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PRINCIPAL IRREDUCIBLE LIE-ALGEBRA 
MODULES 

BY 

FRANK J. SERVEDIO* 

Let V be a finite dimensional vector space over fc, a field of characteristic 
0, L be an algebraic Lie-subalgebra of Endk(V), with the latter a Lie algebra 
in the canonical way, and let V be an L-module in the canonical way. For 
X G V, let LX = {AX \ A G L}. Call V a principal L-module if 3 X G V such that 
LX= V; X will be called a principal generator of the L-module V. 

EXAMPLES. 1. Let L=<t€{V). V is a principal ^€(V)-module with {Xe 
V | X ^ 0} as the set of principal generators when the dimension of V is greater 
than 1. 

2. (a) Let V=fcn, L=&(n) be the orthogonal Lie-algebra for a non-
degenerate quadratic form P. If n > 3 , V is an irreducible L-module, but V is 
not a principal L-module. For, let Q be the non-degenerate symmetric bilinear 
form associated to P ; then VA G L, VX, Y G V, Q(AX, Y) + Q(X, A Y) = 0. If V 
is principal with principal generator X, then for each YT^O in V, 3 A e L such 
that Q ( Y , A X ) ^ 0 . Take Y = X with Q ( X , A X ) ^ 0 ; but Q(X,AX) = 
—Q(AX, X) = -Q(X, AX) by symmetry and this is a contradiction. 

2. (b) Let V=fcn, L = klv®#(n) be the Lie-algebra where P ( X ) = £JC?. 
Clearly, V is an irreducible L-module with principal generator X = 
( 1 , 0 , 0 , . . . , 0 ) . 

Assume throughout that V is an irreducible L-module. This assumption 
entails that L = Z(L)®L\ a direct sum decomposition into ideals where V is 
the commutator subalgebra which is a semi-simple algebraic Lie-algebra and 
where Z(L) is the center of L which is either O or is of dimension 1 over k and 
consists of semi-simple endomorphisms of V, [1]. 

Next we define the notion of semi-invariant for L. Let V* be the fc-dual of V 
and let Sk( V*) be the symmetric algebra on V* over fc. L acts canonically as a 
Lie-algebra of fc-derivations on Sk(V*) with action D completely determined 
by its effect on V* = Sk( V*)1; namely, D(A)(Y) = - A*( Y) = - Y° A, VA G L, 
V Y G V*. The k-derivations o/Sk(V*) form a Lie-algebra; D is a homomorph-
ism of Lie-algebras over fc from L into k-derivations of Sk(V*).When L is an 
algebraic Lie-algebra, the Lie-algebra of G g GL(V)y the homomorphism D is 
just the derivative of the homomorphism of algebraic groups 

A: G->k-automorphisms of Sk(V*) as graded k-algebra where Ag on 
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SfcCV*)1 is given by \g(Y)=Yog~1 for all YeV*. D on L is just the 
morphism of tangent spaces at the identity elements induced by A on G; see 
[2] and [3]. A semi-invariant P for L is a PeS k (V*) , PfÉSfc(V*)° such that 
VA € L, 3cA G k with D(A)(P) = cAP. Such a P is found in example 2 above. 

LEMMA 1. If kIv^L and P is a semi-invariant for L, then P is a form, i.e. 
Pe Sk(V*)r for some r=>l. 

Proof. D(cIv)(Y)=-cY, for all YeV". Hence, V m > 0 , VQeS k (V*)m , 
D ( c l v ) ( 0 ) = - m • cQ. Thus, if P is a semi-invariant for L, with P = Zi=o-Pi> 
where P^eS^y*) ' and P r ^ 0 , 

D(cJv)(P) = X DCc/v)^ =i-icPi = c£-iP, 

Since char k = 0, Pt = 0 if i < r. 
The following gives a criterion for the existence of semi-invariants. 

THEOREM 1. Let V be a principal irreducible L-module. There exists a semi-
invariant P for L if and only if V is not a principal V-module. 

Examples of the theorem are 
i. V is any finite dimensional vector space over k. Take L• = Endk(V*). 

