THE OSCILLATION OF FOURTH ORDER LINEAR DIFFERENTIAL OPERATORS

ROGER T. LEWIS

Define the self-adjoint operator

$$
L_{4} y=\left(r y^{\prime \prime}\right)^{\prime \prime}-\left(q y^{\prime}\right)^{\prime}+p y
$$

where $r(x)>0$ on $(0, \infty)$ and q and p are real-valued. The coefficient q is assumed to be differentiable on $(0, \infty)$ and r is assumed to be twice differentiable on $(0, \infty)$.

The oscillatory behavior of L_{4} as well as the general even order operator has been considered by Leighton and Nehari [5], Glazman [2], Reid [7], Hinton [3], Barrett [1], Hunt and Namboodiri [4], Schneider [8], and Lewis [6].

The operator L_{4} is said to be oscillatory on $(0, \infty)$ if for every $c>0$ there are numbers a and b and a function $y, y \not \equiv 0$, such that $b>a>c, L_{+} y=0$, and
(1) $\quad y(a)=y^{\prime}(a)=0=y^{\prime}(b)=y(b)$.

Otherwise, L_{4} is said to be nonoscillatory on $(0, \infty)$.
Given $a>0$, define $\mathscr{D}(b)$ for all $b>a$ to be the set of all real-valued functions y with the following properties:
(i) y and y^{\prime} are absolutely continuous on $[a, b]$,
(ii) $y^{\prime \prime}$ is essentially bounded on $[a, b]$, and
(iii) (1) holds.

Theorem 1. The following two statements are equivalent.
(i) The operator L_{4} is nonoscillatory on $(0, \infty)$.
(ii) There exist $a>0$ such that for all $b>a, y \not \equiv 0$ and $y \in \mathscr{D}(b)$ implies that

$$
\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2}+q\left(y^{\prime}\right)^{2}+p y^{2}>0
$$

The reader should consult Reid's paper [7] for a proof of Theorem 1. The left side of the above inequality is referred to as the quadratic functional for L_{4} and is denoted by $I_{b}(y)$.

A consequence of Theorem 1 is the fact that if for all $a>0$ we can find a $b>a$ and a function $y \in \mathscr{D}(b)$ such that $y \not \equiv 0$ and
(2) $\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2}+q\left(y^{\prime}\right)^{2}+p y^{2} \leqq 0$,

Received July 23, 1973 and in revised form, March 25, 1974.
then L_{4} is oscillatory on $(0, \infty)$. This method of proof was utilized independently by Glazman [2] and Hinton [3]. All of the theorems which follow also utilize this method of proof.

Hunt and Namboodiri [4] showed that if

$$
\int^{\infty} x^{2(n-1)} p=-\infty, \quad p \leqq 0, \quad \text { and } \int_{r^{-1}}^{\infty}=\infty
$$

then $(-1)^{n}\left(r y^{(n)}\right)^{(n)}+p y$ is oscillatory on $(0, \infty)$. The following theorem shows that for $n=2$ and r bounded the sign restriction on p is not necessary.

We shall adopt the notation that $f_{+}(x)=\max \{0, f(x)\}$.
Theorem 2. If $r(x) \leqq M$,

$$
\int^{\infty} q_{+}<\infty, \text { and } \int^{\infty} x^{2} p=-\infty
$$

then L_{4} is oscillatory on $(0, \infty)$.
Proof. Given $a>0$, define $\omega(x)$ to be the third degree polynomial satisfying $\omega(0)=0=\omega^{\prime}(0), \omega(1)=a+1$, and $\omega^{\prime}(1)=1$. Define $y(x)$ as follows:

$$
y(x)= \begin{cases}0, & x<a \\ \omega(x-a), & a \leqq x<a+1 \\ x, & a+1 \leqq x<b_{1} \\ -\left(x-b_{1}-1\right)^{2} / 2+b_{1}+1 / 2, & b_{1} \leqq x<b_{1}+2=b_{2} \\ -x+b_{2}+b_{1}, & b_{2} \leqq x<b_{3} \\ (b-x)^{2} / 2, & b_{3} \leqq x<b_{3}+1=b \\ 0, & b \leqq x .\end{cases}
$$

Given b_{1}, b_{3} can be chosen so that y and y^{\prime} will be continuous at b_{3}. Consequently, y will be an element of $\mathscr{D}(b)$.

