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TRANSLATION-EQUIVARIANT MATCHINGS
OF COIN FLIPS ON ZZZ

d
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Abstract

Consider independent fair coin flips at each site of the lattice Z
d . A translation-equivariant

matching rule is a perfect matching of heads to tails that commutes with translations of
Z

d and is given by a deterministic function of the coin flips. Let Z� be the distance from
the origin to its partner, under the translation-equivariant matching rule �. Holroyd and
Peres (2005) asked, what is the optimal tail behaviour of Z� for translation-equivariant
perfect matching rules? We prove that, for every d ≥ 2, there exists a translation-
equivariant perfect matching rule � such that E Z

2/3−ε
� < ∞ for every ε > 0.

Keywords: Matching; Bernoulli random field

2000 Mathematics Subject Classification: Primary 60G55; 60G60
Secondary 60K35

1. Introduction

Consider the probability space (�, F , P), where � = {0, 1}Z
d
, F is the standard product

σ -algebra of {0, 1}Z
d
, and P is the product measure on F with parameter p = 1

2 . We call
elements of Z

d sites. For γ ∈ �, a bijection φ : Z
d → Z

d is a matching on γ if every site x

with γ (x) = 1 is mapped to a site y with γ (y) = 0, and vice versa, and if the composition
φ ◦ φ is the identity mapping on Z

d . For a site z, we define the translation θz on Z
d and � as

follows: we set θzx := x + z for all x ∈ Z
d and, for all γ ∈ �, we set θzγ (x) := γ (x − z)

for all x ∈ Z
d . A measurable mapping � : {0, 1}Z

d × Z
d → Z

d is a matching rule if �(γ, ·)
is a matching on γ for P-almost all γ . We say that � is translation equivariant if it commutes
with translations; that is, �(θzγ, ·) = θz�(γ, ·) for P-almost all γ .

Let ‖ · ‖ be the l∞ norm on Z
d . We define Z = Z�(γ ) := ‖�(γ, O)‖ to be the distance

from the origin O = (0, . . . , 0) ∈ Z
d to its partner. We will construct a translation-equivariant

matching rule � and obtain upper bounds on P(Z > r).

Theorem 1. For all d ≥ 1, there exists a translation-equivariant matching rule � such that,
for all r > 0, we have

P(Zφ > r) ≤ c(log r)4r−β

for some c = c(d) < ∞, where β = β(d) = 2/(1 + 4/d).

Prior to this result, the best known decay appears to have been the following.

Theorem 2. ([8] and [10].) For d ≥ 1, there exists a translation-equivariant matching rule �

such that, for all r > 0, we have P(Z� > r) ≤ cr−1/2 for some c = c(d) < ∞.
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Theorem 2 can be deduced from a simple construction due to Meshalkin [10]. Meshalkin’s
matching was originally used to construct isomorphisms of Bernoulli schemes [10]; it is the
following construction. In d = 1 we define a translation-equivariant matching rule inductively,
by first matching a 0 to a 1 whenever a 0 is immediately to the left of a 1, i.e.

. . . 011001111100001 . . . .

In the next stage we remove the matched pairs, and then follow the same procedure. It is straight-
forward to check that bounding P(Z > r) amounts to bounding R = inf{m ≥ 1 : Sm = 0},
where Sm denotes a simple symmetric random walk.

We may deduce the d ≥ 2 case of Theorem 2 from the following observation. By applying
a translation-equivariant matching rule �d−1 on Z

d−1 to each (d − 1)-dimensional plane,
given by {z} × Z

d−1 for each z ∈ Z, we obtain a translation-equivariant matching rule �d on
Z

d = Z × Z
d−1, where P(Z�d−1 > r) = P(Z�d

> r) for all r > 0.
Theorem 1 provides faster decay than that provided by Theorem 2 for all d > 1. After this

paper was written, Timár [12] proved the following stronger result.

Theorem 3. ([12].) For any d ≥ 1, there exists a translation-equivariant matching rule �

such that, for all r > 0, we have P(Z� > r) ≤ cr−d/2 for some c = c(d) < ∞.

Some of the methods of this paper also appear in [12]. New ideas are introduced in [12] and
the methods of [12] are much more sophisticated.

For d = 1, 2, the bounds obtained in Theorem 3 are essentially best possible.

Theorem 4. ([6] and [8].) If d = 1, 2 then, for any translation-equivariant matching rule �,
we have E Z

d/2
� = ∞.

Hence, for d = 1, 2, there does not exist a translation-equivariant matching rule � where
P(Z� > r) ≤ cr−ρ for some constants ρ > d/2 and c = c(d) < ∞.

