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ORBITAL DECOMPOSITIONS OP REPRESENTATIONS
OF NON-SIMPLY CONNECTED NILPOTENT GROUPS

RONALD L. LIPSMAN

An orbital integral formula is proven for the direct integral decomposition of an
induced representation of a connected nilpotent Lie group. Previous work required
simple connectivity. An explicit description of the spectral measure and spectral
multiplicity function is derived in terms of orbital parameters. It is also proven that
connected (but not necessarily simply connected) exponential solvable symmetric
spaces are multiplicity free. Finally, the qualitative properties of the spectral
multiplicity function are examined via several illuminating examples.

1. INTRODUCTION

There is a growing body of literature [3, 7, 8, 5] devoted to orbital parametrisations
of induced representations Ind^ v in the case that both G and H axe connected Lie
groups. Some of this work involves general groups [7, 8], but much of it is concerned with
G nilpotent. Moreover, in all of the latter, G is assumed to be simply connected. Very
beautiful formulas have been derived in that case [3, 7] — for the spectrum, multiplicity
and spectral measure — as well as some interesting qualitative results regarding the
multiplicity function [4]. In this paper I shall retain the nilpotent assumption on G,
but drop the simple connectivity condition. Because the fundamental group is infinite
cyclic, it turns out that — although orbital parametrisations of induced representations
are still valid — they cannot be derived from the simply connected case (see below
for a more detailed explanation). The proof must be accomplished by an induction
argument that generalises that of [7]. In addition, regarding the qualitative results on
the multiplicity, it turns out that one is still true, but the others are false (again see
below). Finally, we shall prove that all connected (but not necessarily simply connected)
exponential solvable symmetric spaces are multiplicity free.

Here is a more detailed explanation of the contents and import of the paper. Let
G be a connected nilpotent Lie group with Lie algebra 0. We do not assume G is
simply connected. Let G be a simply connected Lie group having g as its Lie algebra.
Then Z — Cent G is a vector group and there is a discrete subgroup T C Z such that
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294 R.L. Lipsman [2]

G = G/T. We write P: G —• G for the canonical projection. The irreducible unitary
representations of G are parametrised orbitally by the co-adjoint orbits Q*/G. (We
assume the reader is familiar with the orbit method — see [6, 2].) Now suppose H is
a connected (therefore simply connected) closed subgroup of G, fj its Lie algebra. The
orbital integral formula for the description of an induced representation is as follows.
Let v G H, Ov G t)*/H the corresponding orbit. Then

(0) Indfi/ =

where p : a* —» fj* is the canonical projection, n£ = #[G • tp r\p~1(Ov)]/H, and p, /x'
are push-forwards of the canonical measure on p~x{Ov) (see [7, 8]).

Now suppose H C G is a closed connected subgroup. For 1/ G H we wish to
describe the direct integral decomposition of Ind^i / . It does not follow as a simple

consequence of formula (0) applied to the induced representation Ind— v o P. Here

is the explanation. Let H be the analytic subgroup of G whose Lie algebra is I).

Then P(S\ - H, but P'1^) = HT will be disconnected and so bigger than H in

general. It is obvious that understanding IndJJ v is exactly the same as understanding

Ind2 v o P. By the simply connected theory, we understand Ind— u o P. Moreover,

I n d | i / o P = Ind2 Ind%rvoP= / ^ Ind^ (y o P) x udw.
H HT H Jp/rnH) H r

Were T a finite group, the latter would be a direct sum and we could read off in-

formation on the finitely many constituents. But in general (F/F D H) is a torus

and each of the constituents is infinitesimal (of measure zero). Thus we can de-

duce nothing (for u> = 1) about the representation Ind— v o P. To illustrate, let

0 be the three-dimensional Heisenberg Lie algebra with generators X, Y, Z satisfy-

ing the bracket relation [X, Y] = Z. Let G be the corresponding simply connected

Lie group, F = exp ZZ and take H = exp RX. For f G R, define \t 6 (-ff) by

X((exprX) - e2" '^, r G R. Then we have

where for £ ^ 0 , n( = Indj|~x<XC IS *^e uni<lue irreducible of G having central

character *c(exP tZ) = e2*{t<. On G = G/T, H = H/HDT^H,vre have

= /
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[3] Orbital decompositions 295

where X(,v is the character xt.v (exprXexpsY"exptZ) = e
2™(r«+"»> The latter, when

lifted to G, is not a subrepresentation of the former.

