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Wall-bounded turbulent shear flows are known to exhibit universal small-scale dynamics
that are modulated by large-scale flow structures. Strong pressure gradients complicate
this characterization, however. They can cause significant variation of the mean flow
in the streamwise direction. For such situations, we perform asymptotic analysis of
the Navier–Stokes equations to inform a model for the effect of mean flow growth
on near-wall turbulence in a small domain localized to the boundary. The asymptotics
are valid whenever the viscous length scale is small relative to the length scale over
which the mean flow varies. To ensure the correct momentum environment, a dynamic
procedure is introduced that accounts for the additional sources of mean momentum flux
through the upper domain boundary arising from the asymptotic terms. Comparisons of
the model’s low-order, single-point statistics with those from direct numerical simulation
and well-resolved large eddy simulation of adverse-pressure-gradient turbulent boundary
layers indicate the asymptotic model successfully accounts for the effect of boundary layer
growth on the small-scale near-wall turbulence.
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1. Introduction

High-Reynolds-number wall-bounded turbulent shear flows are characterized by a
separation of scales between the flow in the near-wall region, in which mean viscous
stresses play an important role, and the flow farther away from the wall, where mean
viscous effects are negligible. The friction Reynolds number Reτ = δ/δν quantifies this
separation of scales, where δ is the characteristic length scale of the shear layer, such as
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a channel half-width, a pipe radius or a boundary layer thickness, and δν = ν/uτ is the
viscous length scale, where ν is the kinematic viscosity of the fluid, uτ = √

τw/ρ, τw is
the mean wall shear stress and ρ is the fluid density. To simulate all the scales of motion
in a wall-bounded flow requires O(Re2.5

τ ) and O(Re2
τ ) spatial degrees of freedom for

direct numerical simulation (DNS) and large eddy simulation (LES), respectively (Mizuno
& Jiménez 2013). Even on modern high-performance computing systems, this cost is
prohibitively large for important atmospheric and aeronautical flows, for example, which
routinely occur at 104 � Reτ � 107 (Smits & Marusic 2013). Developing reduced order
models, such as wall-modelled LES, to overcome this challenge requires an understanding
of the mutual interactions between small- and large-scale motions in the outer and
near-wall regions.

Advances in computational power and experimental techniques have enabled a great
deal of insight into the inner/outer interactions for the canonical zero-pressure gradient
boundary layer and fully developed pipe and channel flows (Smits, McKeon & Marusic
2011). It is well established that there is an autonomous near-wall cycle of self-sustaining
mechanisms (Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995; Jeong et al.
1997), involving low and high speed streamwise velocity streaks and coherent structures
of quasi-streamwise vorticity. Jiménez & Pinelli (1999) showed that this cycle of
near-wall dynamics persists without any input from the turbulence farther away from
the wall. Large-scale motions, or superstructures, in the outer layer do indeed impact
the near-wall region, however. They modulate the turbulent velocity fluctuations and
superimpose their energy (Hutchins & Marusic 2007; Marusic, Mathis & Hutchins 2010a;
Ganapathisubramani et al. 2012), and their influence increases with Reτ (DeGraaff &
Eaton 2000). Spectral analysis of both channel (Lee & Moser 2019; Wang, Hu & Zheng
2021b) and boundary layer flow data (Samie et al. 2018) has demonstrated that, in
contrast, the dynamics of the small-scale motions in the near-wall region are universal. The
small-scale, high-wavenumber energy, as well as its production, dissipation and transport,
are independent of Reτ .

Based on this characterization of near-wall dynamics, Carney, Engquist & Moser (2020)
formulated numerical simulations on near-wall ‘patch’ (NWP) domains whose size scaled
in viscous units. Similar to the numerical experiments of Jiménez & Moin (1991) and
Jiménez & Pinelli (1999), the model used restricted domain sizes and, as in the latter,
manipulation of the turbulence outside of the near-wall region to simulate only the
autonomous dynamics over the range of scales at which they occur. The model reproduced
near-wall small-scale statistics obtained from DNS, confirming that the ‘universal signal’
described by Marusic, Mathis & Hutchins (2010b) and Mathis, Hutchins & Marusic (2011)
indeed arises from universal dynamics, independent of Reτ or external flow configuration.
As a computational model, the NWP defined a one-parameter family of turbulent flows
parameterized by the near-wall, viscous-scaled pressure gradient. Because of its ability to
reproduce a variety of well-known features of high Reτ wall turbulence at a computational
cost that is orders of magnitude less than DNS, the model offers a way to efficiently probe
the response of near-wall turbulence to changes in the mean momentum environment.