Note that the result of Theorem 4 is only valid for d = 1, 2. In fact, for d ≥ 3, Timár [12]
showed that it is possible to find a translation-equivariant matching rule with even faster decay
than that given by Theorem 3.

Theorem 5. ([12].) For any d ≥ 3 and any ε > 0, there exists a translation-equivariant
matching rule � such that, for all r > 0, we have

P(Z > r) ≤ C exp(−crd−2−ε)

for some constants 0 < c, C < ∞.

Variants of matching in continuum settings have also been studied; see [4], [5], [9], [11],
and the references therein.

The proof of Theorem 1 will proceed in two steps. We will construct a translation-equivariant
matching and then determine bounds for it. To construct a translation-equivariant matching, we
will define, in a measurable translation-equivariant way, a sequence Pn of successively coarser
partitions of Z

d . Following [7], we call Pn a clumping rule. The members of Pn are called
clumps or n-clumps, and we call the clumping rule locally finite if all the clumps are bounded.
A component of a clumping rule is a limit of some increasing (with respect to set inclusion)
sequence of clumps. A clumping rule is connected if it has only one component. Adapting the
construction in [7] we will construct a locally finite connected clumping rule. From a locally
finite connected clumping rule, it is easy to obtain a translation-equivariant matching rule �;
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this is because a translation-equivariant matching rule can be defined by first matching as many
sites as possible within each 1-clump and then iteratively matching as many unmatched sites as
possible in each n-clump for n = 2, 3, . . . . We will obtain, with the central limit theorem and a
version of the mass transport principle, a preliminary result which implies that, for d ≥ 3 and all
ε > 0, we have P(Z� > r) ≤ cr−3/5−ε for some constant c = c(d, ε) < ∞. The preliminary
result will not provide faster decay than that given by Theorem 2 in the cases d = 1, 2. Upon
closer analysis of the geometry of the clumps, we will show that clumps that are long and thin
happen with small probability; this analysis is the basis of the proof of Theorem 1.

The outline of the paper is as follows. In Section 2 we discuss clumping rules and matchings
from clumping rules. In Section 3 we outline the construction of a clumping rule and collect
some useful bounds. In Section 4 we introduce a version of the mass transport principle that
will be useful in the proof of Theorem 1. In Section 5 we prove Theorem 1. We conclude the
paper with some related open problems.

2. Clumps

Let PF (Zd) denote all finite subsets of Z
d . For A ⊂ Z

d , define translations of A via
θzA := {θzx : x ∈ A}. Formally, a locally finite connected clumping rule is a measurable
mapping C : {0, 1}Z

d ×N×Z
d → PF (Zd) with the following properties. For all γ ∈ {0, 1}Z

d
,

all n ∈ N, and all x, y, z ∈ Z
d , we have

(i) x ∈ C(γ, n, x),

(ii) C(γ, n, x) ∩ C(γ, n, y) �= ∅ implies that C(γ, n, x) = C(γ, n, y),

(iii) C(γ, n, x) ⊂ C(γ, n + 1, x),

(iv) C(θzγ, n, θzx) = θzC(γ, n, x),

(v)
⋃

n C(γ, n, O) = Z
d .

Properties (i) and (ii) assure us that, for each n ∈ N, the map C(·, n, ·) is a partition. Prop-
erty (iii) makes the partition successively coarser, (iv) is translation equivariance, and (v) is
connectedness.

Proposition 1. There exists a locally finite connected clumping rule almost surely.

The proof of Proposition 1 will be given in the next section.

2.1. Matchings from clumpings

From a locally finite connected clumping rule we can construct a translation-equivariant
matching rule in a countable number of stages. In the first stage, within each of the 1-clumps
we match every possible site. Given that the (n − 1)th stage is completed, within each of
the n-clumps we match every site we can, ignoring the sites that were previously matched.
In order to ensure that the resulting matching is translation-equivariant, use, for example,
a lexicographic ordering on Z

d , to determine the maximal partial matching on the clumps.
Ergodicity, connectedness, and the fact that p = 1

2 give us that every site will be matched at
some stage. Note that for our purposes we do not need to make this argument as we obtain
upper bounds on P(Z > r), which easily imply that P(Z > r) → 0 as r → ∞ (see Theorem 1
or Proposition 4, below).

In the next section we construct an explicit locally finite connected clumping rule C.
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3. Seeds, cutters, and blobs

Our construction of the clumping rule C is adapted from [7]. In [7] and [13] clumpings are
used to obtain factor graphs of point processes. See also [2] for background.