Nevertheless, we are able to give a precise orbital interpretation and parametrisa-
tion of the induced representation IndH v for any connected nilpotent groups G, H.

The formula is developed in Section 2. As explained above, we cannot derive the decom-
position from those of [3, 7]. The method of proof is induction on dimG/H. Since G

is nilpotent, we can utilise the existence of a co-dimension 1 connected normal subgroup
N between H and G. But we must be careful to take into account its relationship
to F . The precise orbital integral formula is found in Theorem 1. We merely remark
here that the multiplicity function is unchanged from (0), the spectrum is modified
only in an obvious way to account for F , but the spectral measure is considerably more
complicated than in the simply connected case.

In Section 3 we consider homogeneous spaces G/H which are symmetric — that
is, G is a connected Lie group with an involution r and H is an open subgroup of
the stability group GT. In case G is simply connected nilpotent, one knows [1] that
L2(G/H) — that is, Ind£ 1 — is multiplicity free. If H = Gr, this can be read off from
(0) since it is easy to show that #[G • <p D h^/H = 1 for <p G ^ x . Now for virtually
the same reasons as above, it is impossible to deduce from these facts anything about
non-simply connected nilpotent symmetric spaces. Nevertheless we prove (Theorem 3)
that any connected nilpotent symmetric space is multiplicity free. In fact we are able to
prove Theorem 3 when G is exponential solvable. This generalises Benoist's theorem
[1] to arbitrary connected exponential solvable symmetric spaces.

Finally in Section 4 we take up the qualitative results on the multiplicity function
n£ obtained by Corwin-Greenleaf [4] in the simply connected nilpotent case. In brief
they: show that the multiplicity is always either uniformly infinite or finite almost
everywhere; give a criterion for the latter; and show that in the finite multiplicity
case, the multiplicity is bounded and of constant parity. We prove here that with
the exception of the boundedness result, all of the above are false in the non-simply
connected case. (The boundedness result says that even if infinite multiplicity occurs,
there is an upper bound on the finite multiplicities that appear.) Several examples are
given to illustrate Theorems 1 and 3, and other interesting aspects of the behaviour of
induced representations for non-simply connected nilpotent groups.

2. T H E NON-SIMPLY CONNECTED ORBITAL INTEGRAL FORMULA

We continue with the notation of Section 1. We assume F is not trivial. Let r =
rankF < d i m Z , r > 0. We set A = logF, a discrete subspace of 3 = Lie (Zj = Autfl.

We also set Z = P(Z\ = CentG. Now define

& = W G 0* : V(A) C Z}.
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If K : g* —» (Gj denotes the ( G-equivariant) Kirillov map, then the image of flA

is identified with G because G = (dj — {ir e (G) : n\r = Id} and obviously

K,(<p) e [GJ •& if € 0A• It is also clear that flA is a (5-space and

B\/G = B*JGZ(G) =6.

Now suppose H C G is a connected closed subgroup f) = Lie (IT). As in Section 1,

we take S = expf) in G so that p ( # ) = H, P~\H) = HT. Obviously P-^H) =

F ^ T c 5 . We set A = r n J and n = log A = A n h. We fix i/ € 5 . Then there
is a unique £T-orbit Ov C l)n such that K{OV) = v. We select any if) £ Ov so that
Ov = H -ifi. If we restrict the projection p : g* —> If to fl^ we obtain p(fl^) = ^n-
However, p-1(()n) may not be contained in fl^ —for example, if fi = {0} but A ^ {0} ,
then p-\l)n) = P~W) = 3* ^ 8A- Thus we set pA = p|;A, pA= 8A -* %. and pay
attention to p~i?(Ov) in what follows. Here is the orbital integral formula for the direct
integral decomposition of an induced representation.

