
J. Functional Programming 9 (3): 325–337, May 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

325

F U N C T I O N A L P E A R L

Power series, power serious

M. DOUGLAS MCILROY

Dartmouth College, Hanover, NH 03755, USAã
(e-mail: doug@cs.dartmouth.edu)

Abstract

Power series and stream processing were made for each other. Stream algorithms for power

series are short, sweet, and compositional. Their neatness shines through in Haskell, thanks

to pattern-matching, lazy lists, and operator overloading. In a short compass one can build

working code from ground zero (scalar operations) up to exact calculation of generating

functions and solutions of differential equations.

I opened the serious here and beat them easy.

— Ring Lardner, You know me Al

1 Introduction

Pitching baseballs for the White Sox, Ring Lardner’s unlettered hero, Jack Keefe,

mastered the Cubs in the opening game of the Chicago series. Pitching heads and

tails, I intend here to master power series by opening them one term at a time.

A power series, like that for cos x,

1− x2/2! + x4/4!− x6/6! + · · · ,
is characterized by an infinite sequence of coefficients, in this case 1, 0, −1/2, 0, 1/24,

0, −1/720, It is ideal for implementing as a data stream, a source of elements

(the coefficients of the series) that can be obtained one at a time in order. And data

streams are at home in Haskell, realized as lazy lists.

List-processing style – treat the head and recur on the tail – fits the mathematics

of power series very well. While list-processing style benefits the math, operator

overloading carries the clarity of the math over into programs. A glance at the

collected code in the appendix will confirm the tidiness of the approach. One-

liners, or nearly so, define the usual arithmetic operations, functional composition,

functional inversion, integration, differentiation, and the generation of some Taylor

series. With the mechanism in place, we shall consider some easily specified, yet

stressful, tests of the implementation and an elegant application to generating

functions.

ã This paper was begun at Bell Laboratories, Murray Hill, NJ 07974, USA.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

326 M. D. McIlroy

1.1 Conventions

In the stream approach a power series F in variable x,

F(x) = f0 + xf1 + x2f2 + · · · ,
is considered as consisting of head terms, xifi, plus a tail power series, Fn, multiplied

by an appropriate power of x:

F(x) = F0(x)

= f0 + xF1(x)

= f0 + x(f1 + xF2(x))

and so on. When the dummy variable is literally x, we may use F as an abbreviation

for F(x).

The head/tail decomposition of power series maps naturally into the head/tail

decomposition of lists. The mathematical formula

F = f0 + xF1

transliterates quite directly to Haskell:

fs = f0 : f1s

(Since names of variables cannot be capitalized in Haskell, we use the popular

convention of appending s to indicate a sequence variable.)

In practice, the algorithms usually refer explicitly to only one coefficient of each

power series involved. Moreover, the Haskell formulations usually refer to only one

tail (including the 0-tail). Then we may dispense with the subscripts, since they no

longer serve a distinguishing purpose. With these simplifications, a grimly pedantic

rendering of a copy function,

copy (f0:f1s) = f0 : copy f1s

reduces to everyday Haskell:

copy (f:fs) = f : copy fs

For definiteness, we may think of the head term as a rational number. But thanks

to polymorphism the programs that follow work on other number types as well.

Series are treated formally; convergence is not an issue. However, when series do

converge, the expected analytic relations hold. The programs give exact answers:

any output will be expressed correctly in unbounded-precision rationals whenever

the input is so expressed.

1.2 Overloading

While the methods of this paper work in any language that supports data streams,

they gain clarity when expressed with overloaded operators. To set up overloading,

we need some peculiar Haskell syntax that shows up as instance clauses scattered

through the code. If the following brief explanation doesn’t enlighten, you may safely

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 327

ignore the instance clauses. Like picture frames, they are necessary to support a

work of art, but are irrelevant to its enjoyment.

A data type in Haskell may be declared to be an instance of one or more

type classes. Each type class is equipped with functions and operators that have

consistent signatures across every type in the class. Among several standard type

classes, the most important for our purposes are Num and Fractional. Class Num has

operators suitable for the integers or other mathematical rings: negation, addition,

subtraction, multiplication and nonnegative integer power. Class Fractional has

further operations suitable to rationals and other mathematical fields: reciprocal

and division. Of the other operations in these classes (for printing, comparison, etc.)

only one will concern us, namely fromInteger, a type-conversion function discussed

in section 2.4.