3.1. Basic set-up

Let ‖ · ‖ denote the l∞ norm on Z
d . Let S(x, r) := {y ∈ R

d : ‖x − y‖ ≤ r}. Thus, S(x, r)

is the cube of side length 2r centered at x. We also write S(O, r) = S(r). We let {em}dm=1 be
the standard unit basis vectors in R

d .
For each k ∈ N, we say that a site x ∈ Z

d is a k-seed if γ (x) = 1 and γ (y) = 0 for all y ∈
{x +ne1 : 1 ≤ n ≤ k − 1}. Whenever x is a k-seed we call the set {x +ne1 : 0 ≤ n ≤ k − 1} its
shell. For example, a 4-shell has the form 1000. Note that the probability of a k-seed occurring
at a particular point is exactly 2−k . Two seeds are said to be overlapping if their shells intersect.
Note that two seeds x and y overlap if and only if x = y. This property will be useful later (see
Section 5.2). We define

rk = (2kk2)1/d + 1
2 . (1)

The reason for the choice of rk will be evident shortly. Define the vector

sk := �100rk
e1.

A k-cutter is a subset of R
d of the form {y ∈ R

d : ‖y − x‖ = rk}, where x − sk is a k-seed.
We introduce a shift sk for technical reasons which will surface later. We define Wk ⊂ R

d to
be the union of all the k-cutters. Note that we have chosen rk so that rk �∈ N. Thus, we have
Wk ∩ Z

d = ∅ for all k ∈ N. A k-blob is a connected component of R
d \ ⋃

j>k Wj . Hence,
the sequence of k-blobs defines a successively coarser partition of R

d (ignoring the elements of⋃
k Wk .) The k-blobs induce a clumping rule C when we intersect the k-blobs with Z

d . Note
the technical distinction between blobs and clumps.

It is obvious that the induced clumping rule C is translation equivariant; it remains to show
that it is locally finite and connected. It suffices to show that all the blobs are bounded and that,
for every x ∈ R

d , there is a k-blob that contains both x and the origin.

3.2. Estimates

In this section we obtain some estimates that will show that the clumping rule C defined
in the previous section is indeed locally finite and connected. The following events will be
important in our analysis. Let

Ek(x) := {x is enclosed by some k-cutter}; (2)

that is, Ek(x) occurs if and only if, for some site x0, x0 − sk is a k-seed and

x ∈ {y ∈ Z
d : ‖y − x0‖ ≤ rk}.

Also, let Ek = Ek(O). Let

Uk(s) := {S(s) intersects some k-cutter};
that is, Uk(s) occurs if and only if, for some site x0, x0 − sk is a k-seed and

{y ∈ R
d : ‖y − x0‖ = rk} ∩ S(s) �= ∅.
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Also, let
Ck(s) :=

⋃
j≥k

Uk(s). (3)

From an analysis of these events we will deduce that the clumping rule C is both locally finite
and connected. Moreover, we will see that the tail behavior of Z� (where � is a translation-
equivariant matching rule obtained from the clumping rule C) also depends on these events.

Lemma 1. (Enclosure bounds.) For all k > c1, for some c1 = c1(d) < ∞, we have

P(Ec
k) ≤ e−k.

Proof. Note that

Ek = {S(−sk, rk − 1) contains some k-seed}. (4)

Let pk be the maximum possible number of k-seeds inside S(−sk, rk − 1). Recall that no
two (distinct) k-seeds overlap and that the probability that a k-seed occurs at a particular
point is 2−k . Hence, P(Ek) ≥ 1 − (1 − 2−k)pk ≥ 1 − e−2−kpk . By our choice of rk in (1) and
since (rd

k /k) ≤ pk ≤ �2rk/k�(2rk)
d−1 for all k ≥ c1, for some c1 = c1(d) < ∞, we have

P(Ek) ≥ 1 − e−k .

Corollary 1. All k-blobs are bounded almost surely.

Proof. It suffices to show that all k-blobs that contain O are bounded. By Lemma 1 we have
P(Ek) → 1 as k → ∞, so that Ek occurs for infinitely many k almost surely. Hence, all blobs
which contain O are bounded.

Lemma 2. (Cutter bounds.) For all k ≥ 1 and all s > 0, we have P(Ck(s)) ≤ c3s(k
2/rk) for

some c3 = c3(d) > 0.

