b_1 \\ -(x-b_1-1)^2/2 + b_1 + 1/2, & b_1 \leq x < b_1 + 2 = b_2 \\ -x+b_2 + b_1, & b_2 \leq x < b_3 \\ (b-x)^2/2, & b_3 \leq x < b_3 + 1 = b \\ 0, & b \leq x. \end{cases}$$

Given b_1 , b_3 can be chosen so that y and y' will be continuous at b_3 . Consequently, y will be an element of $\mathcal{D}(b)$.

Since $r(x) \leq M$, it follows that

$$\int_a^b r(y'')^2 \leq M \left[\int_0^1 (\omega'')^2 + 3 \right].$$

Also,

$$\int_{a}^{b} [q(y')^{2} + py^{2}] \leq \int_{a}^{a+1} [q(y')^{2} + py^{2}] + \int_{a+1}^{b_{1}} x^{2}p + \int_{b_{1}}^{b} py^{2} + \int_{a+1}^{\infty} q_{+}$$

since $(y')^2 \leq 1$ on [a + 1, b].

Since

$$\int^{\infty} x^2 p = -\infty,$$

there is a number *c* such that $t \ge c$ implies that

$$\int_{a}^{a+1} \left[q(y')^{2} + py^{2}\right] + M \left[\int_{0}^{1} (\omega'')^{2} + 3\right] + \int_{a+1}^{\infty} q_{+} + \int_{a+1}^{t} x^{2} p < 0.$$

We will next show that

$$\int_{b_1}^b p y^2 < 0.$$

Then, we will have that inequality (2) holds, and the proof will be complete. Let

$$Q(t) = \int_c^t x^2 p \, dx$$

and b_1 be its last zero on $[a, \infty)$. Integration by parts yields the inequality

$$\int_{b_1}^{b} py^2 dt = -\int_{b_1}^{b} Q\left(\frac{2y}{t^4}\right) (ty' - y) dt$$
$$< -\int_{b_1}^{b_1+1} Q\left(\frac{2y}{t^3}\right) (ty' - y) dt$$

since for $t \in [b_1 + 1, b]$, $Q(t) \leq 0$, $y'(t) \leq 0$, and $y(t) \geq 0$. For $t \in [b_1, b_1 + 1]$ calculations show that

$$ty'(t) - y(t) = (b_1^2 - t^2)/2 \leq 0.$$

Therefore,

$$\int_{b_1}^{b} py^2 < 0 \quad \text{since } y(t) \ge 0 \text{ and } Q(t) \le 0 \text{ on } [b_1, b_1 + 1].$$

The next theorem considers L_4 when p is integrable. In this case we define

$$P_1(x) = \int_x^\infty p.$$

THEOREM 3. If

$$-\infty < \int_{-\infty}^{\infty} p < \infty$$
, then $r(x) \leq M$, $q \leq 0$, and
 $\int_{-\infty}^{\infty} x^{\alpha} P_{1} = -\infty$ for $0 \leq \alpha \leq 1$, then then L_{4} is oscillatory on $(0, \infty)$.

Proof. Given a > 0, let $\omega(x)$ be the third degree polynomial which satisfies the conditions

$$\omega(0) = 0 = \omega'(0), \, \omega(1) = (a+1)^{\beta}, \text{ and } \omega'(1) = \beta(a+1)^{\beta-1}$$

where $\beta = (\alpha + 1)/2$. Define y(x) as follows:

$$y(x) = \begin{cases} 0, & x \leq a \\ \omega(x-a), & a < x \leq a+1 \\ x^{\beta}, & a+1 < x \leq b_1 \\ -(x-b_2)^2/2 + b_1^{\beta} + (b_1-b_2)^2/2, & b_1 < x \leq b_2 \\ y(b_2), & b_2 < x \leq b_3 \\ y(b+a-x), & b_3 < x \leq b \\ 0, & b < x. \end{cases}$$

Given b_1 we choose b_2 so that y' is continuous at b_1 , and given b_3 we pick b so that $b - b_3 = b_2 - a$. Hence, for $b_1 \ge a + 1$ and $b_3 \ge b_2$ we will have that $y \in \mathcal{D}(b)$.

Calculations show that since $b_2 - b_1 \leq 1$ then

$$\int_{a}^{b} r(y'')^{2} \leq 2M \left[\int_{0}^{1} (\omega'')^{2} + \beta^{2} (\beta - 1)^{2} \int_{a}^{\infty} (x^{\beta - 2})^{2} dx + 1 \right].$$

By integrating by parts, we obtain the equality

$$\int_a^b p y^2 = 2 \int_a^b y y' P_1.$$

Since

$$\int^{\infty} x^{\alpha} P_1 = -\infty \text{ and } \alpha = 2\beta - 1,$$

there is a number *c* such that $t \ge c$ implies that

$$1 + \int_{a}^{b} r(y'')^{2} + 2 \int_{a}^{a+1} yy' P_{1} + 2\beta \int_{a+1}^{t} x^{2\beta-1} P_{1} < 0.$$