Since $r(x) \leqq M$, it follows that

$$
\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2} \leqq M\left[\int_{0}^{1}\left(\omega^{\prime \prime}\right)^{2}+3\right]
$$

Also,

$$
\int_{a}^{b}\left[q\left(y^{\prime}\right)^{2}+p y^{2}\right] \leqq \int_{a}^{a+1}\left[q\left(y^{\prime}\right)^{2}+p y^{2}\right]+\int_{a+1}^{b_{1}} x^{2} p+\int_{b_{1}}^{b} p y^{2}+\int_{a+1}^{\infty} q_{+}
$$

since $\left(y^{\prime}\right)^{2} \leqq 1$ on $[a+1, b]$.
Since

$$
\int^{\infty} x^{2} p=-\infty
$$

there is a number c such that $t \geqq c$ implies that

$$
\int_{a}^{a+1}\left[q\left(y^{\prime}\right)^{2}+p y^{2}\right]+M\left[\int_{0}^{1}\left(\omega^{\prime \prime}\right)^{2}+3\right]+\int_{a+1}^{\infty} q_{+}+\int_{a+1}^{t} x^{2} p<0
$$

We will next show that

$$
\int_{b_{1}}^{b} p y^{2}<0
$$

Then, we will have that inequality (2) holds, and the proof will be complete.
Let

$$
Q(t)=\int_{c}^{t} x^{2} p d x
$$

and b_{1} be its last zero on $[a, \infty)$. Integration by parts yields the inequality

$$
\begin{aligned}
\int_{b_{1}}^{b} p y^{2} d t & =-\int_{b_{1}}^{b} Q\left(\frac{2 y}{t^{4}}\right)\left(t y^{\prime}-y\right) d t \\
& <-\int_{b_{1}}^{b_{1}+1} Q\left(\frac{2 y}{t^{3}}\right)\left(t y^{\prime}-y\right) d t
\end{aligned}
$$

since for $t \in\left[b_{1}+1, b\right], Q(t) \leqq 0, y^{\prime}(t) \leqq 0$, and $y(t) \geqq 0$. For $t \in\left[b_{1}, b_{1}+1\right]$ calculations show that

$$
t y^{\prime}(t)-y(t)=\left(b_{1}{ }^{2}-t^{2}\right) / 2 \leqq 0
$$

Therefore,

$$
\int_{b_{1}}^{b} p y^{2}<0 \quad \text { since } y(t) \geqq 0 \text { and } Q(t) \leqq 0 \text { on }\left[b_{1}, b_{1}+1\right] .
$$

The next theorem considers L_{4} when p is integrable. In this case we define

$$
P_{1}(x)=\int_{x}^{\infty} p .
$$

Theorem 3. If

$$
\begin{aligned}
& -\infty<\int^{\infty} p<\infty, \text { then } r(x) \leqq M, q \leqq 0, \text { and } \\
& \int^{\infty} x^{\alpha} P_{1}=-\infty \text { for } 0 \leqq \alpha \leqq 1, \text { then then } L_{4} \text { is oscillatory on }(0, \infty) .
\end{aligned}
$$

Proof. Given $a>0$, let $\omega(x)$ be the third degree polynomial which satisfies the conditions

$$
\omega(0)=0=\omega^{\prime}(0), \omega(1)=(a+1)^{\beta}, \text { and } \omega^{\prime}(1)=\beta(a+1)^{\beta-1}
$$

where $\beta=(\alpha+1) / 2$. Define $y(x)$ as follows:

$$
y(x)= \begin{cases}0, & x \leqq a \\ \omega(x-a), & a<x \leqq a+1 \\ x^{\beta}, & a+1<x \leqq b_{1} \\ -\left(x-b_{2}\right)^{2} / 2+b_{1}{ }^{\beta}+\left(b_{1}-b_{2}\right)^{2} / 2, & b_{1}<x \leqq b_{2} \\ y\left(b_{2}\right), & b_{2}<x \leqq b_{3} \\ y(b+a-x), & b_{3}<x \leqq b \\ 0, & b<x .\end{cases}
$$

Given b_{1} we choose b_{2} so that y^{\prime} is continuous at b_{1}, and given b_{3} we pick b so that $b-b_{3}=b_{2}-a$. Hence, for $b_{1} \geqq a+1$ and $b_{3} \geqq b_{2}$ we will have that $y \in \mathscr{D}(b)$.