The NWP model was validated against DNS data from channel flows, featuring
mild favourable pressure gradients, and a zero-pressure-gradient (ZPG) boundary layer.
Because of their relevance to engineering applications, it is reasonable to ask if the NWP
model can adequately describe the near-wall, small-scale dynamics of flows with adverse
pressure gradients (APGs), especially APG boundary layers. Although the understanding
of scale interactions between inner and outer regions in APG boundary layers is less
complete than for ZPG flows, there has been much progress since the early experimental
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studies of Clauser (1954) and Bradshaw (1967) and numerical simulations of Spalart &
Leonard (1987) and Spalart & Watmuff (1993); see also references therein. More recent
experimental investigations include the works of Rahgozar & Maciel (2012), Harun et al.
(2013), Knopp et al. (2015), Knopp et al. (2017), Sanmiguel Vila et al. (2017, 2020) and
Romero et al. (2022). Previous large-scale simulations include DNS (Na & Moin 1998;
Skote & Henningson 2002; Gungor et al. 2016) and well-resolved LES (Hickel & Adams
2008) of separated boundary flows and a separated channel flow (Marquillie, Laval &
Dolganov 2008), while large-scale simulations of attached APG boundary layers have been
conducted by Lee & Sung (2009), Kitsios et al. (2017), Lee (2017) and Yoon, Hwang &
Sung (2018) using DNS, as well as by Inoue et al. (2013), Bobke et al. (2017) and Pozuelo
et al. (2022) using well-resolved LES. Simulations over complex airfoil geometries have
also been performed with both DNS (Hosseini et al. 2016) and well-resolved LES (Sato
et al. 2017; Tanarro, Vinuesa & Schlatter 2020).

One observation that has consistently emerged in the literature is that, even when mild
adverse pressure gradients energize the large-scale structures in both the outer layer and
the near-wall region of the boundary layer. The increased influence of the large scales
also results in increased modulation effects on the small scales (Harun et al. 2013; Lee
2017; Yoon et al. 2018), analogous to the effect of increasing Reτ in ZPG boundary layers.
Although APGs have been shown to energize the small-scale motions in the outer region
of a boundary layer (Sanmiguel Vila et al. 2020), less appears to be known about the
small-scale energy in the near-wall region. After filtering out contributions from spanwise
wavelengths λz/δν � 180, Lee (2017) found that the small-scale contribution to both
the streamwise velocity variance and the Reynolds shear stress increased with pressure
gradient, while Sanmiguel Vila et al. (2020) found that the small-scale contributions to
the streamwise velocity variance from motions with streamwise wavelengths λx/δν �
4300 was independent of the pressure gradient strength. One objective of the current
work is to use a near-wall patch computational model to investigate the extent to which
the small-scale, near-wall dynamics are responsible for the low order flow statistics
of adverse-pressure-gradient flows observed in experiments and large-scale simulations.
Since the NWP model simulates only the small-scale motions, isolated from large-scale
influences, any differences between its statistical profiles and those from DNS or
large-scale simulations can reasonably be attributed to the superposition and modulation
effects of the large-scale motions that are missing. In this way, the model is similar to the
computational ‘experiments’ of Jiménez & Moin (1991) and Jiménez & Pinelli (1999) in
which near-wall turbulence is artificially manipulated and compared to a ‘real’, unmodified
flow.

The near-wall patch model previously developed by Carney et al. (2020) can be
considered the lowest order asymptotic description of small-scale, near-wall dynamics
in which the mean pressure gradient, the momentum flux from the outer flow and the
mean wall shear stress are all uniform in time and space on the scale of the computational
domain. To account for the relatively rapid downstream development of mean quantities in
adverse-pressure-gradient boundary layers (Kitsios et al. 2017), we develop in the present
work a higher-order approximation that allows the mean wall shear stress to develop slowly
in the streamwise direction. Similar to Spalart (1988), Guarini et al. (2000), Maeder,
Adams & Kleiser (2001) and Topalian et al. (2017), asymptotic analysis is used to derive a
set of ‘homogenized’ equations that describe the mean effect of streamwise development
on the near-wall dynamics.