Let

$$Q(t) = \int_{c}^{t} x^{\alpha} P_{1}$$

and b_1 be the last zero of Q(t). Then,

$$2 \int_{b_1}^{b_2} y y' P_1 = -2 \int_{b_1}^{b_2} Q(t) \left(\frac{y y'}{t^{\alpha}}\right)' dt$$
$$< -2 \int_{b_1}^{b_2} Q(t) \frac{\left[(y')^2 - y\right]}{t^{\alpha}} dt < 0$$

since $y \ge 1$, $0 \le y' \le 1$, y'' = -1, and $Q(t) \le 0$ on $[b_1, b_2]$. Since $|P_1| \to 0$ as $x \to \infty$, we can pick b_3 so that

$$2(b_2 - a)|P_1(x)|y(b_2) \max_{x \in [a, b_2]} |y'| \le 1$$

for all $x \ge b_3$. Hence,

$$2 \int_{b_2}^{b} yy' P_1 \leq 2 \int_{b_3}^{b} |yy' \cdot P_1| \leq 1.$$

Therefore, inequality (2) holds for y, and the proof is complete.

Most theorems concerning the oscillation of L_4 place the burden of making the quadratic functional negative for some $y \in \mathscr{D}(b)$ upon either p or q, but not both. The next two theorems investigate how the combined negativity of p and q can cause L_4 to be oscillatory.

THEOREM 4. If r is bounded, q is bounded above, p is non-positive, and

$$\int^{\infty} (x^2 p + q) = -\infty,$$

then L_4 is oscillatory on $(0, \infty)$.

Proof. Given a > 0, for $\beta = 1$ choose $\omega(x)$ as in Theorem 3. Define y(x) as follows:

$$y(x) = \begin{cases} 0, & x < a \\ \omega(x-a), & a \leq x < a+1 \\ x, & a+1 \leq x < b_1 \\ -(x-b_2)^2/2 + b_1 + 1/2, & b_1 \leq x < b_1 + 1 = b_2 \\ -(x-b_2)^2/2 + b_1 + 1/2, & b_2 \leq x \leq b_3 \\ -(b_3 - b_2)(x-b_3) + y(b_3), & b_3 < x < b_4 \\ (x-b)^2/2, & b_4 \leq x < b \\ 0, & b \leq x. \end{cases}$$

Given b_3 it is clear that b_4 and b can be chosen to insure the continuity of y and y'. This will require that $b - b_4 = b_3 - b_2$.

Since $0 < r(x) \leq M$ and if we require that $b_3 - b_2 \leq 1$, then calculations show that

$$\int_{a}^{b} r(y^{\prime\prime})^{2} \leq M \left[\int_{0}^{1} (\omega^{\prime\prime})^{2} + 3 \right].$$

Since $p \leq 0, q \leq N$ for some constant N, and $(y')^2 \leq 1$ on $[b_1, b_2]$, then

$$\int_{a}^{b} \left[q(y')^{2} + py^{2} \right] \leq \int_{a}^{a+1} q(y')^{2} + \int_{a+1}^{b_{1}} \left(q + x^{2}p \right) + N + \int_{b_{2}}^{b} q(y')^{2}.$$

Since

$$\int_{a+1}^{\infty} (q + x^2 p) \to -\infty \quad \text{as} \quad t \to \infty$$

there is a constant b_1 such that $t \ge b_1$ implies that

$$\int_{a}^{b} r(y'')^{2} + \int_{a}^{a+1} q(y')^{2} + \int_{a+1}^{t} (q + x^{2}p) + N + 1 < 0.$$

142

$$\int_{b_2}^b q(y')^2 \leq 1.$$

First, note that by considering the graph of y on $[b_2, b]$ we know that

$$b - b_2 \leq 2 + b_4 - b_3 \leq 2 + y(b_2)/(b_3 - b_2)$$

Consequently,

$$\int_{b_2}^{b} q(y')^2 \leq N(b_3 - b_2)^2 (b - b_2) \leq N(b_3 - b_2) (2(b_3 - b_2) + y(b_2)).$$

Therefore, we can choose b_3 so that

$$\int_{b_2}^b q(y')^2 \leq 1,$$

and the proof is complete.

Theorem 4 shows that for M > 0, (My'')'' - (qy')' + py is oscillatory on $(0, \infty)$ where

 $q(x) = A \sin Bx$ and $p(x) = -q_{+}(x)/x^{2}$

or

$$q(x) = C > 0$$
 and $p(x) = -(Cx + 1)/x^3$.

THEOREM 5. If $r(x) \leq M x^{\alpha}$ for $\alpha < 1$, $p \leq 0$, $q \leq 0$, and

$$\lim_{x\to\infty}\inf x^{1-\alpha}\int_x^\infty (q+t^2p)<-4M,$$

then L_4 is oscillatory on $(0, \infty)$.