Calculations show that since $b_{2}-b_{1} \leqq 1$ then

$$
\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2} \leqq 2 M\left[\int_{0}^{1}\left(\omega^{\prime \prime}\right)^{2}+\beta^{2}(\beta-1)^{2} \int_{a}^{\infty}\left(x^{\beta-2}\right)^{2} d x+1\right]
$$

By integrating by parts, we obtain the equality

$$
\int_{a}^{b} p y^{2}=2 \int_{a}^{b} y y^{\prime} P_{1}
$$

Since

$$
\int^{\infty} x^{\alpha} P_{1}=-\infty \text { and } \alpha=2 \beta-1
$$

there is a number c such that $t \geqq c$ implies that

$$
1+\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2}+2 \int_{a}^{a+1} y y^{\prime} P_{1}+2 \beta \int_{a+1}^{t} x^{2 \beta-1} P_{1}<0
$$

Let

$$
Q(t)=\int_{c}^{t} x^{\alpha} P_{1}
$$

and b_{1} be the last zero of $Q(t)$. Then,

$$
\begin{aligned}
2 \int_{b_{1}}^{b_{2}} y y^{\prime} P_{1} & =-2 \int_{b_{1}}^{b_{2}} Q(t)\left(\frac{y v^{\prime}}{t^{\alpha}}\right)^{\prime} d t \\
& <-2 \int_{b_{1}}^{b_{2}} Q(t) \frac{\left[\left(y^{\prime}\right)^{2}-y\right]}{t^{\alpha}} d t<0
\end{aligned}
$$

since $y \geqq 1,0 \leqq y^{\prime} \leqq 1, y^{\prime \prime}=-1$, and $Q(t) \leqq 0$ on $\left[b_{1}, b_{2}\right]$.
Since $\left|P_{1}\right| \rightarrow 0$ as $x \rightarrow \infty$, we can pick b_{3} so that

$$
2\left(b_{2}-a\right)\left|P_{1}(x)\right| y\left(b_{2}\right) \max _{x \in\left[a, b_{2}\right]}\left|y^{\prime}\right| \leqq 1
$$

for all $x \geqq b_{3}$. Hence,

$$
2 \int_{b_{2}}^{b} y y^{\prime} P_{1} \leqq 2 \int_{b 3}^{b}\left|y y^{\prime} \cdot P_{1}\right| \leqq 1 .
$$

Therefore, inequality (2) holds for y, and the proof is complete.
Most theorems concerning the oscillation of L_{4} place the burden of making the quadratic functional negative for some $y \in \mathscr{D}(b)$ upon either p or q, but not both. The next two theorems investigate how the combined negativity of p and q can cause L_{4} to be oscillatory.

Theorem 4. If r is bounded, q is bounded above, p is non-positive, and

$$
\int^{\infty}\left(x^{2} p+q\right)=-\infty
$$

then L_{4} is oscillatory on $(0, \infty)$.
Proof. Given $a>0$, for $\beta=1$ choose $\omega(x)$ as in Theorem 3. Define $y(x)$ as follows:

$$
y(x)= \begin{cases}0, & x<a \\ \omega(x-a), & a \leqq x<a+1 \\ x, & a>1 \leqq x<b_{1} \\ -\left(x-b_{2}\right)^{2} / 2+b_{1}+1 / 2, & b_{1} \leqq x<b_{1}+1=b_{2} \\ -\left(x-b_{2}\right)^{2} / 2+b_{1}+1 / 2, & b_{2} \leqq x \leqq b_{3} \\ -\left(b_{3}-b_{2}\right)\left(x-b_{3}\right)+y\left(b_{3}\right), & b_{3}<x<b_{4} \\ (x-b)^{2} / 2, & b_{4} \leqq x<b \\ 0, & b \leqq x .\end{cases}
$$

Given b_{3} it is clear that b_{4} and b can be chosen to insure the continuity of y and y^{\prime}. This will require that $b-b_{4}=b_{3}-b_{2}$.