If such a higher order computational model can be shown to accurately reproduce the
near-wall, small-scale features of adverse-pressure-gradient flows, or, more generally, for
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flows that feature asymptotic growth of mean quantities in the near-wall region, it could be
used to inform a pressure-gradient dependent wall model for LES (Piomelli & Balaras
2002; Bose & Park 2018). In this setting, the model is a pressure-gradient-dependent
analogue to the experimentally determined ‘universal signal’ of Mathis et al. (2011).
Additionally, the model could be used to study the interaction between small-scale
near-wall turbulent dynamics and more complicated physical processes such as heat
transfer, chemical reactions, turbophoresis or surface roughness.

The rest of the paper is organized as follows. Section 2 motivates the slow-growth
near-wall patch (SG-NWP) model and contains the multiscale asymptotic analysis on
which the model is based. Section 3 then details the computational model and the
numerical method used to integrate the equations of motion. Section 4 provides a
comparison between the statistics generated by the model and the corresponding quantities
from DNS for the cases of both zero and mild adverse pressure gradients. It is followed by
a discussion and conclusions in §§ 5 and 6, respectively.

1.1. Mathematical notation and nomenclature
In the following discussion, the velocity components in the streamwise (x), wall-normal
(y) and spanwise (z) directions are denoted as u, v and w, respectively, and when
using index notation, these directions are labelled 1, 2 and 3, respectively. The expected
value is denoted with angle brackets (as in 〈·〉), and upper case U and P indicate the
mean velocity and pressure, so that 〈ui〉 = Ui. The velocity and pressure fluctuations
are indicated with primes, e.g. ui = Ui + u′

i. Partial derivatives shortened to ∂i signify
∂/∂xi, differentiation in the direction xi. The mean advective derivative is D(·)/Dt =
∂t(·)+ Uj∂j(·), where Einstein summation notation is implied. In general, repeated indices
imply summation, with the exception of repeated Greek indices. Lastly, the superscript ‘+’
denotes non-dimensionalization with the kinematic viscosity ν and the friction velocity uτ .

2. Motivation

2.1. Fundamental modelling assumptions
Intrinsic to the computational model is the assumption of a separation of temporal and
spatial scales between the small-scale turbulence arising from the autonomous near-wall
dynamics and the large-scale outer-layer turbulence; this separation of scales occurs
when the friction Reynolds number of the flow is asymptotically large. The near-wall
dynamics are thus considered to be in local equilibrium with both the pressure gradient and
momentum flux environment in which they evolve, as explored by Zhang & Chernyshenko
(2016) and Chernyshenko (2021). In the previous near-wall patch formulation of Carney
et al. (2020), it was further assumed these quantities were uniform in space and time on the
scale of the dynamics being simulated. In the current work, the assumption of a constant
pressure gradient is retained, however, the local mean wall shear stress is allowed to vary
slowly in the streamwise direction, which should allow for a higher order asymptotic
description of near-wall turbulence than before. In particular, it is assumed that the rate
of change of the viscous length scale is asymptotically small. Under these assumptions,
the near-wall model will be representative of a variety of flows that are not in equilibrium
overall, including those with non-constant pressure gradients. However, the modelling
approach breaks down, for example, for a boundary layer near separation; see § 5 for some
remarks on this case.
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Figure 1. Friction velocity uτ /uτ0 versus streamwise location xuτ0/ν for each case in table 1, where uτ0 is
the value of the friction velocity at the locations marked ‘×’. The dashed lines in panels (a) and (b) show
quadratic and linear least-squares approximations, respectively, while that in panel (c) shows a piecewise cubic
least-squares fit. (a) SJM-β0, (b) KS-β1 and (c) BVOS-β1.7.

2.2. Growth effects in the near-wall region of turbulent boundary layers
Consider a flat plate turbulent boundary layer that is homogeneous in the spanwise
direction and under the influence of a pressure gradient in the streamwise direction. Let
the pressure gradient be parameterized by

β = δ∗

τw

dP∞
dx

, (2.1)

which is the standard non-dimensional Clauser parameter, where δ∗ is the boundary layer
displacement thickness, τw is the mean shear stress at the wall and dP∞/dx is the far-field
pressure gradient with a unit density. For any β ∈ [0,∞), the boundary layer as a whole
will grow in the streamwise direction; a fortiori, so too will the near-wall region. Below we
make two observations about the effect this growth has on the near-wall region of turbulent
boundary layers (TBLs). These observations motivate the multiscale asymptotic analysis
that will inform the slow-growth near-wall patch model.