THEOREM 1 .

Indg v =

where n£ = #\G •ipC\p'j^1(Ov)]/H and fi"Q H, UGH are push-forwards of the canonical

measure on p"^{Ov).

Before beginning the proof we describe the canonical measure on pA
1(Ov). As in

the simply connected case [7, Section 3], it is explained most readily in terms of a fiber
space picture. Indeed, pA"1(C?v) is a fiber space

"(0/1)+Ap

The base is the .ff-orbit Ou = H • ij> which carries its canonical (27-invariant) mea-
sure. The fiber is described as follows. First note that gA is a discrete disjoint union
(paramterised by A* = Hom2 (A, Z)) of affine spaces of dimension dimR g — rifcz(A).
Let us write R(f) + A) to denote the R-span of the Z-space h + A. Then the fiber
(9/(f) + A))* is the discrete disjoint union (parametrised by (A/fl)* = Homz (A/ft, Z))
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of affine spaces of dimension dimR fl/R(f) + A). The canonical measure on the fiber is
Lebesgue measure on each of its components. It is clear that p^l{Ov) has components
which are manifolds, and the canonical measure pj^iPv) agrees on each component
with the canonical measure class of the manifold.

PROOF OF THEOREM 1: The result is self-evident if H = G, so we may as-
sume dim I) < dimg. We first show that it is also no loss of generality to assume
dimR(F) + A) < dimg. So suppose R(h + A) = 0. Then certainly fl = h + 3. This
forces f) to be an ideal in g since [g, h] = [h + 3, •)] = [f}» h] C f). We also have
G = HZ. Set Zi = H n Z a. central subgroup of H. The assumption R(f) + A) = g
forces G/H = Z/Z\ to be compact. Let x D e the central character of v restricted to

Zx, P\XI = X I d . Write Ind* X = E A, (Zx) = {A 6 Z : X\Zt = x } . Then clearly

(**f
e

(1)

where u\ is the unique irreducible representation of G — HZ satisfying UX\H = v>
vx\z = Aid. We show that the direct sum decomposition (1) agrees with the direct
integral decomposition in the statement of Theorem 1. First, since p~i^(Pv) — {v £
0A : v\t> € Ov}, p~1(Ov)/H is parametrised by (Zx). In fact, since g = f) + j , the
parameter is d\ = (1/t) ylj. Next the multiplicity function in Theorem 1 is one. This
is because G • <p = HZ • <p = H • tp for any <p G P\*{Ov) s o that

Finally, we have agreement of the measures also. This is because the affine spaces are
trivial and the components of Pt^{Ov) are parametrised precisely by (A/fl)* ~ (Zx).

We now proceed to the main argument, an induction on dimg/f). So suppose
that dimg/f) = 1. Since by the previous paragraph, we may (henceforth) assume
dimR(I) + A) < dimg, it must be the case that A C h. Any co-dimension 1 sub algebra
is an ideal, so f) is an ideal. Then r C H < G and G/H S (G/r)/(H/T\ £ G/H ^

H

integral of irreducibles [6]. In either case, the orbital integral formula is true [7]

R. Set v = v o P. We know that Ind^ v is either irreducible or a one-parameter direct
H

But dearly lndH v o P = Ind^ v. Everything above factors through P (for example,

p-1(Ov) = PX 1 (O I / ) , since T C H). The conclusion is therefore completely clear.
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Now we come to the main induction step: dimfl/J) > 1 and we assume the result
is proven for lesser co-dimension. Since dimR(f) + A) < dim 0 we know (by nilpotence)
that we can find an intermediate ideal of codimension 1, that is, n < g, dimfl/n = 1
and

We employ in succession induction in stages, the induction hypothesis, and the fact
that direct integrals commute with induced representations. These account for the first
three of the following equivalences

Indg u = Ind = Ind° f@

(A) = /

(Notational clarification: pn,A: nA -» %, p8 i A: flA -» %.)

