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Abstract. We generalise the procedure for joint estimation of cosmological
parameters to allow freedom in the relative weights of various probes. This is
done by including in the joint Likelihood function a set of 'Hyper-Parameters',
which are dealt with using Bayesian considerations. The resulting algorithm
is simple to implement. We illustrate the method by estimating the Hub-
ble constant Ho from the recent Cosmic Microwave Background experiments
Boomerang and Maxima. For an assumed flat A-CDM model with fixed param-
eters (n = 1, Om = 1- A = 0.3, nbh2 = 0.03, Qrms = 18J.LK) we solve for a single
parameter, Ho = 79 ± 4 krri/sec/Mpc (95 % CL, random errors only), slightly
higher but still consistent with recent results from Cepheids. We discuss how
the 'Hyper-Parameters' approach can be generalised for a combination of cosmic
probes, and for other priors on the Hyper-Parameters.

1. Introduction

Several groups (e.g. Gawiser & Silk 1998; Webster et al. 1998; Lineweaver 1998;
Eisenstein, Hu & Tegmark 1999; Efstathiou et al. 1999; Bridle et al. 1999,
2000; Bahcall et al. 1999) have recently discussed the estimation of cosmological
parameters by joint analysis of data sets, e.g. Cosmic Microwave Background
(CMB), SNe Ia, redshift surveys, cluster abundance and peculiar velocities.

While joint Likelihood analyses employing both CMB and LSS data are al-
lowing more accurate estimates of cosmological parameters, they involve various
subtle statistical issues:

• The choice of the model parameter space is somewhat arbitrary.

• One commonly solves for the probability for the data given a model (e.g.
using a Likelihood function), while in the Bayesian framework this should
be modified by the prior for the model.

• If one is interested in a small set of parameters, should one marginalise over
all the remaining parameters, rather than fix them at certain (somewhat
ad-hoc) values?

• The 'topology' of the Likelihood contours may not be simple. It is help-
ful when the Likelihood contours of different probes 'cross' each other to
yield a global maximum (e.g. in the case of CMB and SNe), but in other
cases they may yield distinct separate 'mountains', and the joint maximum
Likelihood may lie in a 'valley'.
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(1)

(3)

• Different probes might be spatially correlated, i.e, not necessarily inde-
pendent.

• What weight should one give to each data set ?

The above points have been discussed in many papers in the cosmological
literature and also at this conference. Here we focus on the last point. A con-
ventional approach does not take into account the fact that different systematics
may affect each data set. The problem arises when data sets are inconsistent
with one another. One approach is to combine inconsistent data sets in the
hope that the various systematic effects will tend to cancel out. However, this
may lead to problems if all of parameter space is ruled out by one data set or
another. The orthogonal approach is to choose, somewhat ad-hoc, a mutually,
consistent group of data sets to combine. Lahav et al. (2000; hereafter L2000)
presented a more objective method for dealing with disagreement between data
sets by utilising 'Hyper Parameters' (hereafter HPs). Some previous approaches
to this problem of assigning the relative weights of different measurements have
been suggested in the astronomical literature (e.g. Godwin & Lynden-Bell 1987;
Press 1996).

The derivation of HPs is given in Section 2. In Section 3 we apply the
method to the recent Boomerang and Maxima CMB experiments, and we esti-
mate the best fit Hubble constant (Ho = 100h km/sec/Mpc). Extensions of the
methods are discussed in Section 4.

2. 'Hyper-Parameters'

Assume that we have two independent data sets, D A and DB (with N A and
N B data points respectively) and that we wish to determine a vector of free
parameters w (such as the density parameter Om, the Hubble constant H« etc.).
This is commonly done by minimising

2 2 2
Xjoint = XA + XB ,

(or, more generally, maximizing the product of Likelihood functions).
Such procedures assume that the quoted observational random errors can

be trusted, and that the two (or more) X2s have equal weights. However, when
combining 'apples and oranges' one may wish to allow freedom in the relative
weights. One possible approach is to generalise Eq. 1 to be

2 2 f3 2 (2)Xjoint = QXA + XB,

where Q and f3 are 'Hyper-Parameters', which are to be dealt with the following
Bayesian way. There are a number of ways to interpret the meaning of the HPs.
One way is to understand Q and f3 as controlling the relative weight of the two
data sets. It is not uncommon that astronomers accept and discard measure-
ments (e.g. by assigning Q = 1 and f3 = 0) in an ad-hoc way. The procedure
proposed by L2000 gives an objective diagnostic as to which measurements are
problematic and deserve further understanding of systematic or random errors.
A simple example of the HPs is the case that

2_,,1 2
XA - ~ 2 [Xobs,i - Xpred,i(W)] ,

a i
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where the sum is over N A measurements and corresponding predictions and
errors ai. Hence by multiplying X2 by a we may interpret each error as effectively
becoming a-1/ 2ai.