The first observation is that the near-wall region of TBLs grows more rapidly
with increasing β. As τw evolves downstream, so too does the viscous length scale
characterizing the local near-wall scaling. Figure 1 illustrates the streamwise evolution
of the friction velocity uτ for the three large-scale simulation cases considered throughout
this work, namely SJM-β0 (Sillero, Jiménez & Moser 2013), KS-β1 (Kitsios et al. 2017)
and BVOS-β1.7 (Bobke et al. 2017), labelled by the value of the Clauser parameter (2.1)
at the streamwise locations marked in each case by ‘×’ in the figure. Each friction velocity
and streamwise location is scaled by the kinematic viscosity and value of uτ at these
particular locations, denoted below by x̄.

As described in § 3, the model statistics are a function of the wall-normal direction
only; that is, statistics are homogeneous in the stream and spanwise directions. In contrast,
statistics of the TBLs to which the model is compared are only homogeneous in the
spanwise direction. Hence, comparisons can only be made at particular streamwise
locations x̄. For SJM-β0, x̄ is selected as the location with the largest value of Reτ
for which statistical profiles are reported, while x̄ is selected for the BVOS-β1.7 case
to maximize Reτ before boundary effects from the ‘fringe region’ used to periodically
match the TBL inlet and outlet profiles (Bobke et al. 2017) affect the statistics (this fringe
region corresponds to the locations in figure 1(c) where ∂uτ /∂x is positive). The reason
for maximizing Reτ is to make comparisons at locations where the modelling ansantz
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Large scale simulation Reτ β dP+/dx+ ε

SJM2000 1989.4 0 0 −2.985 × 10−7

KS-β1 184.6 1.02 5.503 × 10−3 −9.4303 × 10−6

BVOS-β1.7 760.1 1.72 8.981 × 10−3 −1.064 × 10−5

Table 1. Parameters from the large-scale simulations considered at the streamwise location marked ‘×’ in
figure 1.

just described in § 2.1 is most valid. Since both β and Reτ are approximately constant
throughout the domain for the KS-β1 simulation, x̄ is simply taken in the middle.

The rate of change of the friction velocity with respect to streamwise position x can
be used to define a length scale L that quantifies the streamwise distance over which the
near-wall region grows. Define L by

L−1 = 1
uτ

∂uτ
∂x
, (2.2)

where both uτ and ∂uτ /∂x are evaluated at x̄. Using also the viscous length scale lν at x̄,
define the non-dimensional asymptotic parameter

ε = lν
L

= ν

u2
τ

∂uτ
∂x
. (2.3)

The value of ε for each TBL case shown in figure 1 ranges from approximately 10−5 to
10−7, as listed in table 1. For SJM-β0 and KS-β1, the derivative ∂uτ /∂x is estimated by
differentiating a quadratic and linear least-squares approximation to uτ . The uτ data are
relatively noisy in the BVOS case, so the data are first filtered with a Savitzky–Golay
filter (Savitzky & Golay 1964) and it is then separately fit to a piecewise cubic spline
interpolant. The derivative ∂uτ /∂x is then taken to be the average of the derivatives of
these two approximations.

The dimensionless parameter ε is readily seen to be the (negative) streamwise rate of
change of the viscous length scale, and it can also be taken as the inverse Reynolds number
based on L and uτ ,

Reε = L/lν. (2.4)

The asymptotic analysis detailed in § 2.3 is then valid for asymptotically large Reε ; the
infinite Reε limit corresponds to zero-growth of the near-wall layer, e.g. in a channel or
pipe flow, while the vanishing Reε limit corresponds to boundary layer separation.

The second observation about growth effects in the near-wall region of TBLs is that
there is an increase in momentum flux towards the wall with increasing β; in particular,
the Reynolds shear stress increases in magnitude. To quantify this, consider the mean stress
balance in viscous units for a TBL with (locally) constant pressure gradient dP/dx:

1 + dP+

dx+ y+ = ∂U+

∂y+ − 〈u′v′〉+

−
∫ y+

0

(
U+ ∂U+

∂x+ + V+ ∂U+

∂s+ + ∂

∂x+ 〈u′u′〉+ − ∂2U+

∂x+∂x+

)
ds. (2.5)

Note that here s is just a dummy variable of integration. As dP+/dx+ increases, so too
must the mean total stress on the right-hand side of (2.5). Figure 2 illustrates this balance
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Figure 2. Contributions to the total stress (2.5) versus y+ for the (a) KS-β1 case and (b) BVOS-β1.7 case.
The black curves show the sum of all contributions, i.e. the right-hand side of (2.5).

for the two mild adverse-pressure-gradient TBL flows KS-β1 and BVOS-β1.7, where,
as before, quantities are scaled in viscous units at the locations marked ‘×’ in figure 1.
In addition to the Reynolds shear stress, the mean convective terms make a significant
contribution to the stress balance, even in the near-wall region y+ ≤ 300. In contrast, the
mean convective terms from SJM-β0 make a negligible contribution to the overall stress
balance (not shown). In all cases, the mean viscous and turbulent fluctuation growth terms
in (2.5) do not make a meaningful contribution to the total stress balance.