It remains to prove the last equation (A). The equality of spectrum is almost obvi-
ous. The orbital spectrum of Ind^ fg consists of p }̂,(JV • 0) regardless of whether the
co-dimension 1 induced representation is irreducible or not — see [7, Section 0]. Thus
the spectrum of the left side of (A) is P^n(pn^A(Ov)\ . That clearly equals p^\{Ov),

which is the spectrum of the right side. To demonstrate equality of mulitplicity, we
require a generalisation of [7, Proposition 1.7]. The proper generalisation takes into
account the disconnected nature of P~^\{OV). We formulate the result quite generally.

PROPOSITION 2 . Let H C N < G be connected nilpotent Lie groups. Fix
v G H. Then generically on p^\{Ov) we iiave

dimG • 6 n p~X(Ou) = dim a . 0 D p"jA(f) • ^ ) .

N O T E . It is crucial to observe that p^\{Ov) is a countable disjoint union of (sim-
ply) connected spaces and that on each component we have generically the equality of
dimension — however that generic dimension may vary from component to component.

PROOF: The proof is identical to that of [7] as soon as we make the proper mod-
ification. Namely, the Zariski open set U C n* selected in [7] is only servicable one
component at a time. Thus the correct order of selection is: fix a component, then
choose a corresponding Z-open set, and then the reasoning proceeds exactly as in [7].

Now we are ready for the proof of equal multiplicity. We fix a component in
p~^\{Ov). Then not only do the orbit intersections have a generic dimension, but we
also know that generically Ind^ 70 is either irreducible or a 1-parameter direct integral

https://doi.org/10.1017/S0004972700028446 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028446
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of irreducibles. Our argument splits according to this dichotomy. This is reminiscent of
[7], but I have simplified the argument in two ways. Firstly (as in [9]), I have removed
the intermediate step of inducing through a character. Secondly, for the 1-parameter
case, I am able to give a single argument which applies to both the finite and infinite
multiplicity situations. Thus, if one compares the following with [7, Section 2], there
are three subcases instead of four.

(i) Indjv70 not irreducible (genetically). Then, on the component in question, I
claim that the map <p —» 0 = ip\n when restricted to

is a bijection — in particular, generates a bijection of 27-orbits. This follows easily from
the equality Gv = Go which must hold when Ind^7« is not irreducible [7, Section 2].
In fact, if for tp, g • ip G G • ip D Pg\(Ov) we have 9 = <p\n = g • ip\n = g • 0, then

g G Ge = Gv and the claim is established.
(ii) Ind^7fl is irreducible (generically on the component in question). In this case

we must split the argument according to whether the multiplicity is finite or infinite.
These are characterised by

(a) d i m f l - ^ n p " 1 ^ - ^ ) > dimF)-y>
(b) dimfl-y>np~1(h.^) — 6imt)-ip.

In the former case the multiplicity on the right side of (A) is +oo; in the latter it is
finite and equal to n"v = #[G • <p r\p-^(Ou)]/H.

(iia) It is enough in this instance to prove uniform infinite multiplicity on the left
side of (A). Hence, again invoking Proposition 2, it is clearly enough to show

dim fl • 0 D p-x(F) • V>) > dim I) • 0.

In fact, we have (using [7, p.443]) that

dim fl. 0 n p-^Jj • Tfr) = dim fl • 0 D p"1

= dim n£ n f)£

= dim n — dim riy, — dim f)̂  + dim t)v

- dim n/n^ + dim h/h^ - dim h/hv

= dim fl • 0 + dim h • »̂ — dim f) • <p.

(In the above, all perps but the first are taken in n*.) Now we know (from [7, Section
1]) that condition (a) is equivalent to dim fl • <p > 2 dim f) • <p — dim f) • V1 • Both sides of
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this inequality are even. That , together with the observation dim fl • 6 ^ dim 0 • tp — 1,
yields

dim g • 0 > 2 dim f) • tp — dim (j • -0.

