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Córdoba X5000BGR, Argentina

email: federico.zopetti@unc.edu.ar
2CONICET, Instituto de Astronomı́a Teórica y Experimental, Laprida 854,
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Abstract. Tidal evolution of low-eccentric circumbinary planets is expected to drive the rota-
tional evolution toward a pseudo-synchronous solution. In this work, we present a study of the
oscillation amplitudes around this state by considering that the two central stars exert creep
tides on the planet. These amplitudes are computed by direct numerical integrations of the
creep equations and also by means of the calculation of the coefficients of the periodic terms
in this stationary solution. As in the two-body-problem, the planetary spin and lag-angle are
observed to have maximum oscillation amplitudes for stiff bodies and almost null oscillation
for the gaseous regime, while the opposite behaviour is observed in the equatorial and polar
flattenings. Our analytical approximation shows to be very accurate and specially necessary
for very-low eccentric planets. However, the magnitudes of the oscillation amplitudes around
the pseudo-synchronous solution in the circumbinary problem appears to be very small respect
to the mean value. Thus, considering these oscillation in the computation of the tidal energy
dissipation may not have a substantial contribution in the results, at least compared to the case
in which only the mean values are taken into account.
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1. Introduction

One of the main characteristics shared by most circumbinary (CB) planets discovered
by the Kepler mission is their location very close to the binary system. At such distances,
tidal torques are expected to play an important role on the rotational evolution of the
planet, with the peculiarity that in this context they are exerted by two central bodies
of comparable mass, instead of just one.

In Zoppetti et al. (2019), we studied the rotational evolution of a CB planet due to
the tidal interaction of the central binary, using the classical Constant time-lag model
(Mignard 1979). Interestingly, we found that the typical stationary state of a CB planet
is sub-synchronous respect to its mean motion, and this is exclusively due to the presence
of the secondary star.

More recently, in Zoppetti et al. (2021) (hereafter Z2021) we investigate the effects
of the binary tides on the CB planet with a more realistic formalism such as the creep
tide model (Ferraz-Mello 2013). This formalism considers the bodies as Maxwellian fluids
without the elastic component, and one of its main advantages is that the tidal-lags are
not quantities ad hoc included in the theory, but are calculated from solving the set of
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differential equations derived from the Newtonian creep equation. Moreover, the theory
does not need to assume weak friction, so this lag can be large and the model can be
applied to bodies with arbitrary viscosities.

With this more general model, in Z2021 we could also find the sub-synchronous
stationary solution for gaseous bodies, previously reported in Zoppetti et al. (2019).
Furthermore, we provided a set of high-order analytical expressions for the mean values
of the rotational stationary state around the 1:1 spin-orbit resonance. This last configu-
ration, was shown to be like the most probable for low eccentric systems with viscosities
in the range estimated for the planets of the Solar System (Ferraz-Mello 2013).

Although the mean values for the rotational stationary state obtained in Z2021 repro-
duce very well the behavior of the numerical simulations, we did not study in that article
the oscillation of the real solution around these values. According to the 2-body-problem
experience (e.g. Folonier et al. 2018), the oscillation amplitudes of the spin, for example,
can become important for stiff bodies located very close to the perturber. In addition to
the consequences to the potential habitability of these worlds, considering these ampli-
tudes in the models is essential when estimating the dissipation of energy due to tides
on the body and, also, the timescales and magnitudes of orbital evolution.

This article is organized as follows. In Section 2, we present the creep tide model
applied to the case of the rotational evolution of a CB planet. In Section 3, we explain
the method we used to obtain an analytical solution of the oscillation amplitudes around
the pseudo-synchronous solution. Section 4 shows the results obtained for the case of
Kepler-38 system. Finally, we discuss our main results and its implication in Section 5

2. The creep tide model for the rotational evolution of a CB planet

Let us consider an extended CB planet m2 with radius R2, perturbed by the tidal
interaction of a central binary with components m0 and m1. Additionally, let us consider
the planar problem where the spin vector of the CB planet is perpendicular to the orbital
plane.

As a consequence of the gravitational interaction exerted by the central stars, the CB
planet undergoes a tidal deformation. In addition to this, in this work we also take into
account the rotational flattening on m2 due to its own spin, and assume that the resulting
deformation due to these effects is small enough that a model developed up to the first
order of the flattenings represents an accurate description of the problem.