Large-scale numerical simulation of turbulent boundary layers properly account for
the effect of boundary layer growth on the near-wall region simply by computing
on domains that are sufficiently large. Clever ‘recycling’ and rescaling techniques
(Lund, Wu & Squires 1998; Colonius 2004; Araya et al. 2011; Sillero et al. 2013)
are typically used to increase size of the part of the domain containing ‘healthy’
turbulence (i.e. turbulence not impacted by inflow-outflow artefacts) while ensuring
the simulations remain computationally affordable. Spalart (1988), however, took an
alternative approach to achieve this goal. Assuming a scale separation between the size
of the boundary layer and the streamwise length over which it develops, asymptotic
analysis was used to determine a set of ‘homogenized’ equations of motion featuring the
standard Navier–Stokes equations augmented with additional terms modelling the effect
of boundary layer growth.

Inspired by the approach of Spalart (1988), we now describe a multiscale analysis to
build a near-wall patch representation of the near-wall, small-scale dynamics of turbulent
flows with asymptotically small ε. In this case, the separation of scales assumed in Spalart
(1988) is expected to be even stronger, since only the near-wall layer is of interest, in
contrast to the entire boundary layer.

2.3. Multiscale asymptotic analysis
The goal of the following analysis is to derive a set of equations for a near-wall patch
domain that can produce accurate near-wall statistics for spatially developing flows.

First, if the viscous length scale evolves over distances that are asymptotically large
relative to its local values, it is sensible to hypothesize a scaling relationship for the fluid
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velocity of the form

ui(x, y, z) = uτ (εx+)u+
i (x

+, y+, z+), (2.6)

where ε is the dimensionless order parameter (2.3) and u+
i is considered statistically

homogeneous in the stream and spanwise directions. This homogeneity will allow for
the use of periodic boundary conditions (and Fourier spectral discretizations) for the
near-wall patch domain, as done by Spalart (1988). The superscript ‘+’ here denotes
non-dimensionalization by the local viscous scale. Equation (2.6) is nothing but the
standard near-wall viscous scaling where the friction velocity evolves slowly in the
streamwise direction.

For some specific streamwise location x̄, let

lν := lν |x=x̄ (2.7)

denote the local viscous length scale, and let L be the length scale defined by (2.2); that is,
the inverse of the logarithmic derivative of uτ . For some given ε, define X = εx as well as
the new coordinates

(x, y, z) 
→ (x/lν, yuτ (X+)/ν, z/lν) =: (x+, η+, z+). (2.8)

Note that in the definition of η+, the argument in the friction velocity uτ is X+ = εx/lν =
x/L.

The plan now is to first transform the incompressible Navier–Stokes equations from
Cartesian to (x+, η+, z+) coordinates and then insert the scaling hypothesis (2.6) into the
result.

To transform the mass and momentum equations to the new coordinates (2.8), first note
that derivatives transform as

∂

∂x

→ 1/lν

∂

∂x+ + ε/lνη+ ∂ log(uτ )
∂X+

∂

∂η+ , (2.9)

∂

∂y

→ 1/lν(X+)

∂

∂η+ , (2.10)

∂

∂z

→ 1/lν

∂

∂z+ , (2.11)

where lν(X+) = ν/uτ (X+). Inserting the transformations in the continuity equation

∂ui

∂xi
= 0 (2.12)

gives

∂u
∂x+ + lν/lν(X+)

∂v

∂η+ + ∂w
∂z+ + εη+ ∂ log(uτ )

∂X+
∂u
∂η+ = 0. (2.13)

After additionally scaling by the viscous time scale at x̄

tν := ν

u2
τ

∣∣∣∣
x=x̄

, (2.14)
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the streamwise component of the momentum equation transforms to

lν/tν
∂u
∂t+

+ u
∂u
∂x+ + lν/lν(X+)v

∂u
∂η+ + w

∂u
∂z+ + εη+ ∂ log(uτ )