Proof. Observe that

Uk(s) = {S(−sk, rk + s) \ S(−sk, rk − s) contains some k-seed}. (5)

Clearly, P(Uk(s)) ≤ Nk(s)2−k , where Nk(s) is the number of lattice points in S(−sk, rk + s) \
S(−sk, rk − s). We have

Nk(s) = |S(rk + s)| − |S(rk − s)| ≤ c2r
d−1
k s

for some c2 = c2(d) > 0. So we obtain P(Uk(s)) ≤ c2sr
d−1
k 2−k . Thus, recalling our choice

of rk in (1), we have

P(Ck(s)) ≤
∑
j≥k

P(Uj (s)) ≤ c2s
∑
j≥k

2−krd−1
k ≤ c3s

(
k2

rk

)
. (6)

Corollary 2. The clumping rule C is connected almost surely.

Proof. Let s > 0. By the Borel–Cantelli lemma and (6), we know that Uk(s) occurs infinitely
often with probability 0. Thus, any point within distance s of O will eventually share a blob
with it.

Proof of Proposition 1. The proof follows by applying Corollaries 1 and 2.

Now we obtain a translation-equivariant matching rule � from our locally finite connected
clumping rule C, via the procedure outlined in Section 2. We will use Lemmas 1 and 2 and the
central limit theorem to obtain bounds on Z�.
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4. Mass transport

We will require a version of the mass transport principle in order to facilitate calculations.
See [1] and [3] for background. Our main application of the mass transport principle will be to
prove a modified version of Lemma 3, below, which states that each site has an equal chance
of not being matched within its k-clump. Similar ideas also appear in [9].

Let C be the clumping rule defined in Section 3, and let � be the corresponding translation-
equivariant matching rule obtained from C. We say that a site is k-bad if it is not matched
in its k-clump. Let Lk(x) be the k-clump containing the site x, and let Lk(O) = Lk be
the k-clump containing the origin. Let #[Lk] be the cardinality of Lk . Consider the sum
ζ := ∑

x∈Lk
(2γ (x) − 1), so that |ζ | is the number of k-bad sites in Lk .

Lemma 3. For all k ≥ 1, the probability that the origin is k-bad is exactly

E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣
)

.

We define a mass transport to be a nonnegative measurable function

T : Z
d × Z

d × {0, 1}Z
d → R

which is translation equivariant; that is, for all x, y ∈ Z
d , all γ ∈ {0, 1}Z

d
, and all translations

θ of Z
d , we have T (θx, θy, θγ ) = T (x, y, γ ). For A, B ⊂ Z

d , we let T (A, B, γ ) :=∑
x∈A,y∈B T (x, y, γ ). We think of T (A, B, γ ) as the mass transferred from A to B under

γ ∈ �. We will use the following version of the mass transport principle.

Lemma 4. (Mass transport principle.) For any mass transport, T : Z
d × Z

d × {0, 1}Z
d → R,

we have E T (O, Z
d , ·) = E T (Zd , O, ·).

Proof. We have

E T (O, Z
d , ·) =

∑
y∈Zd

∫
T (O, y, γ ) dP(γ )

=
∑
y∈Zd

∫
T (−y, O, θ−yγ ) dP(γ )

=
∑
y∈Zd

∫
T (−y, O, γ ) dP(γ )

= E T (Zd , O, ·).
The first and last equalities follow from Fubini’s theorem. The second equality follows from
the translation equivariance of T and the third equality follows from the translation invariance
of P.

To illustrate the versatility of the mass transport principle (Lemma 4), we prove the following
(unsurprising) fact.

Proposition 2. Let F be the standard product σ -algebra of {0, 1}Z
d
, and let Pp be the product

measure on F with parameter p. If p �= 1
2 then there does not exists a translation-equivariant

matching rule.
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Proof. Let � be a translation-equivariant matching rule. Consider the mass transport M

defined as follows. Let x be a site, and let γ ∈ �. If γ (x) = 1 then M(x, x, γ ) = 1; that is, x

sends one unit of mass to itself. Otherwise, M(x, y, γ ) = 1, where y is a site with �(x, γ ) = y

and γ (y) = 1; that is, x sends out a unit of mass to the site y that it is matched to under �(·, γ ).
Since � is translation equivariant, this defines a mass transport Pp-almost surely. Let Ep be the
expected value operator with respect to the measure Pp. Now, since every site sends out exactly
one unit of mass, we have Ep M(O, Z

d , ·) = 1. Also, by considering the cases γ (O) = 1
or γ (O) = 0, we also have Ep M(Zd , O, ·) = 2p. Hence, we have, by the mass transport
principle, p = 1

2 .

Proof of Lemma 3. For each k ≥ 1, we define a mass transport Tk by saying that if a site x

is k-bad then it sends out one unit of mass uniformly to every site in its k-clump Lk(x), while
x sends out no mass if the site is not bad. To be precise,

Tk(x, y, γ ) :=
(

1

#[Lk(x)]
)

1[x is k-bad](γ )1[y∈Lk(x)](γ ).