Combining these, we obtain

= dim 0 • 6 + dim I) • if> — dim f) • tp

> dim f) • tp

> dim f) • 6.

This completes the argument in case (a).
(iib) In this case the multiplicities in (A) are finite and we show they are equal by

demonstrating that generically on P^\{OV) the restriction map

G • v n p - ^ a ) -> G • enP-\{ov),

although not a pointwise bijection, is a bijection of IT-orbits. In fact, it is clearly enough
to show that if for <p, g • tp G G • tp D p~^(Ov), 6 = <p\n, it is true that g • 6 = h • 6 for
some h G H, then g • <p = h' • ip for some h' £ H. Now h~1g 6 Gg. But in case (b),
Go = Ng (see [7, Section 2]). Then it suffices to prove Ng • tp = Hg • (p. For if so, then
h~1g • tp = h' • tp for some h' =*• g • tp — hh' • tp. Now we know that when Indw70 is
irreducible that Ng • tp = tp + Ra , a £ 0*, a ^ O , a|n = 0. The only possibilities for
Hg • tp are tp or tp + Ra. We can rule out the former by the following computations.
First

2 dim h • 0 — dim I) • ip < dim n • 8 = dim 0 • tp — 2 = 2 dim i) • tp - dim F) • -0 — 2.

Hence
dim h • 0 < dim h • tp — 1.

Strict inequality is impossible, so dim \)-0 = dim f)-tp—1. Therefore dim f)e = dim f)̂  + 1,

and so Hg • tp = tp is not possible.

Our task is reduced to proving equivalence of the spectral measures in equation (A).
We take our motivation partly from [8, Section 4 Spectral Measures]. It is clear that
the JT-equivariant projection pZ\{Ov) —» P^\{OV) takes components to components
— since A C n. Hence it preserves canonical measure classes. Therefore in case (ii)
(where the induced representation is irreducible), the map factors through H and it
is totally clear that it takes y."G H to ^ H. Case (i) requires somewhat more subtle
reasoning. In this case we have

= / nv
JR
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It is again appropriate to work within a single component. Let C be a Borel cross-
section for a component in p^\{Ov). Fix Y £ g \ n. For any 6 £ n*, define <pg by
setting it equal to 0 on n and 0 on Y. Set 5 = {fg + sa : 6 £ C, s £ R}. Then
I claim <S is a cross-section for the corresponding component in P^t\(Ov). Accepting
that momentarily, we see that the Borel surjection tpg + sa —* 6, S —* C takes the class
of ii"G H to that of nv

N H.

Now we prove that S is a cross-section. First, for any h £ H, S e n ' , there exists
sh,e € R such that

h-<pe = iph.B + 3h<ea.

Then if <p £ P7\{Ov) (actually in our prescribed component), 0 — <f\n and h • 0 £ C,
we have

h • ip = h • (<pg + <p(Y)a) = <ph.e + (shtg + <p(Y))a € 5 ,

where we used the easily-verified equality ha = a . On the other hand, if tp, h • <p £ S,

then since 6 and h • 6 £ C, we must have h £ Hg. Hence

h • ip — h • (tpg + <p{Y)a) = tph.g + (shtg + <p(Y))a = ip + sh,ga.

But in case (a) the functionals <p and <p + 3a lie in distinct G-orbits if s ^ 0. Thus it
must be that 8h,g = 0 =>• h • <p = <p. U

3. EXPONENTIAL SOLVABLE SYMMETRIC SPACES ARE MULTIPLICITY FREE

We now generalise Benoist's theorem [1] to arbitrary exponential solvable sym-
metric spaces. Let G be a connected exponential solvable Lie group. That means fl
is solvable and has no purely imaginary eigenvalues. We do not assume G is simply
connected. Still we have

THEOREM 3 . Let G be connected exponential solvable, T an involutive auto-

morphism of G. Let H be an open subgroup of GT. Then Ind^ 1 is multiplicity

free.