∂X+ u
∂u
∂η+

+ ∂p
∂x+ + εη+ ∂ log(uτ )

∂X+
∂p
∂η+ − ν/lν

∂2u
∂x+∂x+ − ν/lν

∂2u
∂z+∂z+

− νlν/l2ν(X
+)

∂2u
∂η+∂η+ − 2ενη+/lν(X+)

∂ log(uτ )
∂X+

∂2u
∂x+∂η+ = 0, (2.15)

where the O(ε2) terms have been dropped. Similar terms appear for the other components.
So far, the equations have simply been recast into new coordinates. In (2.15), the advective
derivative is on the first line while the pressure gradient is on the second; the viscous terms
are on both the second and third.

The next step is to hypothesize that the velocity and pressure fields scale with uτ (X+)
and u2

τ (X
+), respectively, as in (2.6). Using the superscript ‘+’ to denote this scaling, the

continuity equation (2.13) becomes

∂u+

∂x+ + lν/lν(X+)
∂v+

∂η+ + ∂w+

∂z+ + ε
∂ log(uτ )
∂X+

∂

∂η+ (η
+u+) = 0. (2.16)

Recall that the multiscale assumption underlying this analysis asserts that, at any given
streamwise location, the ε-dependent slow-growth terms evolve over asymptotically large
distances relative to the local viscous length scale; in particular then at x = x̄, (2.16)
simplifies to (

∂u+

∂x+ + ∂v+

∂y+ + ∂w+

∂z+

)
+ ε

∂

∂y+ ( y+u+) = 0, (2.17)

since at x = x̄,

∂ log(uτ )
∂X+ = lν

ε

∂ log(uτ )
∂x

(x̄) = 1 (2.18)

and lν(X+) = lν . Note that in (2.17), y+ denotes η+ at x̄. The same procedure of inserting
the scaling assumptions and insisting they hold at x = x̄ results in

∂u+
i

∂t+
+ u+ ∂u+

i
∂x+ + v+ ∂u+

i
∂y+ + w+ ∂u+

i
∂z+ + εu+ ∂

∂y+ ( y+u+
i )

+
(
∂p+

∂x+ + ε

(
y+ ∂p+

∂y+ + 2p+
))

δ1i + ∂p+

∂y+ δ2i + ∂p+

∂z+ δ3i

−
(

∂2

(∂x+)2
+ ∂2

(∂y+)2
+ ∂2

(∂z+)2

)
u+

i − 2ε
∂2

∂x+∂y+ (y
+u+

i ) = 0 (2.19)

for the ith component of the momentum equation; again the O(ε2) have been neglected.
Equation (2.19) contains O(ε) terms originating from convective, pressure and viscous

effects. Recall, however, that the contribution to the mean stress balance from the viscous
streamwise growth term (the final term in the integral in (2.5)) is negligible in the
adverse-pressure-gradient flows discussed in § 2.2. Hence, the O(ε) viscous terms are
dropped, as was done in Spalart (1988). Similarly, the O(ε) pressure terms are dropped,
since the pressure gradient is assumed to be constant over the length scales of the near-wall
patch domain (as mentioned in § 2.1). Thus, only the convective growth terms remain.
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Figure 3. A priori slow-growth approximation of (a) the mean wall-normal velocity V+ and (b) the stress
terms (2.23) and (2.24) for KS-β1 and BVOS-β1.7. The approximations are shown as solid lines, while the
quantities taken directly from the large-scale simulations are shown as dash–dotted lines.

Using index notation, the simplified momentum equation becomes

∂u+
i

∂t+
+ u+

j
∂u+

i

∂x+
j

+ ∂p+

∂x+
i

− ∂2u+
i

∂x+
j ∂x+

j
+ εu+ ∂

∂y+ (y
+u+

i ) = 0. (2.20)

For numerical purposes, it is useful to rewrite (2.20) in conservative form. Because of the
slow-growth contribution to the continuity equation (2.17), however, an additional O(ε)
convective term appears:

∂u+
i

∂t+
+ ∂

∂x+
j
(u+

i u+
j )+ ∂p+

∂x+
i

− ∂2u+
i

∂x+
j ∂x+

j
+ ε

(
u+u+

i + ∂

∂y+ (y
+u+u+

i )

)
= 0. (2.21)

Note that this multiscale analysis was carried out starting with the incompressible
Navier–Stokes equations in Cartesian coordinates written in convective form. If instead
one starts with the equations written in conservative form, makes the same coordinate
transformation (2.8) and scaling assuming (2.6), and retains only the O(ε) convective
terms, then (2.21) will result.