How do we eliminate the unknown HPs a and f3? L2000 followed the
Bayesian formalism given (in other contexts) in Gull (1989), MacKay (1992),
Bishop (1995) and Sivia (1996). By marginalisation over a and f3 we can write
the probability for the parameters w given the data:

(4)

Using Bayes' theorem we can write the following relations:

P( f3ID D) = P(DA' DBlw, a,(3) P(w,a,f3) (5)
w,a, A, B P(DA, DB) ,

and
P(w,a,f3) = P(wla,f3) P(a,f3).

We now make the following assumptions:

P(wla, (3) = const. ,

P(a, (3) = P(a) P(f3) .

(6)

(7)

(8)

(9)

With the choice of 'non-informative' uniform priors in the log, P(ln a) = P(ln (3) =
1 we get P(a) = 1/a and P(f3) = 1/f3 (Jeffreys 1939). Note that the integral
over priors of this kind diverges (such a prior is called 'improper', see Bishop
1995). These are very conservative priors, essentially stating that we are igno-
rant about the scale of measurements and errors. The other extreme is obviously
P(a) = c5(a - 1), i.e, when the measurements and errors are taken faithfully.
One can try other forms (see below), but it is likely that these two extreme
forms reasonably bracket the probability space. Hence:

(10)

where

(11)

and

(12)

It is common to have a likelihood function of the form of a Gaussian in N A
dimensions:

(13)
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where we assume for simplicity that the normalization constant is independent
of the parameters w (this is indeed the case in our application for the CMB
measurements in the next Section).

We generalise this form to incorporate a as follows:

(14)

The integral of Eq. 11 then gives

(15)

and similarly for Eq. 12. We note that it is the specific choice of prior for
P(O'.) = 1/0'. that has led to a change from a Gaussian distribution (Eq. 13) to
a power-law (Eq. 15). Eq. 10 can then be written (ignoring constants) as

(16)

To find the best fit parameters w requires us to minimise the above probability in
the w space. Note that in this case our method is equivalent to assuming that we
are ignorant of the relative scale of the errors in each experiment. It is as easy to
calculate this statistic as the standard X2

. Eq. 16 actually generalises a similar
equation derived by Cash (1979) using an entirely different set of assumptions.

Since a and f3 have been eliminated from the analysis by marginalisation
they do not have particular values that can be quoted. Rather, each value of
a and f3 has been considered and weighted according to the probability of the
data given the model. However, it may be useful to know which values of a and
f3 were given the most weight. This can be estimated by finding the values of a
and f3 at which Eq. 14 peaks:

(17)

and similarly
NB

f3eff. = -2 ' (18)
XB

both evaluated at the joint peak. We note that if we substitute these effective
a and f3 in Eq. 2 we obtain Xroint = NA + NB.

There is of course freedom in choosing the prior. For example, if we take
P(O'.) = 1 (instead of Jeffreys' prior P(O'.) = 1/0'.) we find that the function to
be minimised is

instead of Eq. 16. Thus these two priors give very similar results for large
NA. Numerous other priors are possible (e.g. a top-hat centred on a plausible
value), but at the expense of more free HPs (e.g. the width of the top-hat).
Illustrations of the HPs approach applied to toy-models are given in Bridle
(2000), and another application of the above HPs (to galaxy cluster data) is
given in Diego et al. (2000).
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3. Application to the CMB Data