Since $0<r(x) \leqq M$ and if we require that $b_{3}-b_{2} \leqq 1$, then calculations show that

$$
\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2} \leqq M\left[\int_{0}^{1}\left(\omega^{\prime \prime}\right)^{2}+3\right]
$$

Since $p \leqq 0, q \leqq N$ for some constant N, and $\left(y^{\prime}\right)^{2} \leqq 1$ on $\left[b_{1}, b_{2}\right]$, then

$$
\int_{a}^{b}\left[q\left(y^{\prime}\right)^{2}+p y^{2}\right] \leqq \int_{a}^{a+1} q\left(y^{\prime}\right)^{2}+\int_{a+1}^{b_{1}}\left(q+x^{2} p\right)+N+\int_{b_{2}}^{b} q\left(y^{\prime}\right)^{2}
$$

Since

$$
\int_{a+1}^{\infty}\left(q+x^{2} p\right) \rightarrow-\infty \quad \text { as } \quad t \rightarrow \infty
$$

there is a constant b_{1} such that $t \geqq b_{1}$ implies that

$$
\int_{a}^{b} r\left(y^{\prime \prime}\right)^{2}+\int_{a}^{a+1} q\left(y^{\prime}\right)^{2}+\int_{n+1}^{t}\left(y+x^{2} p\right)+N+1<0 .
$$

We need only to show that $b_{3}-b_{2}$ can be made so small that

$$
\int_{b_{2}}^{b} q\left(y^{\prime}\right)^{2} \leqq 1
$$

First, note that by considering the graph of y on $\left[b_{2}, b\right]$ we know that

$$
b-b_{2} \leqq 2+b_{4}-b_{3} \leqq 2+y\left(b_{2}\right) /\left(b_{3}-b_{2}\right)
$$

Consequently,

$$
\int_{b_{2}}^{b} q\left(y^{\prime}\right)^{2} \leqq N\left(b_{3}-b_{2}\right)^{2}\left(b-b_{2}\right) \leqq N\left(b_{3}-b_{2}\right)\left(2\left(b_{3}-b_{2}\right)+y\left(b_{2}\right)\right) .
$$

Therefore, we can choose b_{3} so that

$$
\int_{b_{2}}^{b} q\left(y^{\prime}\right)^{2} \leqq 1
$$

and the proof is complete.
Theorem 4 shows that for $M>0,\left(M y^{\prime \prime}\right)^{\prime \prime}-\left(q y^{\prime}\right)^{\prime}+p y$ is oscillatory on $(0, \infty)$ where

$$
q(x)=A \sin B x \quad \text { and } \quad p(x)=-q_{+}(x) / x^{2}
$$

or

$$
q(x)=C>0 \quad \text { and } \quad p(x)=-(C x+1) / x^{3}
$$

Theorem 5. If $r(x) \leqq M x^{\alpha}$ for $\alpha<1, p \leqq 0, q \leqq 0$, and

$$
\lim _{x \rightarrow \infty} \inf x^{1-\alpha} \int_{x}^{\infty}\left(q+t^{2} p\right)<-4 M
$$

then L_{4} is oscillatory on $(0, \infty)$.
Proof. For $0 \leqq \mu<1$, let $\omega_{\mu}(x)$ be the third degree polynomial with the following properties:

$$
\omega_{\mu}(0)=0=\omega_{\mu}{ }^{\prime}(0) \quad \text { and } \quad \omega_{\mu}(1-\mu)=1=\omega_{\mu}{ }^{\prime}(1-\mu)
$$

Also, let $\beta(x)=x^{2} / 2$, and define $y(x)$ as follows:

$$
y(x)= \begin{cases}0, & x<\mu \rho \\ \omega_{\mu}((x-\mu \rho) / \rho), & \mu \rho \leqq x<\rho \\ x / \rho, & \rho \leqq x<R \\ -R \cdot \omega_{\mu}((1-\mu)(2 R-x) / R) / \rho(1-\mu) & R \leqq x \leqq 2 R \\ \quad+R / \rho+R / \rho(1-\mu), & 2 R<x<S \\ y(2 R), & S \leqq x<2 S \\ -\beta((x-S) / S)+y(2 R), & 2 S \leqq x<T \\ -(x-2 S) / S+y(2 R)-1 / 2, & T \leqq x<2 T \\ T \cdot \beta((x-2 T) / T) / S, & 2 T \leqq x .\end{cases}
$$

If $\rho>0$ then calculations show that

$$
\begin{aligned}
\int_{\mu \rho}^{2 T} r\left(y^{\prime \prime}\right)^{2} \leqq M \rho^{\alpha-3}\left[\int_{0}^{1-\mu}\left(\omega_{\mu}{ }^{\prime \prime}\right)^{2}+2^{\alpha}(1-\mu)\right. & \left(\int_{0}^{1-\mu} \frac{\left(\omega_{\mu}^{\prime \prime}\right)^{2}}{\rho^{\alpha-1} R^{1-\alpha}}\right) \\
& \left.+2^{\alpha} \rho^{3-\alpha} \frac{\left(S^{\alpha-1}+T^{\alpha-1}\right)}{S^{2}}\right]
\end{aligned}
$$