2.4. A priori test of SG model
From the scaling assumption (2.6), the velocity components u+

i are homogeneous in the
stream and spanwise directions. At statistical equilibrium, the slow-growth continuity
equation (2.17) then implies that

V+ = −εy+U+. (2.22)

Using data from the adverse-pressure-gradient simulations KS-β1 and BVOS-β1.7, one
can use (2.22) as an a priori test of the slow-growth asymptotics just detailed. In general,
the relationship (2.22) is expected to be relatively accurate close to the wall and at large
Reτ and large Reε , since it was derived under ‘slowly developing’ viscous scaling ansatz
(2.6).
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Slow-growth approximation of wall-bounded turbulence

Figure 3(a) illustrates that the expression on the right-hand side of (2.22) matches the
true wall-normal mean velocity V+ up to a relative error of at most 8.6 % for the KS-β1
case. The accuracy is not as high in the BVOS-β1.7 case; however, the V+ profile is
relatively noisy in this case. Since the NWP model detailed below aims to simulate wall
turbulence in the region y+ ∈ [0, 300], the profiles are shown in this range. In both cases,
the discrepancy between the wall-normal mean velocity and its approximation increases
for y+ � 300, since, at the relatively low values of Reτ at which the large-scale simulations
were conducted, wall scaling becomes inappropriate at relatively low values of y+.

Slow-growth approximations can also be evaluated a priori for the mean convection
terms which were shown in figure 2 to be important to the stress balance (2.5) of
adverse-pressure-gradient turbulent boundary layers in the near-wall region. Equation
(2.22) implies that, in viscous units, − ∫ y

0 V∂yU ds is approximated by

τ+
SG1 :=

∫ y+

0
εs+U+ ∂U+

∂s+ ds+, (2.23)

while the coordinate change (2.8) and scaling assumption (2.6) imply that in viscous units,∫ y
0 U∂xU ds is approximated by

τ+
SG2 :=

∫ y+

0
εU+ ∂

∂s+ (s
+U+) ds+. (2.24)

Figure 3(b) shows that (2.23) and (2.24) are indeed accurate a priori approximations of the
mean convection terms in the stress balance for the near-wall region y+ ≤ 300. The relative
errors are no larger than 9 %; the exception is approximation (2.23) for the BVOS-β1.7
case. It inherits the noise from the V+ profile and hence is not as accurate.

3. Model formulation

3.1. Mathematical formulation
The goal of the computational model is to simulate the small-scale turbulent dynamics in
the near-wall region as a function of an imposed gradient only in a small, rectangular
domain Ω = [0, Lx] × [0, Ly] × [0, Lz] localized to the boundary. In addition to the
physical wall at y = 0 where the no-slip condition is applied, the other computational
boundaries are non-physical and located where, in a large-scale simulation, there is a
region of chaotic nonlinear dynamics. At the sidewalls, periodic boundary conditions are
used. This is consistent with the main scaling assumption (2.6) underlying the multiscale
analysis in § 2.3, since the velocity fields evolved in time are assumed to be statistically
homogeneous in the stream and spanwise directions. Any statistical inhomogeneities are
modelled by O(ε) slow-growth terms. At the upper computational boundary y = Ly,
homogeneous Neumann and Dirichlet conditions are prescribed for the stream/spanwise
and wall-normal velocities, respectively. Since these conditions do not allow for any
momentum flux through the computational boundary, the model includes a ‘fringe region’
y ∈ [Ly/2, Ly] in which the flow is forced to provide the momentum that is transported
into the near-wall region (see figure 4 for an illustration). The forcing f is non-zero only
in the fringe region and, given a constant pressure gradient dP/dx, it injects momentum
in such a way that ensures that the model’s wall shear stress at statistical equilibrium is
unity, as in Carney et al. (2020). Because of the O(ε) slow-growth contributions to the
momentum equation derived in § 2.3, f is time-dependent; the precise details are given
after introducing the model equations of motion below.
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Constant, background −dP/dx ← Near-wall region

−dP/dx + f (y,t) ← ‘Fringe’ region

y = 0

y = Ly/2

y = Ly

Figure 4. The fluid is subject to periodic boundary conditions at the dash–dotted side walls, homogeneous
Dirichlet/Neumann conditions at the upper boundary y = Ly and the no-slip condition at the wall y = 0. In
addition to the constant pressure gradient assumed to be present in the near-wall layer, the model includes a
time-dependent, auxiliary forcing function f (depicted here at multiple realizations in time) in a ‘fringe region’
Ly/2 ≤ y ≤ Ly to make up for the momentum not transported at the computational boundary y = Ly.