In the creep tide theory (Ferraz-Mello 2013), the real shape and orientation of the
planet is computed by means of the distance ζ2 (measured from the center of mass of the
body) of an arbitrary point on its surface with co-latitude ϑ and longitude ϕ. Its explicit
form is given by

ζ2(ϑ, ϕ) = R2

[
1 + E z

2

(
1

3
− cos2 ϑ

)
+

E ρ
2

2
sin2 ϑ cos (2ϕ− 2(ϕeq + δ2))

]
, (1)

where E r
2 and E z

2 are the equatorial and tidal flattenings, δ2 is the lag angle and ϕeq

is the position of a fictitious body that exerts a tide on the planet equivalent to that
exerted by the two central stars (see Section 2.1 of Z2021)

The parameters that characterize the shape (E ρ
2 and E z

2 ) and orientation (δ2) of the
planet, can be calculated by solving the creep tide equation

ζ̇2 + γ2ζ2 = γ2ρ2, (2)

where γ2 is the relaxation factor of the planet, which is inversely proportional to its
viscosity and assumed as constant in this work, while ρ2 is the surface equation of the
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equilibrium figure (see Equation (3) of Z2021). The explicit set of differential equations
for the shape and orientation of the planet is

δ̇2 = Ω2 −ϕeq − γ2ε
ρ
2

2E ρ
2

sin(2δ2)

Ė ρ
2 = γ2(ερ2 cos(2δ2) − E ρ

2 ) (3)

Ė z
2 = γ2(εz2 − E z

2 ),

where ερ2 and εz2 are the equivalent equatorial and polar flattenings of the equilibrium
figure (for its explicit expressions, see equations (2) and (4) of Z2021).

For a given planetary spin Ω2, the real shape and orientation of the body can be
calculated by solving the differential equation system (3). Then, the variation in the
planetary rotation is derived from the reaction torques that the extended body feels and
the conservation of total angular momentum. Neglecting the term corresponding to the
variation of the polar moment of inertia, its explicit form is

Ω̇2 = −2Gm2

5R3
2

ερ2E
ρ
2 sin(2δ2). (4)

The set of differential equations (3) and (4) describe the rotational evolution of the CB
planet due to the creep tides of the central binary.

In Z2021, we consider planetary relaxation factors in the range estimated for the Solar
System planets, and found that the most probable rotational stationary state is the
pseudo-synchronous solution, at least for low eccentric CB systems. For this reason, the
oscillation amplitudes around this particular solution will be the target of this work.

On the other hand, in the framework of the Constant-time-lag model, in Zoppetti et al.
(2019) and Zoppetti et al. (2020) we observed that the characteristic timescales of the
rotational evolution of Kepler CB planets are typically much shorter than the timescales
of the orbital evolution. For this reason, in this work we also take advantage of this
adiabatic nature of the problem and solve the set of differential equations given by (3)
and (4), assuming fixed values for all the orbital elements except the mean anomalies.

3. Analytical resolution method for the pseudo-synchronous
stationary state

We adopt here the same procedure adopted in Z2021. We then choose a Jacobi reference
frame and propose a particular stationary solution inspired in the functional dependence
of the elliptical expansions of ερ2, εz2 and ϕeq of the form

Ω2 =
∑
��

{Ω2}�� cos (l1M1 + l2M2 + l3�1 + l4�2 − Φ��,Ω2
)

E ρ
2 =

∑
��

{E ρ
2 }�� cos (l1M1 + l2M2 + l3�1 + l4�2 − Φ��,E ρ

2
)

δ2 =
∑
��

{δ2}�� cos (l1M1 + l2M2 + l3�1 + l4�2 − Φ��,δ2) (5)

E z
2 =

∑
��

{E z
2 }�� cos (l1M1 + l2M2 + l3�1 + l4�2 − Φ��,E z

2
),

where M1 and �1 are the mean anomaly and pericentre longitude of the secondary
star, while M2 and �2 are those corresponding to the planet. We note that each of the
rotational evolution variables w= Ω2, E

ρ
2 , δ2 or E z

2 , the amplitudes {w}�� and the constant

phases Φ��,w depend on the subscripts ��= (l1, l2, l3, l4) .
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Table 1. Initial conditions of our Kepler-38 like system (Orosz et al. 2012). Orbital elements
are given in a Jacobi reference frame.

body m0 m1 m2

mass 0.95m� 0.25m� 10m⊕
radius 0.84 R� 0.27 R� 4.35 R⊕
ai [AU] 0.15 0.45

ei 0.15 0.0− 0.1

The particular solution given in (5) and its derivatives are then introduced into the
system (3) and (4). Having expanded the forced terms (ερ2, εz2 and ϕeq) in power series
of semimajor axis ratio α= a1/a2 and the eccentricities e1 and e2, the coefficients can be
explicitly calculated by equating the terms with the same trigonometric argument and
neglecting terms of higher order.

The terms in system (5) with l1 = l2 = 0 correspond to the mean values of the rotational
stationary solution and were explicitly given in Equation (16)-(19) of Z2021.

In this work, we focus on the amplitudes of the periodic terms. The calculation of these
coefficients is even more cumbersome than in the case of the mean values. For this reason,
we computed them up to 3rd order in α and only up to 1st-order in the eccentricities.
However, as we will see in Section(4), we are able to predict very well the oscillation
amplitudes of low-eccentric CB planets close to their host binary. On the other hand,
due to space limitations, the coefficients can not be explicitly shown in this manuscript
but can be provided by contacting any of the authors.