To make the arithmetic operations of class Num applicable to power series, we

must declare power series (i.e. lists) to be an instance of class Num. Arithmetic must

already be defined on the list elements. The code looks like

instance Num a => Num [a] where

negate (f:fs) = (negate f) : (negate fs)

-- and definitions of other operations

The part before where may be read, ‘If type a is in class Num, then lists of type-a

elements are in class Num.’ After where come definitions for the class-Num operators

pertinent to such lists. The function negate and others will be described below;

the full set is gathered in the appendix. The types of the functions are all instances

of type schemas that have been given once for the class. In particular negate is

predeclared to be a function from some type in class Num to the same type.

1.3 Numeric constants

There is one more bit of Haskell-speak to consider before we address arithmetic.

Because we are interested in exact series, we wish to resolve the inherently ambiguous

type of numeric constants in favor of multiple-precision integers and rationals. To

do so, we override Haskell’s rule for interpreting constants, namely

default (Int, Double)

and replace it with

default (Integer, Rational, Double)

Now integer constants in expressions will be interpreted as the first acceptable

type in this default list. We choose to convert constants to Integer (unbounded

precision) rather than Int (machine precision) to avoid overflow. In Fractional

context constants become Rationals, whose precision is also unbounded. Thus the

numerator of 1/f will be taken to be Rational.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

328 M. D. McIlroy

2 Arithmetic

2.1 Additive operations

We have seen the definition of the simplest operation, negation:

negate (f:fs) = (negate f) : (negate fs)

The argument pattern (f:fs) shows that negate is being defined on lists, and

supplies names for the head and tail parts. The right side defines power-series

negation in terms of scalar negation (negate f), which is predefined, and recurrence

on the tail (negate fs). The definition depends crucially on lazy evaluation. While

defined recursively, negate runs effectively by induction on prefixes of the infinite

answer. Starting from an empty output it builds an ever bigger initial segment of

that answer.

Having defined negate, we can largely forget the word and instead use unary -,

which Haskell treats as syntactic sugar for negate.

Addition is equally easy. The mathematical specification,

F + G = (f + xF1) + (g + xG1) = (f + g) + x(F1 + G1),

becomes

(f:fs) + (g:gs) = f+g : fs+gs

2.2 Multiplication

Here the virtue of the stream approach becomes vivid. First we address multiplication

by a scalar, using a new operator. The left-associative infix operator (.*) has the

same precedence as multiplication:

infixl 7 .* -- same precedence as *

(.*):: Num a => a->[a]->[a] -- type declaration for .*

c .* (f:fs) = c*f : c.*fs -- definition of .*

The parentheses around .* in the type declaration allow it to be used as a free-

standing identifier. The declaration says that (.*) is a function of two arguments,

one a value of some numeric type a and the other a list whose elements have that

type. The result is a list of the same type.

From the general multiplication formula,

F × G = (f + xF1)× (g + xG1) = fg + x(fG1 + F1 × G),

we obtain this code:

(f:fs) * (g:gs) = f*g : (f.*gs + fs*(g:gs))

The cleanness of the stream formulation is now apparent. Gone is all the finicky

indexing of the usual convolution formula,(∞∑
i=0

fix
i

)(∞∑
i=0

gix
i

)
=

∞∑
i=0

xi
j=i∑
j=0

fjgi−j .

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 329

The complexity is hidden in an unseen tangle of streams. Gone, too, is overt concern

with storage allocation. The convolution formula shows that, although we may

receive terms one at a time, n terms of each series must be kept at hand in order

to compute the nth term of their product. With lazy lists this needed information is

retained automatically behind the scenes.

2.3 Division

The quotient, Q, of power series F and G satisfies

F = Q× G.
Expanding F , Q, and one instance of G gives

f + xF1 = (q + xQ1)× G = qG+ xQ1 × G = q(g + xG1) + xQ1 × G
= qg + x(qG1 + Q1 × G).

Whence

q = f/g,

Q1 = (F1 − qG1)/G.