It is easy to see that

E Tk(Z
d , O, ·) = E

(
1

#[Lk]
∑
x∈Lk

1[x is k-bad]
)

.

On the other hand, we have E Tk(O, Z
d , ·) = P{O is k-bad}. Thus, an application of the mass

transport principle completes the proof.

Now we are in a position to obtain bounds on P(Z > r). We will see that the mass transport
principle with information about the size of Lk and its diameter gives us an estimate with an
application of the central limit theorem.

5. Proof of Theorem 1

5.1. First estimates

Let � be the translation-equivariant matching rule we obtain from the clumping rule C
defined in Section 3. Recall that Z = Z� is the distance from the origin to its partner under �.
We will obtain bounds on P(Z > r) by choosing a sequence of events Dk and a K = K(r) so
that {Z > r} ∩ DK ⊂ {O is K-bad}. The events Dk will be chosen in a such way that we can
obtain upper bounds on P{O is K-bad} and P(Dc

K).

Let α ∈ (0, 1). In fact, we will end up choosing α = α(d) = 1/(1 + d/4). Recall that the
events Ek and Ck(s) were defined earlier in Section 3.2; see (2) and (3). Let Bk be the k-blob
containing the origin. The following relations describe the geometry of Bk , when Ek or Ck(r

α)

occur. We have

Ek ⊂ {there exists x so that Bk ⊂ S(x, rk) ⊂ S(2rk)} (7)

and
Ck(r

α)c ⊂ {S(rα) ⊂ Bk}. (8)

We consider the following decomposition:

{Z > r} = ((Ek ∩ Ck(r
α)c) ∩ {Z > r}) ∪ ((Ec

k ∪ Ck(r
α)) ∩ {Z > r}). (9)

See Figure 1 for a realization of the event Ek ∩ Ck(r
α)c.
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Figure 1: An illustration of the event Ek ∩ Ck(r
α)c. The thick cutters represent k-cutters enclosing the

origin. This corresponds to the event Ek . The shaded region represents the no cutter zone of radius rα

about the origin. This corresponds to the event Ck(r
α)c.

The role of parameter α can be explained heuristically as follows. If the parameter α is small
then Ck(r

α)c occurs with high probability, but then Bk could possibly be very small. If α is
close to 1 then Bk would almost contain a cube of length 2r , but then Ck(r

α)c occurs with low
probability. We will choose α to optimize over these alternatives.

Let K = K(r) be defined to be the unique integer K such that

2rK < rK+1 < r ≤ rK+2. (10)

Note that, for some c4 = c4(d) > 0, we have, for all k ≥ c4, rk = (2kk2)1/d + 1
2 ≤ (ek/2−k)1/d .

Hence, applying (1) with (10) for all sufficiently large r we have
(

log 2

1 + log 2

)
(K + 1) ≤ d log r

1 + log 2
≤ K + 2. (11)

Proposition 3. (Decay of the first term in (9) via the central limit theorem.) For all r > 0 and
the unique integer K = K(r) such that rK+1 < r ≤ rK+2, we have

P((EK ∩ CK(rα)c) ∩ {Z > r}) ≤ c5

(rα)d/2

for some c5 = c5(d) > 0.

Remark. Note that the decay in Proposition 3 is the decay that appears in Theorem 3, if we set
α = 1.

Before we begin the proof of Proposition 3, we collect some easy, but important, observations.
By (7) and (10), we have

(EK ∩ CK(rα)c) ∩ {Z > r} ⊂ {O is K-bad}.
So from (8) we have

((EK ∩ CK(rα)c) ∩ {Z > r}) ⊂ ({O is K-bad} ∩ EK ∩ {#[LK ] ≥ rαd}). (12)

Recall that Lk is the k-clump containing O. To analyze the right-hand side of (12), we will use
the following version of Lemma 3.
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Lemma 5. For all k ≥ 1, we have

P({O is k-bad} ∩ Ek ∩ {#[Lk ≥ rαd ]})
= E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣; Ek ∩ {#[Lk] ≥ rαd}
)

. (13)

Proof. We use the mass transport principle. Recall Tk as defined in the proof of Lemma 3:

Tk(x, y, γ ) :=
(

1

#[Lk(x)]
)

1[x is k-bad](γ )1[y∈Lk(x)](γ ).

We define another mass transport, namely

T̂k(x, y, γ ) := Tk(x, y, γ )1[Ek(x)∩{#[Lk(x)]≥rαd }](γ ).