When dim V= 1, any basis element of Sk(V*)J" is a semi-invariant for L and 
L' = 0; both clauses are true. When dim V > 2 , each Sfc(V*); is an irreducible 
Endk(V)-module and has dimension > 1 when y>0 . Thus 3 a semi-invariant P 
for L • V -Ô£(V) and example 1 states that V is a principal L'-module. Thus 
both clauses are false. 

ii. Example 2 illustrates the theorem with both clauses true. 
iii. An example of Mikio Sato. Let V = k 4 x 3 , the vector space of 4 by 3 

matrices over k. Take L = kIv<g)Lr where L' is the semi-simple algebraic Lie 
algebra isomorphic t o^ (4 )x^ (3 ) whereo/i(4) is the symplectic Lie-algebra and 
&(3) is the semi-simple lie algebra of example 2 above. Take a monomorphism 
of L into Endk(V) by the mapping: 

ôfi(4)x43) —T—> Endk(V) 

(A, B) > T(A, B) : fc4x3 -> fc4x3 

X->AX-XB, 

with the skew-symmetric bilinear form on k4 defining ^ ( 4 ) being (Z, U) = 
zxu3 + z2u4-z3ut-z4u2, and the quadratic form defining ^(3) being R(Y) = 
yi + yl + yl- L is the algebraic Lie-algebra of the affine algebraic group 
G = klv- Sp(4) x 0(3) . The point X = (column (1, 0, 0, 0), column (0 ,1 , 0,0), 
column (0,0,1,0)) is a principal generator of V as an L-module. It can be 
shown that V is not a principal L'-module by an argument extending the ideas 
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in 2(a). Let X = (Xl9X2,X3) where X^fc4*1 , Consider PX = (X2,X3), P2 = 
(X^Xx) and P3 = (X1,X2) in Sk(V*)2, three quadratic forms on V. Let their 
polarizations or associated bilinear forms on V be Q l5 Q2, a n ^ Q3. For Z with 
Zl9 Z2 , and Z 3 linearly independent over fc in fc4, Qx( ,Z), Q2( , Z) and 
Q3( , Z) will be linearly independent over fc in Sk(V*y; obtain a surjective 
linear mapping 

X ^ ( Q 1 ( X , Z), Q2(X, Z), Q3(X, Z)). 

Assume that V is a principal L'-module with principal generator X; X l 9 X2, X3 

must be linearly independent and we have f(X) = q(X)°T( , )(X) |L, a 
surjective mapping from L' to fc3. However, a straightforward computation 
gives the following result for all 

( 0 a b\ 
-a 0 cW(3). 
-b -c 0/ 

/(X)(A, B) = ( - M>3(X) - aP2(X), aPx(X) - cP3(X), cP2(X) + bP^X)). 

The image of /(X) is not onto fc3, since VBe&(3), the matrix product 
/(X)(A, B) • (Pi(X), P2(X), F3(X))transpose = 0 in fc contradicting that /(X) is 
surjective. It is easily checked that the quadric form P(X) = 
P1(X)2 + P2(X)2 + P3(X)2 is semi-invariant for L. Both clauses in Theorem 1 
are true. 

The proof of Theorem 1 is a verification that Corollary (3, 4) of [4] applies to 
give the desired statement. In that context, V is a finite dimensional vector 
space over K, an algebraically closed field of characteristic 0. Let G( ) be the 
functor from fields to groups. G is a connected algebraic subgroup of GL(V), 
and the basic assumption in [4] is that G is of the form KIdv - G'(K) a 
semi-direct product of affine algebraic groups, where G' is the commutator 
subgroup, that G acts irreducibly on V and that there exists a Zariski open 
dense orbit o(G) for the action of G in the affine variety Specmax (Sk(V*)) 
canonically associated to V. The assertions of the stated corollary are that the 
following three statements are equivalent: 

(a) G has a semi-invariant in Sk(V*). 
(b) Gf does not have a Zariski open dense orbit in V. 
(c) G% the connected component of the isotropy subgroup of X in o(G), is 

a subgroup of G\ 
Take a fixed algebraic closure K of k and use the terminology of [2], Ch. 

AG, §11, to observe that V is a fc-structure on V(K)=V®K. Identify V(K) 
k 

with Specmax (Sk( V*)) and V with those points of the form (Sk( V*)-» fc)® IK. 
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Let G be the smallest algebraic subgroup of GL(V) whose Lie-algebra 
contains L; since L is algebraic, the Lie-algebra of G equals L. Let kx be a 
finite extension of k in K containing the eigenvalues of Z(L). Then G(kx), and 
a fortiori, G(K) is of the form required in the Corollary (3, 4). G is a fc-group 
and has a fc-morphic action on V. The G orbit of X in V is the image of G 
under the orbit fc-morphism orx(G):G^>V given as the composite G = 
Gx{X}-> V. If fc[G] is the affine k -algebra of G, then the comorphism of 
orx(G\ orx(G)°:Sk(V*)-*k[G] is given by fc[V]->fc[G]®fe[V] — 

k 

. . .IdXeua*(x))fc[G]. X has open dense orbit under G if and only if orx(G)° is a 
monomorphism of fc-algebras; this latter maintains if and only if X has open 
dense orbit in V(K) under G(K). The following key lemma relates the action 
of G with that of L. 