381

3.1. The Boomerang and Maxima Data

The recent Boomerang (hereafter B; de Bernardis et al. 2000) and Maxima
(hereafter M; Hanany et al. 2000) CMB anisotropy measurements yielded high-
quality angular power spectra C; over the spherical harmonics 400 ~ l ~ 800.
An important factor in interpreting the data is the calibration error. The ex-
perimental papers quote calibration errors of 10% and 4% (I-sigma in ti.TIT)
for Band M, respectively. The measurements (with B data corrected upward
by 10%, and M data corrected downward by 4 %) are shown in Figure 1, and
they indicate a well defined first acoustic peak at l rv 200, with less convincing
second and third peaks at higher harmonics. These measurements favour (under
certain assumptions) a flat universe, spectral index n == 1 and baryon density
Obh2 rv 0.03 (e.g. Jaffe et al. 2000; Bond et al. 2000; Bridle, this volume),
which is about 2-sigma higher than the Big-Bang Nucleosynthesis (BBN) value
Obh2 r-;» 0.0190±0.0018 (95 % CL; Burles et al. 2000). Note that the recent CBI
result (Padin et al. 2000) gives a higher power (at l rv 600) relative to B&M.
Jaffe et al. (2000) fitted models after combining the B& M data sets into one
set. Here we take a different approach for joint analysis of the two data sets by
utilising the 'Hyper-Parameters'.

3.2. Results

We illustrate the effect of using HPs by application to measurements of the an-
gular power spectrum of the Cosmic Microwave Background (CMB) . Numerous
groups have now used CMB data to estimate cosmological parameters. The
most common method is the flat bandpower method (Bond 1995) in which the
difference between observed and predicted flat bandpowers are compared using
the X2 statistic (Eq. 3). We note that non-zero correlations between the CMB
data points can make the data points look more smooth which, since the theo-
retical model is smooth on this scale, will tend to improve the apparent goodness
of fit to the model and thus inappropriately give more weight to correlated data
points. We also note that the assumption that the Likelihood function is a
Gaussian is only an approximation (Douspis et al. 2000).

L2000 applied the HPs approach to the pre-B&M CMB data sets, in differ-
ent combinations. Here we apply the method to the recent high-quality B&M
data, first in their 'raw' form and then in their calibrated form. For simplicity,
we restrict ourselves to a very limited set of cosmological models. We obtain
theoretical CMB power-spectra using the CMBFAST and CAMB codes (Sle-
jak & Zaldarriaga 1996; Lewis, Challinor & Lasenby 2000). We assume that
CMB fluctuations arise from adiabatic initial conditions with Cold Dark Mat-
ter (CDM) and negligible tensor component, in a flat Universe with Om == 0.3,
,\ == 1 - Om == 0.7, n == 1, Qrms == 18/LK and Obh2 == 0.03. This choice is
motivated by numerous other studies which combined CMB data with other
cosmological probes (e.g. Jaffe et al. 2000, Bridle et al. 2000; Hu et al. 2000).
We then investigate the constraints on the remaining parameter, the dimension-
less Hubble constant, h == Ho/(100 kms"!Mpc-1) . Increasing h decreases the
height of the first acoustic peak, and makes few other significant changes to the
angular power spectrum (e.g. Hu et al. 2000). The range in h investigated here
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Figure 1. The Boomerang ~l data (top panel, calibrated by 1.10) and
Maxima data (bottom panel, calibrated by 0.96). The line in each panel is for
a A-CDM model with n == 1, Om == 1 - A == 0.3,Obh2 == 0.03, Qrms == 18J.LK,
and our 'best fit' h == 0.8.
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Figure 2. Analysis with raw (uncalibrated) Boomerang & Maxima data.
The top-left panel is for the individual X2 of each data sets (eq. 3), while the
top- right panel is for the sum of X2 (Eq. 1). The bottom-left panel is the
Hyper-Parameters probability with the prior P(1na) == 1 (Eq. 16), and the
bottom left panel is for the prior P(a) == 1 (Eq. 19).

is (0.5 < h < 1.1). The results using conventional X2 (Eqs. 1 and 3) are shown
in Table 1, and with the HPs approach (Eq. 16) in Table 2. The full likelihood
functions are given in Figures 2 and 3. We see that the raw (uncalibrated) B&M
data give two distinct values in the standard X2 analysis. The HPs approach on
the raw data suggests that B carries 4.5 times more weight than M (the ratio
of the HPs), for this particular choice of model and parameter space, yielding a
best h = 0.88. However, the calibration of the data (as described in the caption
to Table 1) brings the two data sets to much better agreement (e.g. the ratio
of the B/M HPs is now 1.3). In fact, in this case the standard joint X2 and the
HPs (for two different choices of priors; Eqs. 16 and 19) give the same result,
h = 0.79, with slightly smaller error bars in the HPs case (±0.04;95% CL). This
best fit model is shown in Figure 1. We also tried the BBN value nbh2 = 0.019
(last entries in Table 1 and 2), which we can see gives much poorer X2 than the
value f"lbh2 = 0.03 (as also suggested by Jaffe et al. 2000 and others).