PROOF: Exactly as with nilpotent groups, we let G be a simply connected Lie

group having fl = Lie(G) as its Lie algebra. Then there is a discrete subgroup T C

Z = CentG such that G = G/T. P: G -* G denotes the canonical projection. We

consider first the case that H = (G T ) 0 , the identity component of the stability group.

Let H be the (a fortiori simply connected) analytic subgroup of G with f) = Lie(JI)

as its Lie algebra. Then clearly

Therefore, for this case, it is enough to prove
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THEOREM 3 ' . Let G be simply connected exponential solvable, r an involutive
automorphism of G, H = GT, T C CentG a discrete subgroup. Then Ind^p 1 is
multiplicity free.

PROOF: We let Z be the connected subgroup of CentG generated by T. Then

Since any constituent of Indj^ A has Z-central character A, it is absolutely clear that
to prove Ind^p 1 is multiplicity free, it suffices to prove that each of the representations

^ A is multiplicity free. But we have an orbital integral expression for these, namely

Ind£z A

where w = (l/i)d\, (h + })^ = {(p € fl* : <p\t, = 0,y»|, = w} . Also G/H symmetric
implies that for ^)g f)1, we have G-ipC\l)± = H-tp (see [1, 7]). Hence for tp e (\) + 3)^,
we have g • tp\h = <Mj an<l therefore

Summarising, we have proven Theorem 3 in case H is connected — that is, if T is an
involutive automorphism of a connected exponential solvable group G and H — {GT)0,
then IndH 1 is multiplicity free. We now complete the proof by demonstrating;

LEMMA 4 . Let G be connected exponential solvable, r an involutive automor-
phism. Then GT/(GT)0 is Unite.

If so, then for any H, (Gr)0 C H C GT, we have

a finite direct sum. Clearly the whole sum can be multiplicity free only if each con-
stituent is. This completes the proof of Theorem 3 once we have the

PROOF OF LEMMA 4: If G is simply connected, then GT = {GT)0. Otherwise we
employ the usual structure: G = G/T, P: G —* G. Given r , there exists a unique
involutive automorphism T of G such that dr = dr. Then clearly

(2)
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In fact, the involutions of G are in 1 — 1 correspondence with the involutions of G that
satisfy (2). Now

GT = {gT: r(g)T = gT}

P~\Gr) = {g<=G: g-'rig) G T} d i f Gf

Thus to prove the lemma, it suffices to prove U

LEMMA 4 ' . Let G be simply connected exponential solvable, T C Cent(7 a
discrete subgroup, r an invoiutive automorphism of G satisfying T(T) = T. Then if
Gf = {9 e G : g-^ig) G T}, we have G f / G T is finite.

PROOF: Set H = GT. Then G = -ffexpq where a = h + q, h = Lie(-ff), q =
the —1 eigenspace of dr. For g 6 G, write g — hexpX, h £ H, X G q. Then
r(flr) = Aexp —X and

g-l
T{g) = exp -2X 6 T « -2X G A = logT.

Thus it is clear that # G f / G T < 2riu lkA < 00. D

4. QUALITATIVE RESULTS AND EXAMPLES

The orbital formula (0) has been further elucidated by several qualitative results
of Corwin-Greenleaf on the multiplicity function n£. Those results are:

CG(i) The multiplicity is either uniformly +00 or finite almost everywhere;
(ii) the finite multiplicity case is characterised by the equality dim g • tp —

2 dim f) • (p — dim f) • rp, genetically in y> G p"1 (Ov);
(iii) if finite, the multiplicity is bounded;
(iv) if finite, the multiplicity has constant parity.

The attention that has been paid to generalisation of these results has been directed
towards the possibilities that might occur if the nilpotent assumption is relaxed to
exponential solvable or even completely solvable. (The author has a forthcoming paper
along these lines.) Here I want to focus attention in a different direction — retain the
nilpotent assumption, but drop simple connectivity.