(We have rediscovered long division.) When g = 0, the division can succeed only if

also f = 0. Then Q = F1/G1. The code is

(0:fs) / (0:gs) = fs/gs

(f:fs) / (g:gs) = let q = f/g in

q : (fs - q.*gs)/(g:gs)

2.4 ‘Constant’ series and promotion of constants

The code below defines two trivial, but useful, series. These ‘constant’ series are

polymorphic, because literal constants like 0 and 1 can act as any of several numeric

types.

ps0, x:: Num a => [a] -- type declaration

ps0 = 0 : ps0 -- power series 0

x = 0 : 1 : ps0 -- power series x

As a program, ps0 is nonterminating; no matter how much of the series has been

produced, there is always more. An invocation of ps0, as in x, cannot be interpreted

as a customary function call that returns a complete value. Stream processing or

lazy evaluation is a necessity.1

To allow the mixing of numeric constants with power series in expressions like 2F ,

we arrange for scalars to be coerced to power series as needed. To do so, we supply

a new meaning for fromInteger, a class-Num function that converts multiprecision

1 The necessity is not always recognized in the world at large. The MS-DOS imitation of Unix pipelines
has function-call rather than stream semantics. As a result, a pipeline of processes in DOS is useless
for interactive computing, since no output can issue from the back end until the front end has read all
its input and finished.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

330 M. D. McIlroy

Integers to the type of the current instance. For a number c to serve as a power

series, it must be converted to the list [c, 0, 0, 0, ...]:

instance Num a => Num [a] where

-- definitions of other operations

fromInteger c = fromInteger c : ps0

A new fromInteger on the left, which converts an Integer to a list of type-a

elements, is defined in terms of an old fromInteger on the right, which converts

an Integer to a value of type a. This is the only place we need to use the name

fromInteger; it is invoked automatically when conversions are needed.

2.5 Polynomials and rational functions

Subtraction and nonnegative integer powers come for free in Haskell, having been

predefined polymorphically in terms of negation, addition and multiplication. Thus

we now have enough mechanism to evaluate arbitrary polynomial expressions as

power series. For example, the Haskell expression (1-2*x^2)^3 evaluates to

[1, 0, -6, 0, 12, 0, -8, 0, 0, 0, ...]

Rational functions work, too: 1/(1-x) evaluates to (the rational equivalent of)

[1, 1, 1, ...]

This represents a power series, 1 + x + x2 + x3 + · · ·, that sums to 1/(1 − x) in its

region of convergence. Another example, 1/(1-x)^2, evaluates to

[1, 2, 3, ...]

as it should, since

1

(1− x)2
=

d

dx

1

1− x =
d

dx
(1 + x+ x2 + x3 + . . .) = 1 + 2x+ 3x2 + . . .

3 Functional composition

Formally carrying out the composition of power series F and G (or equivalently the

substitution of G for x in F(x)), we find

F(G) = f + G× F1(G) = f + (g + xG1)× F1(G) = (f + gF1(G)) + xG1 × F1(G).

This recipe is not implementable in general. The head term of the composition

depends, via the term gF1(G), on all of F; it is an infinite sum. We can proceed,

however, in the special case where g = 0:

F(G) = f + xG1 × F1(G).

The code, which neatly expresses the condition g = 0, is

compose (f:fs) (0:gs) = f : gs*(compose fs (0:gs))

(We can’t use Haskell’s standard function-composition operator because we have

represented power series as lists, not functions.)

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 331

3.1 Reversion

The problem of finding the functional inverse of a power series is called ‘reversion’.

There is considerable literature about it; Knuth (1969) devotes four pages to the

subject. Head-tail decomposition, however, leads quickly to a working algorithm.

Given power series F , we seek R that satisfies

F(R(x)) = x.

Expanding F , and then one occurrence of R, we find

F(R(x)) = f + R × F1(R) = f + (r + xR1)× F1(R) = x.

As we saw above, we must take r = 0 for the composition F1(R) to be implementable,

so

f + xR1 × F1(R) = x.

Hence f must also be 0, and we have

R1 = 1/F1(R).

Here R1 is defined implicitly: it appears on the right side hidden in R. Yet the

formula suffices to calculate R1, for the n-th term of R1 depends on only the first n

terms of R, which contain only the first n− 1 terms of R1. The code is

revert (0:fs) = rs where

rs = 0 : 1/(compose fs rs)

Reversion illustrates an important technique in stream processing: feedback. The

output rs formally enters into the computation of rs, but without infinite regress,

because each output term depends only on terms that have already been calculated.