4. Discussion

We have presented a formalism for analysing a combination of measurements,
when it is likely that different systematics (or methods for calculating random
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Figure 3. Analysis with calibrated B & M data (by 1.10 and 0.96 in ~,J,

respectively). The panels are as in Figure 2. Note the good agreement between
the two data sets, and between the joint X2 approach and the HPs approach
(for the two different priors).

Data N Best h X
2

BOOMERANG (raw) 12 0.90 4.4
MAXIMA (raw) 10 0.76 7.1
B&M (raw) 22 0.85 19.8
BOOMERANG (calibrated by 1.10) 12 0.80 8.8
MAXIMA (calibrated by 0.96) 10 0.79 8.9
B&M (calibrated) 22 0.79 17.7
B&M (calibrated, BBN) 22 0.72 35.7

Table 1. Conventional X2 analysis using each Band :1\1 data set alone, and
both sets combined. Results are given for 'raw' (uncalibrated) data, and for
calibration of ~TIT by factors of 1.10 and 0.96 for B & M respectively, as
explained in the text. For each data set the number of data points, N, the
best fit value of h and the X2 value at this point are given. The full likelihood
distributions in h are shown in Figures 2 and 3. Other parameters are fixed
for a A-CDM model at Om == 0.3, A == 1 - Om == 0.7, n == 1, Qrms == 18JlK
and nbh2 == 0.03. For the last entry nbh2 == 0.019 (BBN value).
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Data
B&M (raw)
B&M (calibrated)
B&M (calibrated, BBN)

N
22
22
22

Best h
0.88
0.79
0.73

Effective HP
2.7(B); 0.6 (M)
1.4(B); 1.1 (M)
0.5(B); 0.7 (M)

Table 2. The results of the Hyper-Parameters analysis (Eq. 16) The data
sets are as described in Table 1. Shown are the number of data points N in
each data set, the best fitting value of h, and the effective HP (N/X2 ) at this
h. Other parameters were held fixed as described in Table 1.

errors) may affect each data set differently. By using a Bayesian analysis, and by
using a specific 'non-informative' prior for the 'Hyper-Parameters' (P(ln Q) = 1),
we find that for M data sets one should minimise

M

-2 In Prwjdata) = LNjln(x;),
j=l

(20)

where N j is the number of measurements in data set j = 1, ... , M. It is as easy to
calculate this statistic as the standard X2

. The corresponding HPs Qeff,j = Nj / Xl
provide useful diagnostics on the reliability of different data sets. We emphasize
that a low HP assigned to an experiment does not necessarily mean that the
experiment is 'bad', but rather it calls attention to look for systematic effects or
better modelling.

In L2000 we analysed pre-B&M data and found that while the standard
X2 approach gave a wide range for Ho; the Hyper-Parameter analysis suggested
two distinct values of H o, rv 50 and rv 70 kru/sec/Mpc. Here we applied the
method to the B & M data, with and without calibration. The HPs indeed
'detect' inconsistencies between the two 'raw' data sets, but the calibrated data
sets show good agreement with each other, as seen in both the X2 and the HPs
statistics. We have also seen in this example that the HPs solution is insensitive
to the exact choice of prior.

The best fit Hubble constant is Hi, = 79±4 krri/sec/Mpc (95% CL, random
errors only) for a fixed flat CDM Om = 1 - ,\ = 0.3 model with n = 1, Qrms =
18J.lK and Obh2 = 0.03. We note that if more cosmological parameters are left
free and then marginalised over, the error in h would typically be larger (e.g.
Bond, Bridle in this volume).

This combination of Om and H o corresponds gives for the age of the Universe
11.9 Gyr. Our derived Ho is slightly higher but still consistent with the 'final
result' of Ho from Cepheids and other distance indicators (Freedman et al. 2000)
Ho = 72 ± (3)r ± (7)8 krri/sec/Mpc (l-sigma random and systematic errors).

The above analysis can be extended in a number of ways. Current and
future CMB data can be combined with other cosmological probes (and their
corresponding HPs), and more cosmological parameters can be kept free. Here
we used a simple correction for the calibration error. A more general approach is
to marginalise over both the HPs and a calibration probability function (Bridle
et al, in preparation). Two other aspects which can be modified according to
specific problems are the priors P(Qj) and the probability functions P(Djlw).
We shall discuss these extensions elsewhere.
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