Proof. For $0 \leq \mu < 1$, let $\omega_{\mu}(x)$ be the third degree polynomial with the following properties:

$$\omega_{\mu}(0) = 0 = \omega_{\mu}'(0)$$
 and $\omega_{\mu}(1-\mu) = 1 = \omega_{\mu}'(1-\mu).$

Also, let $\beta(x) = x^2/2$, and define y(x) as follows:

$$y(x) = \begin{cases} 0, & x < \mu \rho \\ \omega_{\mu}((x - \mu \rho)/\rho), & \mu \rho \leq x < \rho \\ x/\rho, & \rho \leq x < R \\ -R \cdot \omega_{\mu}((1 - \mu)(2R - x)/R)/\rho(1 - \mu) & \\ + R/\rho + R/\rho(1 - \mu), & R \leq x \leq 2R \\ y(2R), & 2R < x < S \\ -\beta((x - S)/S) + y(2R), & S \leq x < 2S \\ -(x - 2S)/S + y(2R) - 1/2, & 2S \leq x < T \\ T \cdot \beta((x - 2T)/T)/S, & T \leq x < 2T \\ 0, & 2T \leq x. \end{cases}$$

If $\rho > 0$ then calculations show that

$$\int_{\mu\rho}^{2T} r(y'')^2 \leq M \rho^{\alpha-3} \left[\int_0^{1-\mu} (\omega_{\mu}'')^2 + 2^{\alpha} (1-\mu) \left(\int_0^{1-\mu} \frac{(\omega_{\mu}'')^2}{\rho^{\alpha-1} R^{1-\alpha}} \right) + 2^{\alpha} \rho^{3-\alpha} \frac{(S^{\alpha-1} + T^{\alpha-1})}{S^2} \right].$$

Calculations also show that

$$F(\mu) = \int_{0}^{1-\mu} (\omega_{\mu}'')^{2} = \frac{4(\mu^{2} + \mu + 1)}{(1-\mu)^{3}}.$$

Note that $F(\mu)$ is increasing on [0, 1), and F(0) = 4. Since

$$\liminf_{x\to\infty}\inf x^{1-\alpha}\,\int_x^\infty\,(q+t^2p)\,dt<-4M,$$

there is a sequence $\langle \rho_k \rangle \to \infty$ as $k \to \infty$ and a number $\delta > 0$ such that

$$\lim_{k\to\infty}\rho_k^{1-\alpha}\int_{\rho_k}^{\infty}(q+t^2p)dt=-4M-\delta.$$

Since F(0) = 4 and F is continuous at 0, we can choose μ such that $0 < \mu < 1$ and $F(\mu) = 4 + \delta/6M$. For a given a > 0 there is a positive integer N such that $k \ge N$ implies that

$$\rho_k^{1-\alpha} \int_{\rho_k}^{\infty} (q+t^2 p) dt < -4M - \frac{3\delta}{4}$$

and $\mu \rho_k \geq a$. Let $\rho = \rho_N$. Since

$$\lim_{x\to\infty}\rho^{1-\alpha}\int_{\rho}^{x}(q+t^{2}p)dt < -4M - \frac{3\delta}{4}$$

we can choose R so large that

$$\rho^{1-\alpha} \int_{\rho}^{R} (q+t^2 p) dt < -4M - \frac{\delta}{2},$$

 $R \geq 2\rho$, and

$$2^{\alpha}(1-\mu) \int_{0}^{1-\mu} \frac{(\omega_{\mu}'')^{2}}{(\rho^{\alpha-1}R^{1-\alpha})} < \frac{\delta}{6M}$$

Pick S so large that

$$2^{\alpha} \rho^{3-\alpha} (S^{\alpha-1} + T^{\alpha-1})/S^2 < \delta/6M$$

when $T \ge 2S$. Choose $T \ge 2S$ so that y(x) is continuous at x = T, i.e., T = S + 2S y(2R)/3. Note that since $R \ge 2\rho$ then $y(2R) \ge 2$, and this

https://doi.org/10.4153/CJM-1975-017-4 Published online by Cambridge University Press

144

implies that T > 2S. Consequently,

$$\int_{\mu\rho}^{2T} r(y^{\prime\prime})^2 \leq M \rho^{\alpha-3} \left(4 + \frac{\delta}{2M} \right) \,.$$

Since p and q are not positive

$$\int_{\mu\rho}^{2T} r(y'')^2 + q(y')^2 + py^2 \leq \rho^{\alpha-3} \left[4M + \frac{\delta}{2} + \rho^{1-\alpha} \int_{\rho}^{R} (q+t^2p) \right] < 0.$$

References

- 1. J. H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415-509.
- 2. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translation, Jerusalem, 1965.
- 3. D. B. Hinton, Clamped end boundary conditions for fourth-order self-adjoint differential equations, Duke Math. J. 34 (1967), 131-138.
- 4. R. W. Hunt and M. S. T. Namboodiri, Solution behaviour for general self-adjoint differential equations, Proc. London Math. Soc. 21 (1970), 637-50.
- 5. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-77.
- 6. R. T. Lewis, Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators, Pacific J. Math. 51 (1974), 221-234.
- 7. W. T. Reid, Riccati matrix differential equations and nonoscillation criteria for associated linear systems, Pacific J. Math. 13 (1963), 665-85.
- 8. L. J. Schneider, Oscillation properties of the 2-2 disconjugate fourth self-adjoint differential equation, Proc. Amer. Math. Soc. 28 (1971), 545-550.

Slippery Rock State College, Slippery Rock, Pennsylvania