Note that, on the event {y ∈ Lk(x)}, the event Ek(x) occurs if and only if the event Ek(y)

occurs and #[Lk(x)] = #[Lk(y)]. Hence, we obtain

E T̂k(Z
d , O, ·) = E

∑
y∈Zd

Tk(y, O, ·)1[Ek(y)∩{#[Lk(y)]≥rαd }]

= E
∑
y∈Zd

Tk(y, O, ·)1[Ek∩{#[Lk]≥rαd }]

= E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣; Ek ∩ {#[Lk] ≥ rαd}
)

.

On the other hand, we have

E T̂k(O, Z
d , ·) = P({O is k-bad} ∩ Ek ∩ {#[Lk] ≥ rαd}).

Thus, an application of the mass transport principle (Lemma 4) completes the proof.

Next we will use the central limit theorem to estimate the right-hand side of (13), but first
we need to verify that we have the necessary independence. For k ≥ 1, consider the events

Hk(x1, x2, . . . , xn) := {{x1, . . . , xn} = Lk ∩ S(2rk)},
where xi ∈ Z

d and ‖xi‖ ≤ 2rk . Let Gk := σ(γ (x) : x ∈ S(2rk)). The following lemma is
behind why the (large) shift sk = �100rk
e1, along the axis e1, appears in the definition of the
k-cutters.

Lemma 6. For all k ≥ 1 and all ‖xi‖ ≤ 2rk, the σ -field Gk is independent of

σ(Hk(x1, . . . , xn), Ek).

Proof. Consider a site y with ‖y‖ < sk/3. The event {y ∈ Lk} is determined by whether
there exist j -seeds, with j ≥ k, to give rise to j -cutters that can separate y from O. However,
such j -seeds (and their shells) are at least at distance sk/2 from the origin. So, {γ (x) : ‖x‖ <

sk/3} is independent of Hk(x1, x2, . . . , xn) for all xi ∈ Z
d such that ‖xi‖ ≤ 2rk. Also, recall

that Ek from (4) is determined by γ (x), where ‖x‖ ≥ sk/2.
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Now the proof of Proposition 3 amounts to a simple calculation, whose result we record in
the next lemma.

Lemma 7. For all k ≥ 1, we have

P({O is k-bad} ∩ Ek ∩ {#[Lk] ≥ rαd}) ≤ c5

(rα)d/2

for some c5 > 0.

Proof of Proposition 3. From (12) and Lemma 7, Proposition 3 follows immediately.

Proof of Lemma 7. Let k ≥ 1, and recall that by (7) we know that on the event Ek we have
Lk ⊂ S(2rk). Fix x1, . . . , xn ∈ S(2rk), and let Hk = Hk(x1, . . . , xn). We will now compute

A := E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣; Ek ∩ Hk(x1, . . . , xn)

)
,

by conditioning on Gk . Let Sn = ∑n
i=1(2γ (xi) − 1). Consider the following calculation:

A = E

(
n−1

∣∣∣∣
n∑

i=1

(2γ (xi) − 1)

∣∣∣∣1[Ek∩Hk]
)

= E(E(n−1|Sn|1[Ek∩Hn] | Gk)) (14)

= E

(
1

n
|Sn| E(1[Ek∩Hk] | Gk)

)
(15)

= E

(
1

n
|Sn|

)
E(1[Ek∩Hk]) (16)

≤ c5√
n

P(Ek ∩ Hk) (17)

for some c5 > 0. Equality (14) is obtained by conditioning on the σ -field G. Equality (15)
comes from the fact that the γ (xi) are all G measurable. By Lemma 6 we know that Gk and
σ(Hk, Ek) are independent, thus establishing equality (16). Inequality (17) is obtained by
applying the central limit theorem.

By summing over all possible Hk(x1, . . . , xn) we obtain

E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣; Ek ∩ {#[Lk] = n}
)

≤ c5√
n

P{#[Lk] = n}.

Furthermore, by summing over all n ≥ rαd we see that

E

(
1

#[Lk]
∣∣∣∣

∑
x∈Lk

(2γ (x) − 1)

∣∣∣∣; Ek ∩ {#[Lk] ≥ rαd}
)

≤ c5

(rα)d/2 .

Thus, an application of Lemma 5 completes the proof.

Now we turn our attention to the second term in (9): (Ec
k ∪ Ck(r

α)) ∩ {Z > r}. We will
bound this term in two different ways. As a first step, let us just throw away the term {Z > r},
since this will allow us to obtain a novel result for the case d ≥ 3 without much more additional
effort.
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Lemma 8. (Decay of the second term in (9): first bound.) For all r > 0 and the unique integer
K = K(r) such that rK+1 < r ≤ rK+2, we have

P(Ec
K ∪ CK(rα)) ≤ c6r

α−1(log r)2

for some c6 = c6(d) > 0.