Feedback is a leitmotif of section 4.1.

4 Calculus

Since d
dx
xn = nxn−1, the derivative of a power series term depends on the index of

the term. Thus, in computing the derivative we use an auxiliary function to keep

track of the index:

deriv (f:fs) = (deriv1 fs 1) where

deriv1 (g:gs) n = n*g : (deriv1 gs (n+1))

The definite integral,
∫ x

0
F(t)dt, can be computed similarly:

integral fs = 0 : (int1 fs 1) where

int1 (g:gs) n = g/n : (int1 gs (n+1))

4.1 Elementary functions via differential equations

With integration and feedback we can find power-series solutions of differential

equations in the manner of Picard’s method of successive approximations (Pontrya-

gin, 1962). The technique may be illustrated by the exponential function, exp(x),

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

332 M. D. McIlroy

which satisfies the differential equation

dy

dx
= y

with initial condition y(0) = 1. Integrating gives

y = 1 +

∫ x

0

y(t)dt.

The corresponding code is

expx = 1 + (integral expx)

Evaluating expx gives

[1%1, 1%1, 1%2, 1%6, 1%24, 1%120, 1%720, ...]

where % constructs fractions from integers. Notice that expx is a ‘constant’ series

like ps0, not a function like negate. We can’t call it exp, because Haskell normally

declares exp to be a function.

In the same way, we can compute sine and cosine series. From the formulas

d

dx
sin x = cos x, sin(0) = 0,

d

dx
cos x = − sin x, cos(0) = 1,

follows remarkable code:

sinx = integral cosx

cosx = 1 - (integral sinx)

Despite its incestuous look, the code works. The mutual recursion can get going

because integral produces a zero term before it accesses its argument.

The square root may also be found by integration. If Q2 = F , then

2Q
dQ

dx
= F ′

or
dQ

dx
=
F ′

2Q
,

where F ′ = dF/dx. When the head term f is nonzero, the head term of the square

root is f1/2. To avoid irrationals we take f = 1 and integrate to get

Q = 1 +

∫ x

0

F ′(t)dt
2Q(t)

.

If the first two coefficients of F vanish, i.e. if F = x2F2, then Q = xF
1/2
2 . In other

cases we decline to calculate the square root, though when f is the square of a

rational we could do so for a little more work. The corresponding program is

sqrt (0:0:fs) = 0 : (sqrt fs)

sqrt (1:fs) = qs where

qs = 1 + integral((deriv (1:fs))/(2.*qs))

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 333

Haskell normally places sqrt in type class Floating; the collected code in the

appendix complies. Nevertheless, when the square root of a series with rational

coefficients can be computed, the result will have rational coefficients.

5 Testing

The foregoing code is unusually easy to test, thanks to a ready supply of relations

among analytic functions and their Taylor series. For example, checking many terms

of sinx against sqrt(1-cosx^2) exercises most of the arithmetic and calculus

functions. Checking tan x, computed as sin x/ cos x, against the functional inverse

of arctan x, computed as
∫
dx/(1 + x2), further brings in composition and reversion.

The checks can be carried out to 30 terms in a few seconds. The expressions below

do so, using the standard Haskell function take. Each should produce a list of 30

zeros.

take 30 (sinx - sqrt(1-cosx^2))

take 30 (sinx/cosx - revert(integral(1/(1+x^2))))

6 Generating functions

A generating function S for a sequence of numbers, sn, is

S =
∑
n

xnsn.

When the sn have suitable recursive definitions, the generating function satisfies

related recursive equations (Burge, 1975). Running these equations as stream algo-

rithms, we can directly enumerate the values of sn. This lends concreteness to the

term ‘generating function’: when run as a program, a generating function literally

generates its sequence.

We illustrate with two familiar examples, binary trees and ordered trees.