LEMMA 2. The G orbit of X in V is open dense in V if and only if X is a 
principal generator for the L-module V. 

Proof. orx(G)°:Sk(V*)->fc[G], when localized at ntj, the maximal ideal of 
the identity element of G, induces a morphism of the regular local rings 
orx(G)°:Sk(V

;*i)mx-^k[G\ni and consequently a mapping of finite dimensional 
fc-vector spaces ax: m x/ mK—> mjml. ax is injective if and only if orx(G)° is 
injective. m x /m x is the cotangent space to V at X and m^m \ is the cotangent 
space to G at Iv , canonically the k -duals of the respective spaces TX(V) = 
(mx /mx)* and L = (m 1 /mi )* -a x * :L-^T x (V) is surjective if and only if ax is 
injective. mx/m x is canonically isomorphic to V* via rx : mx/m x-^ V*, TX : Y — 
Y(X) mode mx »-> Y and hence, Tx( V) is canonically isomorphic to V via T*"1 . 
Tx_1- a x is precisely L—> V, A ^ A X This proves the lemma. 

The theorem follows by the observations that PeSk(V(K)*) is a semi-
invariant for L®K if and only if P is a semi-invariant for G(K) in SK(V(K)*) 

under the action À defined above. Since G acts fc-morphically on V, i.e. all 
varieties have k-structure, P will belong to Sk(V*), and conversely. This 
justifies the following result, adding the condition c' which makes the comput
ing of whether V is a principal L'-module convenient. 

THEOREM V. Let V be a principal irreducible L-module. The following four 
conditions are equivalent: 
(a) There exists a semi-invariant P for L in Sk(V*). 
(b) V is not a principal V-module. 
(c) For a principal generator X in V, Lx , the isotropy subalgebra of X in L is a 
subalgebra of V. 
(c') For a principal generator X in V, L'X<= V. 

From the discussion above, it is clear that the set of principal generators, 
3>{L, V), of the L-module V is a Zariski open dense set in V. A reasonable 
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inquiry is on the nature of this set. When 3P, no general result is known to the 
author. However, when there is a semi-invariant P, under certain conditions 
the set 0>(L, V) equals V-Z(P), the complement of the hypersurface of zeros 
of P in V. The result is due to Mikio Sato [5], [6]. Define the gradient mapping 
of P ; G r a d P : V - * V * , with Grad P(X)(Z) = (DZP)(X) where Dz is the k-
derivation of degree - 1 on Sk(V*) requiring DZ(Y)= Y(Z) for all YeV* = 
SkCV*)1 and all ZeV. We will need the following proposition which has a 
straightforward proof. 

PROPOSITION. Let V* be an L-module via the contragredient action, 

LxV*->V* 

(A,Y)^ÂY=-A*(Y)=-Y-A. 

Then V* is a principal irreducible L-module if and only if V is a principal 
irreducible L-module. 

Proof. V* is irreducible if and only if V is irreducible. Let kx be an 
extension of k in K over which Z(L) is diagonalizeable and such that 
Lki = L'®kx splits over kx. There exists a umque automorphism I of Lki over 

k 

kx mapping canonical generators of Lki to canonical generators for the inverse 
root system by Theorem 3, p. 127 in [1]. Let T be the kA linear mapping of 
Vkl = V<8> fei to V%x sending a basis of weight vectors in Vkl each to its 

k 

correspondent in a dual basis for V^ ; obtain a commutative diagram of kx 

linear automorphisms with l2=ILkl and T* = T 

A d X ^ action ' V* 

T v 1/* contragred > V * 
^ k ! X V k i action V ki 

From this the equivalence of principality for the L-modules V and V* follows. 

THEOREM 2. Let V be a principal irreducible L-module with a semi-invariant 
P. The following are equivalent. 

1. SP(L, V)= V—Z(P), the Zariski open complement of the zeros of P. 
2. The isotropy subalgebra Lx of a principal generator X is a reductive 

Lie-algebra. 
3. The mapping Grad P: V-» V* sends principal generators in V to principal 

generators in V*. 