4. Results

We apply the results of our model to a Kepler-38-like CB planet (Orosz et al. 2012).
This system has been the test case of most of our recent investigations about the tides on
CB planets. The chosen nominal values for system parameters and initial orbital elements
are detailed in Table 1. The value of m2 was estimated from a semi-empirical mass–radius
fit (Mills & Mazeh 2017). Note that two different values of the planetary eccentricity e2
are considered in this work: e2 = 0.0 and e2 = 0.1

In Figure 1, we consider a Kepler-38-like CB planet and show the oscillation ampli-
tudes, predicted by our creep tide model, for the rotational evolution around the
pseudo-synchronous solution, as a function of the normalized relaxation factor γ2/n2.
The wide black lines correspond to the amplitudes obtained by numerically integrating
the system (3) and (4), once the planet reaches the stationary solution, while the dashed
black curves correspond to the mean values obtained in this integration. The red curves
represent the results of our analytical solution up to 3rd-order in α, obtained by means of
the method described in Section 3, while the results of our 0th-order analytical solution is
represented by green curves. Note that this last case is equivalent to the 2-body-problem
in which the planet only feels the tides of one central body with mass equal to the sum
of both stellar masses.

We first note from Figure 1 that, independently of the planetary eccentricity, the
oscillation around the pseudo-synchronous planetary spin shows the same behavior than
the one around the mean lag-angle: it is maximum for γ2 <<n2 (i.e. typically stiff bodies)
and decays to zero for γ2 >>n2 (i.e. gaseous bodies). On the other hand, the completely
opposite behavior is observed for the flattenings E ρ

2 and E z
2 . The magnitudes of the

oscillation amplitudes do depend (proportionally) on the planetary eccentricity, although
in our case they are much smaller than the ones obtained for the 2-body-problem Saturn-
Enceladus in Folonier et al. (2018).

Regarding to the accuracy of our analytical solution, we note from Figure 1 that our
model up to 3rd-order in α fits very well the behaviour of the numerical integrations,
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Figure 1. Oscillation amplitudes of the spin Ω2 (first row), the lag-angle δ2 (second row), the
equatorial flattening ερ2 (third row) and polar flattening ερ2 (bottom row), of a Kepler-38-like
planet around the pseudo-synchronous solution. Different colors indicate different methods for
obtaining the amplitudes: numerical in black, analytical up to 0th-order in green and analytical
up to 3th-order in red. The dashed black lines represent the numerical mean solution. Different
columns represent different planetary eccentricities: e2 = 0.0 (left column) and e2 = 0.1 (right
column).
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for any arbitrary planetary viscosity in low eccentric orbits. The accuracy of the model
is even more remarkable (for example, see the second row panels) when we take into
account that in CB environments, tides are non-negligible for planets very close to the
binary and high α-order expansions are required for the analytical models (Figure 1 is
built for α= 0.33).

On the other hand, the comparison between the red and the green curves for the panels
located on the left columns, shows that the 3BP approximation is specially necessary to
compute the oscillation amplitudes of very-low-eccentric orbits, where the 2BP approach
predicts null oscillations (see Equations (53) of Folonier et al. (2018)) and the numer-
ical solution is far from fulfilling it. However, the 0th-order solution seems to be quite
acceptable for moderate eccentricities.

5. Discussion

In this work, we study the oscillation amplitudes that exhibits the rotational evolution
of a CB planet around the pseudo-synchronous tidal solution. We employ the creep tide
model (Ferraz-Mello 2013), which is equivalent to considering bodies as Maxwellian fluids
without the elastic component (e.g. Ferraz-Mello 2015).

We compute the oscillation amplitudes in two ways: by a direct numerical integra-
tion of the differential equation system of the rotational evolution, and by analytically
calculating the coefficients of the periodic terms of the stationary pseudo-synchronous
state. As discussed in Z2021, having analytical expressions is a very cumbersome task.
However, it allows to carry out semi-analytical studies of the orbital evolution for very
long periods of time, by introducing ad-hoc the solutions found for the rotational evo-
lution, and avoiding having to solve our entire multi-timescales system. The analytical
approach presented in this work fits very well the numerical predictions of low eccentric
systems, even with high semimajor axis ratio, so it can be an important contribution in
this problem.

For CB planets, the behaviour observed in the oscillation amplitudes is analogous to
the one observed in the 2-body-problem: maximum oscillation amplitudes for the spin
and lag-angles of stiff planets and almost zero amplitudes in the gaseous regime, while the
completely opposite behaviour is observed for the flattenings. However, the magnitudes of
the oscillation observed for our Kepler-38-system (whose parameters and orbital elements
are typical within the planets observed by the Kepler mission) are very small, specially
when we compare with the ones obtained for the Saturn-Enceladus system (Folonier et al.
2018), this last being a much tighter system. The presence of an inner instability limit
for CB orbits (e.g. Holman & Wiegert 1999), prohibits to have planets much closer to
the binary than Kepler-38. Thus, the expected oscillation amplitudes for the parameters
that characterise the rotational evolution of CB planets are expected to be typically very
small.

We mention two important consequences of this result. On one hand, the very low
oscillation amplitudes of the spin of CB planets that have reached the pseudo-synchronous
solution should be taken into account in habitability studies of these planets. On the other
hand, from a technical point of view, in this type of environment, building models that
consider only the mean behavior and neglect the oscillation amplitudes seems to be very
accurate.
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