Binary trees In the generating function T for enumerating binary trees, the coeffi-

cient of xn is the number of trees on n nodes. A binary tree is either empty or has

one root node and two binary subtrees. There is one tree with zero nodes, so the

head term of T is 1. A tree of n + 1 nodes has two subtrees with n nodes total; if

one of them has i nodes, the other has n − i. Convolution! Convolution of T with

itself is squaring, so T 2 is the generating function for the counts of n-node pairs of

trees. To associate these counts with n+ 1-node trees, we multiply by x. Hence

T = 1 + xT 2

The Haskell equivalent is

ts = 1 : ts^2

(The appealing code ts = 1 + x*ts^2 won’t work. Why not? How does it differ

from expx = 1 + (integral expx)?) Evaluating ts yields the Catalan numbers,

as it should (Knuth 1968):

[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...]

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

334 M. D. McIlroy

Ordered trees Consider next the generating function for nonempty ordered trees on

n nodes. An n + 1-node tree, for n >= 0, is made of a root and an n-node forest.

An n-node forest is a list of trees whose sizes sum to n. A list is empty or an

n + 1-item list made of a head item and an n-item tail list. From these definitions

follow relations among generating functions:

tree(x) = x forest(x)

forest(x) = list(tree(x))

list(x) = 1 + x list(x)

The first and third relations are justified as before. To derive the second relation,

observe that the coefficient of xk in treen tells how many n-component forests there

are with k nodes. Summing over all n tells how many k-node forests there are. But

list(tree), which is 1 + tree + tree2 + . . ., does exactly that summing. Composition of

generating functions reflects composition of data structures.

The code

tree = 0 : forest

forest = compose list tree

list = 1 : list

yields this value for tree:

[0, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...]

Catalan numbers again! The apparent identity between the number of binary trees

on n nodes and the number of nonempty ordered trees on n+1 nodes is real (Knuth,

1968): a little algebra confirms that tree = xT .

7 Final remarks

Stream processing can be beaten asymptotically if the goal is to find a given num-

ber of coefficients of a given series (Knuth, 1969). In particular, multiplication

involves convolution, which can be done faster by FFT. Nevertheless, stream pro-

cessing affords the cleanest way to manipulate power series. It has the advantage of

incrementality – one can decide on the fly when to stop. And it is compositional.

While a single reversion or multiplication is not too hard to program in a standard

language, the composition of such operations is a daunting task. Even deciding how

much to compute is nontrivial. How many terms are required in each intermediate

result in order to obtain, say, the first 10 nonzero coefficients of the final answer?

When can storage occupied by intermediate terms be safely reused? Such questions

don’t arise in the lazy-stream approach. To get 10 terms, simply compute until 10

terms appear. No calculations are wasted along the way, and intermediate values

neither hang around too long nor get discarded too soon.

In Haskell, the code for power-series primitives has a familiar mathematical look,

and so do expressions in the primitives. Only one language feature blemishes the code

as compared to the algebraic formulation of the algorithms. Type-class constraints

that allow only limited overloading compelled us to invent a weird new operator

(.*) and and to use nonstandard names like expx for standard series.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 335

In the interest of brevity, I have stuck with a bare-list model of power series.

However, the simple identification of power series with lists is a questionable pro-

gramming practice. It would be wiser to make power series a distinct type. To

preserve the readability of the bare-list model, we may define a power-series type,

Ps, with an infix constructor (:+:) reminiscent both of the list constructor (:) and

of addition in the head/tail decomposition F = f + F1. At the same time we may

introduce a special constructor, Pz, for power series zero. Use of the zero constructor

instead of the infinite series ps0 forestalls much bootless computation. Polynomial

operations become finite. Multiplication by a promoted constant becomes linear

rather than quadratic in the number of output terms.

The data-type declaration for this realization of power series is

infixr 5 :+: -- precedence like :

data Num a => Ps a = Pz | a :+: Ps a

Some definitions must be added or modified to deal with the zero constructor, for

example

instance Num a => Num Ps a where

Pz + fs = fs

fromInteger c = fromInteger c :+: Pz

Definitions for other standard operations, such as printing and equality comparison,

which were predefined for the list representation, must be given as well. Work-

ing code is deposited with the abstract of this paper at the journal’s web site,

http://www.dcs.gla.ac.uk/jfp.

The application of streams to power series calculations is a worthy addition to

our stock of canonical programming examples. It makes a good benchmark for

stream processing–simple to program and test, complicated in the actual running.