As examples of the theorem we refer to 2b) where each of the three 
statements is clearly true. More interesting is example iii. The point U = (col 
(1 ,0,0,0) , col (0,1,0,0) , col (0,0,0,0)) is in V-Z(P) but U is not a principal 
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generator. X=(col (1 ,0 ,0 ,0) , col (0 ,1,0,0) , col (0,0,1,0)) is a principal 
generator but Lx is not reductive. Define an isomorphism §> : V* —» fc3x4 by 

requiring Y(Z) = trace 9>(Y) 
' 0 I2 

-I2 0 
cefc, A eo^(4), Be*(3) , we have the diagram 

V * 2 • fc3x4 

Z for all Y e V* and all ZeV. For 

W 

d'V* + T(A,B) 

v* - c W + B W - W A 

commuting. ((Grad P)(X)) = (col (0,0,0), col ( 0 , 0 , - 2 ) , col (2,0,0), col 
(0,0,0)) is not principal since L Grad P(X) has dimension 9. 

The proof of Theorem 2 follows the pattern of that of Theorem 1. The basic 
result used is a theorem of Mikio Sato, [5], [6], which can be formulated as 

THEOREM. Let K be algebraically closed of characteristic 0 with G(K) = 
KIdv - G'(K) a semi-direct product of algebraic groups. Assume that G has an 
open dense orbit in V(K). The following conditions are equivalent. 
(1) The open dense orbit is V(K) — Z(P)(K) the Zariski open complement of the 

zeros of P, a semi-invariant for G(K). 
(2) For X in the open dense orbit of G(K) in V(K), G(K)X, the isotropy 

subgroup of X in G(K) is a reductive group. 
(3) There exists a semi-invariant P for G(K) such that Grad P: V(K)-* V(K)* 

is a dominant morphism. 

The hypothesis of Theorem 2 and the Lemma 2 above apply to give the 
equivalence of 1 and of (1). For XeV, Gx has fc-structure. Gx(k) is reductive 
if and only if GX(K) is reductive, and Lx is reductive if and only if Gx(k) is 
reductive. Hence 2 and (2) are equivalent. Finally, the morphism Grad P is 
compatible with the action of G, namely for all geG(K), GradP°g = 
Cglv*°g • Grad P for some cg e K\ thus, G orbits in V are sent to G orbits in 
V*. The proposition above gives that V* is a principal irreducible L-module. 
Grad P sends principal generators of V to principal general generators of V* if 
and only if the image of an element in the open dense G-orbit in V under 
Grad P is in the open dense G-orbit in V*. This is equivalent to Grad P being 
dominant. 

Theorems 1 and 2 and the Lemma 2 relating principality with the existence 
of a Zariski dense orbit in V under the action of the associated algebraic group 
G ç G L ( V ) , make a classification or complete enumeration of these L-
modules desirable. Listings of such L-modules have been started. A table 
appears in [7] from which the L-modules V with L' simple and the necessary 
(but not sufficient) condition d i m L ' + l > d i m V may be written down when 
k = C. In [4], the consequent list of such modules appears with indication of 
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those which are principal, those for which a semi-invariant exists together with 
information on 8P(L, V) when available. When k is algebraically closed, L = 
kIv®V where V' = S1($S2(B' • * ©S m a direct sum of semi-simple ideals St 

and V= V(l)® V(2)® • • • ® V(m) where V(i) is an irreducible Sf-module and 
the action of S/9 /V f, on V(f) is trivial. The necessary condition dim L > dim V 
implies that 

* for at least one i = 1, 2 , . . . , m 

dim S( + 1 > dim V(i). 

Denote dim V(i) by nt for each i = 1, 2 , . . . , m; since S^ôt^ fc), the bound
ary condition dimSi<n2-l for each i, translates to the "Diophantine" 
inequality 

m nt m 

n n , = s l + I ( n ? - l ) = ( l - m ) + I n i 

Hence, when m > 3 , not all dimensions nt can grow large simultaneously. 
However for any m > l , we have the principal irreducible L-module V = 
fc2m(g>fc2<g>fc2<g> • • • <g>k2 for L = k / v 0 ^ ( 2 m , k ) 0 ^ ( 2 , fc)0 • • - 0 ^ ( 2 , fc) with 
m factors fc2 and 4/(2, fc). For this L-module a semi-invariant P, a determinant 
form, exists and Grad P is a dominant morphism. A method for "generating" 
all principal irreducible L-modules from the basic building blocks St, and V(i) 
or of characterizing them from their highest weights relative to a Cartan 
Subalgabra is being sought. See [8]. 
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