Proof. Recall that, from Lemma 1 and Lemma 2, we already have bounds for the events
appearing in this term. From (11) we see that

P(Ec
K) ≤ c7r

−d/(1+log 2) (18)

for some c7 = c7(d) > 0. Note that d/(1 + log 2) > d/2. On the other hand, applying (11) to
Lemma 2 we obtain

P(CK(rα)) ≤ c8r
α−1(log r)2

for some c8 = c8(d) > 0.

Proposition 4. (Easy preliminary result.) For all d ≥ 1, there exists a translation-equivariant
matching rule � such that Z = Z�(γ ) = ‖�(γ, O)‖ has the tail behavior P(Z > r) ≤
c9r

−β ′
(log r)2, where c9 = c9(d) > 0 and β ′ = β ′(d) = 1/(1 + 2/d).

Proof. We can see, from (9), Proposition 3, and Lemma 8, that

P(Z > r) ≤ c5r
−αd/2 + c6r

α−1(log r)2.

Hence, we are led to minimize the quantity max(−αd/2, α−1). So we choose (for the purposes
of this proposition) α = α(d) = 1/(1 + d/2).

Proposition 4 gives, for d = 2, a decay of order (log r)2/r1/2. For d = 2, Theorem 2 still
provides a better result, but, for d ≥ 3, Proposition 4 provides faster decay than Theorem 2.

5.2. Long and thin blobs

With a closer analysis of the second term in (9) we will prove the following.

Proposition 5. (Decay of the second term in (9): closer analysis.) For all r > 0 and the unique
integer K = K(r) such that rK+1 < r ≤ rK+2, we have

P((Ec
K ∪ CK(rα)) ∩ {Z > r}) ≤ c10r

−αd/2 + c11r
2(α−1)(log r)4

for some c10 = c10(d) > 0 and c11 = c11(d) > 0.

Proposition 5 together with Proposition 3 yields a proof of Theorem 1.

Proof of Theorem 1. From the previous results, (9), Proposition 3, and Proposition 5, we
have

P(Z� > r) ≤ c5r
−αd/2 + c10r

−αd/2 + c11r
2(α−1)(log r)4.

Hence, we are led to minimize the quantity max(−αd/2, 2(α − 1)). It is easy to verify that we
should take α(d) = 1/(1 + d/4). Let β(d) := dα(d)/2 = 2/(1 + 4/d). Thus, we obtain

P(Z� > r) ≤ c(log r)4r−β,

where c = c(d) < ∞ and β = β(d) = 2/(1 + 4/d).
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Figure 2: The shaded region represents the k-blob containing the origin. Note that on the event C2
k (rα)

the k-blob can be quite small. For this reason, it seems we will not be able to do any better by including
{Z > r}.

Figure 3: An illustration of the event C1
k (rα) ∩ Ek . The shaded region represents the restricted cutter

zone of radius rα about the origin. The very thick cutter represents the unique j ≥ k that intersects S(rα).
This corresponds to the event C1

k (rα). The other thick cutter represents a k-cutter enclosing the origin.
This corresponds to the event Ek .

We will now work towards a proof of Proposition 5. We will need to examine the geometry
of the blobs a bit closer to prove Proposition 5. Again, in light of (18) we do not need to worry
about the event Ec

k . Let us consider the decomposition,

Ck(r
α) = (Ec

k ∩ Ck(r
α)) ∪ (Ek ∩ Ck(r

α)). (19)

The second term puts us in a position akin to the situation of Proposition 3, since we can control
the diameter of the k-blob containing the origin. We now examine two situations. One where
the k-blob containing O is possibly very small (see Lemma 9, below, and Figure 2) and another
where there are enough points inside the k-blob to make good use of the central limit theorem
(see Lemma 11, below, and Figure 3).

Let j ≥ k. Consider again j -seeds on the sets

Aj = Aj(r
α) := S(−sj , rj + rα) \ S(−sj , rj − rα).

Observe that seeds on two levels will not overlap; that is, a seed in Aj will not overlap with a
seed in Am for j �= m. Also, recall that, by our definition of k-seeds, no two (distinct) k-seeds
will overlap. Since Ck(r

α) is the event that, for some j ≥ k, the set Aj contains a j -seed, we
will further split up this event. Define

C1
k (rα) := {for all j ≥ k, the set Aj contains at most one j -seed and there is a

unique j ≥ k such that Aj contains a j -seed},
C2

k (rα) := Ck(r
α) \ C1

k (rα). (20)
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We will throw away the term {Z > r} when we bound P(C2
k (rα) ∩ Ek ∩ {Z > r}), but we will

keep it when we bound P(C1
k (rα) ∩ Ek ∩ {Z > r}).