Pedagogically, it well illustrates the intellectual clarity that streams can bring to

software design. Above all, the method is powerful in its own right; it deserves to

be taken serious.

8 Sources

Kahn used a stream-processing system (Kahn and MacQueen 1977) for power-series

algorithms like those given here; the work was not published. Abelson and Sussman

(1985) gave examples in Scheme. McIlroy (1990) covered most of the ground in a less

perspicuous stream-processing language. Hehner (1993) demonstrated the technique

in a formal setting. Burge (1975) gave structural derivations for generating functions,

including the examples given here, but did not conceive of them as executable code.

Knuth (1969) and McIlroy (1990) gave operation counts. Karczmarczuk (1997)

showed applications in analysis ranging from Padé approximations to Feynman

diagrams.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

336 M. D. McIlroy

Acknowledgements

I am grateful to Phil Wadler for much generous and wise advice, and to Jon Bentley

for critical reading.

A Collected code

Source code is deposited with the abstract of this paper at:

http://www.dcs.gla.ac.uk/jfp.

import Ratio

infixl 7 .*

default (Integer, Rational, Double)

-- constant series

ps0, x:: Num a => [a]

ps0 = 0 : ps0

x = 0 : 1 : ps0

-- arithmetic

(.*):: Num a => a->[a]->[a]

c .* (f:fs) = c*f : c.*fs

instance Num a => Num [a] where

negate (f:fs) = (negate f) : (negate fs)

(f:fs) + (g:gs) = f+g : fs+gs

(f:fs) * (g:gs) = f*g : (f.*gs + fs*(g:gs))

fromInteger c = fromInteger c : ps0

instance Fractional a => Fractional [a] where

recip fs = 1/fs

(0:fs) / (0:gs) = fs/gs

(f:fs) / (g:gs) = let q = f/g in

q : (fs - q.*gs)/(g:gs)

-- functional composition

compose:: Num a => [a]->[a]->[a]

compose (f:fs) (0:gs) = f : gs*(compose fs (0:gs))

revert::Fractional a => [a]->[a]

revert (0:fs) = rs where

rs = 0 : 1/(compose fs rs)

-- calculus

deriv:: Num a => [a]->[a]

deriv (f:fs) = (deriv1 fs 1) where

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

Functional pearl 337

deriv1 (g:gs) n = n*g : (deriv1 gs (n+1))

integral:: Fractional a => [a]->[a]

integral fs = 0 : (int1 fs 1) where

int1 (g:gs) n = g/n : (int1 gs (n+1))

expx, cosx, sinx:: Fractional a => [a]

expx = 1 + (integral expx)

sinx = integral cosx

cosx = 1 - (integral sinx)

instance Fractional a => Floating [a] where

sqrt (0:0:fs) = 0 : sqrt fs

sqrt (1:fs) = qs where

qs = 1 + integral((deriv (1:fs))/(2.*qs))

-- tests

test1 = sinx - sqrt(1-cosx^2)

test2 = sinx/cosx - revert(integral(1/(1+x^2)))

iszero n fs = (take n fs) == (take n ps0)

main = (iszero 30 test1) && (iszero 30 test2)

References

Abelson, H. and Sussman, G. J. (1976) The Structure and Interpretation of Computer Programs.

MIT Press.

Burge, W. H. (1975) Recursive Programming Techniques. Addison-Wesley

Hehner, E. C. R. (1993) A Practical Theory of Programming. Springer-Verlag.

Kahn, G. and MacQueen, D. B. (1977) Coroutines and networks of parallel processes,

in Gilchrist, B. (ed.), Information Processing 77, pp. 993–998. North Holland. Volume 1,

2.3.4.4. Addison-Wesley.

Karczmarczuk, J. (1997) Generating power of lazy semantics. Theoretical Computer Science,

187, 203–219.

Knuth, D. E. (1968) The Art of Computer Programming, Volume 1, 2.3.4.4. Addison-Wesley.

Knuth, D. E. (1969) The Art of Computer Programming, Volume 2. Addison-Wesley.

McIlroy, M. D. (1990) Squinting at power series. Software–Practice and Experience, 20, 661–

683.

Pontryagin, L. S. (1962) Ordinary Differential equations. Addison-Wesley.

https://doi.org/10.1017/S0956796899003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003299