Calculations also show that

$$
F(\mu)=\int_{0}^{1-\mu}\left(\omega_{\mu}^{\prime \prime}\right)^{2}=\frac{4\left(\mu^{2}+\mu+1\right)}{(1-\mu)^{3}}
$$

Note that $F(\mu)$ is increasing on $[0,1)$, and $F(0)=4$.
Since

$$
\lim _{x \rightarrow \infty} \inf x^{1-\alpha} \int_{x}^{\infty}\left(q+t^{2} p\right) d t<-4 M
$$

there is a sequence $\left\langle\rho_{k}\right\rangle \rightarrow \infty$ as $k \rightarrow \infty$ and a number $\delta>0$ such that

$$
\lim _{k \rightarrow \infty} \rho_{k}^{1-\alpha} \int_{\rho_{k}}^{\infty}\left(q+t^{2} p\right) d t=-4 M-\delta .
$$

Since $F(0)=4$ and F is continuous at 0 , we can choose μ such that $0<\mu<1$ and $F(\mu)=4+\delta / 6 M$. For a given $a>0$ there is a positive integer N such that $k \geqq N$ implies that

$$
\rho_{k}^{1-\alpha} \int_{\rho_{k}}^{\infty}\left(q+t^{2} p\right) d t<-4 M-\frac{3 \delta}{4}
$$

and $\mu \rho_{k} \geqq a$. Let $\rho=\rho_{N}$. Since

$$
\lim _{x \rightarrow \infty} \rho^{1-\alpha} \int_{\rho}^{x}\left(q+t^{2} p\right) d t<-4 M-\frac{3 \delta}{4}
$$

we can choose R so large that

$$
\rho^{1-\alpha} \int_{\rho}^{R}\left(q+t^{2} p\right) d t<-4 M-\frac{\delta}{2},
$$

$R \geqq 2 \rho$, and

$$
2^{\alpha}(1-\mu) \int_{0}^{1-\mu} \frac{\left(\omega_{\mu}{ }^{\prime \prime}\right)^{2}}{\left(\rho^{\alpha-1} R^{1-\alpha}\right)}<\frac{\delta}{6 M} .
$$

Pick S so large that

$$
2^{\alpha} \rho^{3-\alpha}\left(S^{\alpha-1}+T^{\alpha-1}\right) / S^{2}<\delta / 6 M
$$

when $T \geqq 2 S$. Choose $T \geqq 2 S$ so that $y(x)$ is continuous at $x=T$, i.e., $T=S+2 S y(2 R) / 3$. Note that since $R \geqq 2 \rho$ then $y(2 R) \geqq 2$, and this
implies that $T>2 S$. Consequently,

$$
\int_{\mu \rho}^{2 T} r\left(y^{\prime \prime}\right)^{2} \leqq M \rho^{\alpha-3}\left(4+\frac{\delta}{2 M}\right)
$$

Since p and q are not positive

$$
\int_{\mu \rho}^{2 T} r\left(y^{\prime \prime}\right)^{2}+q\left(y^{\prime}\right)^{2}+p y^{2} \leqq \rho^{\alpha-3}\left[4 M+\frac{\delta}{2}+\rho^{1-\alpha} \int_{\rho}^{R}\left(q+t^{2} p\right)\right]<0
$$

References

1. J. H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. \mathcal{B} (1969), 415-509.
2. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translation, Jerusalem, 1965.
3. D. B. Hinton, Clamped end boundary conditions for fourth-order self-adjoint differential equations, Duke Math. J. 34 (1967), 131-138.
4. R. W. Hunt and M. S. T. Namboodiri, Solution behaviour for general self-adjoint differential equations, Proc. London Math. Soc. 21 (1970), 637-50.
5. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-77.
6. R. T. Lewis, Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators, Pacific J. Math. 51 (1974), 221-234.
7. W. T. Reid, Riccati matrix differential equations and nonoscillation criteria for associated linear systems, Pacific J. Math. 13 (1963), 665-85.
8. L. J. Schneider, Oscillation properties of the 2-2 disconjugate fourth self-adjoint differential equation, Proc. Amer. Math. Soc. 28 (1971), 545-550.

Slippery Rock State College,
Slippery Rock, Pennsylvania