Lemma 9. For all r > 0 and the unique integer K = K(r) such that rK+1 < r ≤ rK+2, we
have P(C2

K(rα)) ≤ c13(r
α−1(log r)2)2 for some c13 = c13(d) > 0.

Proof. For all j ≥ 1, let Uj = {Aj contains aj -seed}. Thus, from (5) we have Uj = Uj(r
α).

Since, for all j ≥ 1, no two (distinct) j -seeds overlap, we have

P{Aj contains more than one j -seed} ≤ P(Uj )
2.

Similarly, since seeds in Aj and Am do not overlap for j �= m, we have P(Uj ∩ Um) =
P(Uj ) P(Um) for all j �= m. Since

C2
k (rα) ⊂

( ⋃
j>m≥k

Uj ∩ Um

)
∪

( ⋃
j≥m

{Aj contains more than one j -seed}
)

,

we have
P(C2

k (rα)) ≤
∑
j≥k

P(Uj )
∑
m≥k

P(Um).

By (6) and (11), it is easy to see that P(C2
K(rα)) ≤ c13(r

α−1(log r)2)2 for some c13 =
c13(d) > 0. Thus, we have an improved term r2(α−1). For a realization of the event C2

k (rα),
see Figure 2.

We now turn our attention to the event C1
k (rα).

Lemma 10. For all r > 0 and the unique integer K = K(r) such that rK+1 < r ≤ rK+2, we
have C1

K(rα) ⊂ {#[LK ] ≥ c14r
αd} for some constant 0 < c14 = c14(d) < ∞.

Proof. On the event C1
K(rα), there is exactly one j -cutter that has the property that it

intersects S(rα) and j ≥ K; call this unique cutter C. Observe that if the cutter C was
removed, the blob containing the origin would contain all of S(rα). Note that C has side
length at least 2rK . It is easy to see that there is a constant c15 < ∞ independent of k, so that
c15rk ≥ rk+2. Thus, c15rK ≥ r. Therefore, the blob containing the origin must contain a d-cube
with side length rα/c15.

Lemma 11. For all r > 0 and the unique integer K = K(r) such that rK+1 < r ≤ rK+2, we
have P(C1

K(rα) ∩ EK ∩ {Z > r}) ≤ c12/(r
α)d/2 for some c12 = c12(d) > 0.

Proof. Again, from (7) and (10), we have C1
K(rα)∩EK ∩ {Z > r} ⊂ {O is K-bad}. So, by

Lemma 10, it suffices to show that, for all k ≥ 1, we have

P({O is k-bad} ∩ Ek ∩ {#[Lk] ≥ c14r
αd}) ≤ c12

(rα)d/2 (21)

for some c12 = c12(d) > 0. Equation (21) follows from Lemma 7.

Proof of Proposition 5. Using (19) and (20), we have

P((Ec
K ∪ CK(rα)) ∩ {Z > r}) ≤ P(Ec

K) + P(C2
K(rα)) + P((C1

K(rα)) ∩ EK ∩ {Z > r}).
From (18) and Lemmas 9 and 11, we obtain

P((Ec
K ∪ CK(rα)) ∩ {Z > r}) ≤ c7r

−d/(1+log 2) + c13(r
α−1(log r)2)2 + c12

(rα)d/2 .
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6. Open problems

1. What is the optimal tail behavior for translation-equivariant matchings on Z
d in the case

d ≥ 3? When d ≥ 3, from [12], for all ε > 0, there exists a translation-equivariant
matching rule with exponential tails of order exp(−crd−2−ε), where c > 0 is some
constant. Does there exist a translation-equivariant matching rule with tails of order
exp(−crd)? The original problem is from [8], which also contains a few other related
open problems.

2. We say that a translation-equivariant matching rule is oriented if it satisfies the additional
restriction that if a site x is matched to a site y that contains a 1, then yi ≥ xi for all
i ≤ d. Observe that in Meshalkin’s matching, a 0 is always matched to a 1 that is to
the right of it. Note that it is not obvious that the method employed in this paper can be
modified to work in an oriented setting. In one dimension, the restriction of orientation
does not make a difference; one might think it should not for higher dimensions as well.
What is the optimal tail behavior for matchings in Z

d with the restriction that we consider
orientation as well?
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