PROPOSITION 5 . For induced representations Ind^ v wherein G, H are only
connected — but not necessarily simply connected — nilpotent Lie groups, properties
CG(i), (ii), (iv) are false, while CG(iii) is true.

PROOF: For the counterexamples to (i) and (iv), see Examples (1) and (2) below.
Once (i) is false, property (ii) has no real meaning. The truth of CG(iii) is actually a
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relatively simple consequence of the proof of [7, Proposition 5.1]. It is evident from [7,
p.457, especially formula (1)] that there is a single fixed upper bound M which depends
only on the structure constants for G, such that for any discrete group T C Cent G,
for any connected subgroup H C G = G/T and for any v G H, the finite multiplicity
that occurs in IndH v cannot exceed M. U

We conclude the paper with a brief presentation of several illustrative examples.
(1) Let G = G/T be the example from the introduction, but take H = {1} and

v = 1. Then the regular representation of G

has mixed finite and infinite multiplicity.

(2) Let g be the four-dimensional nilpotent Lie algebra with generators X, Y, Z,
W satisfying bracket relations [X, Y] — Z, [X, Z] = W \ G is the corresponding simply
connected nilpotent Lie group. We write tp 6 fl* as <p = (X* + rjY* +(Z*+ uW*. The
representations of G are parametrised by the following orbital cross-section:

generic C\ = {(p = (0, n, 0,w) : i ) e R , « / 0 }

degenerate, but inf-dim C2 = {(p = (0, 0, (, 0) : ( ^ 0}

characters Cj = {<p = ((, i), 0, 0) : (, n G R}.

Now take T - expZW, G - G/T and H — expRY. The representations that pass to
G require w G Z in C\, but no conditions on Cj or C%. Then

an example of mixed parity.

(3) Taking an outer tensor product of the last two examples, we clearly get an
example in which the multiplicities 1, 2, oo each occur on sets of positive measure.

(4) Both Examples (1) and (2) provide instances of mixed type — that is, both
generic and degenerate representations occurring on sets of positive measure. In Ex-
ample 1 the degenerate representations have finite multiplicity and the non-degenerate
representations have infinite multiplicity. Here is an example where the roles are re-
versed. Take G as in Example (2), but let H = expRZ. Then for £ ^ 0

- 007IV(o,o,<,o) ^ /
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(5) In the simply connected case any induced representation has spectrum con-
centrated in one "layer" of orbits — a property which we have seen is violated in the
non-simply connected case. Another feature of the simply connected case is that an
induced representation is either irreducible, a continuous one-parameter direct integral
of irreducibles, or an infinite multiple of one of the previous two. This configuration
also fails in the non-simply connected case — in fact, we can have an infinite direct sum
of inequivalent irreducibles. To see that, once again let G be as in Example 2, but set
H = exp RY + RZ. Then for TJ G R, £ ^ 0, we have

u>€Z

(6) Finally we illustrate the results of Section 3, that is, Theorem 3 and Lemma
4. We take the five-dimensional Lie algebra 0 spanned by X, Y, Z, U, V satis-
fying bracket relations [X, Y] = Z, [X, Z] = U, [Y, Z] = V. We write <p 6 0* as
<p = £X* +r)Y* + (Z*+nU* + vV* . The representations of G are parametrised by the
following orbital cross-sections:

generic <p(£, 0, 0, \i, v), £, fj, 6 R, u ^ 0

slightly degenerate <p(0, r), 0, /*, 0), r\ G R, y. ^ 0

quite degenerate <p(0, 0, C, 0, 0), ( ^ 0

characters tp(£, t], 0, 0, 0), (, rj G R.

We take T = explU + ZV,G = G/T and H = expRZ. Then

d g l = / xt*dtdrie / £ **O,,,O,M.O)*? © /
JH J /iGZ J

The involution here is given, at the Lie algebra level, by r : X —» —X, Y —> —Y,
Z -> Z, U -» -J7, V - • - V . One computes readily that

Gf = {expz.Zexpul/expttV : z G R, u, v G xZ},

an extension of order 4 over GTT.
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