The model equations of motion posed on the domain Ω are based on the slow-growth
continuity (2.17) and momentum equations, and (2.21) from the asymptotic analysis of
§ 2.3, and they are discretized in the statistically homogeneous stream and spanwise
directions with a Fourier–Galerkin method; however, there are a few differences in the
equations that govern the horizontal averages

ūi( y, t) = 1
Lx

1
Lz

∫ Lz

0

∫ Lx

0
ui(x, y, z, t) dx dz (3.1)

and the fluctuations u′
i = ui − ūi.

First, the (kx, kz) = (0, 0) Fourier mode of the streamwise velocity (ū) evolves according
to

∂ ū
∂t

+ ∂

∂y
uv + εL

(
uu + ∂

∂y
( yuu)

)
− ν

∂2ū
∂y2 = f − dP

dx
, (3.2)

which is simply the horizontal average of (2.21) (for i = 1) with additional forcing terms.
Here, f is the fringe-region forcing whose explicit form is detailed below, while dP/dx is
the constant pressure gradient driving the flow in the near-wall region. Equation (3.2) is
augmented with the no-slip condition at y = 0 and the homogeneous Neumann condition
∂yū = 0 at y = Ly. Note the parameter εL here necessarily has units of 1/length, which is
emphasized with the subscript ‘L’. After detailing the forcing f , εL will be related back to
the non-dimensional parameter (2.3).

Taking the horizontal average of the slow-growth continuity equation (2.17) gives

∂v̄

∂y
+ εL

∂

∂y
( yū) = 0, (3.3)

and the no-slip condition implies that v̄ = −εLyū, which is of course the analogue of the
relation (2.22).

In contrast to ū, the evolution equation for the mean spanwise velocity w̄ is not given by
the horizontal average of (2.21) for i = 3. Instead, the O(ε) contributions involving w̄ are
neglected, as in Spalart (1988). Using

u′w′ = uw − ūw̄, (3.4)

w̄ evolves as
∂w̄
∂t

+ ∂

∂y
vw + εL

(
u′w′ + ∂

∂y
( yu′w′)

)
− ν

∂2w̄
∂y2 = 0, (3.5)

with the no-slip condition and a homogeneous Neumann condition at y = 0 and y = Ly,
respectively. This can be justified by the fact that the mean spanwise velocity W = 0 in
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Slow-growth approximation of wall-bounded turbulence

each of the large-scale simulations listed in table 1; it does not grow. Moreover, numerical
stability issues can arise if one includes the O(ε) contributions involving w̄, since the
laminar equation for w̄,

∂w̄
∂t

− ν
∂2w̄
∂y2 = −εLūw̄, (3.6)

can exhibit exponential growth. Indeed, if εL < 0 (as is the case for each large-scale
simulation in table 1) and ū is frozen in time, then w̄ ∼ exp(−εLūt).

The Fourier modes (kx, kz) /=(0, 0) evolve as

∂ui

∂t
+ ∂

∂xj
(uiuj)+ εL

(
uui + ∂

∂y
( yuui)

)
+ ∂p
∂xi

− ν
∂2ui

∂xj∂xj
= 0, (3.7)

∂ui

∂xi
= 0, (3.8)

in which the O(ε) contribution to continuity is neglected, as in Spalart (1988). This
appears to be a sensible approximation for boundary layers with mild β values; recall
from figure 2 that the streamwise evolution of the turbulent kinetic energy made a
negligible contribution to the mean stress balances of the KS-β1 and BVOS-β1.7 flows
in the near-wall region. The slow-growth momentum equation (3.7) is augmented with the
no-slip condition ui = 0 at y = 0 and the no-flux conditions

v = 0,
∂u
∂y

= ∂w
∂y

= 0 at y = Ly. (3.9)

The model equations are solved numerically using the velocity-vorticity formulation of
Kim, Moin & Moser (1987), which is derived from (3.7) and (3.8) in the usual way (Lee
2015).

With all the equations of motion determined, the details of the forcing function f in
the mean streamwise evolution equation (3.2) can now be specified. Its role is to provide
momentum that will be transported to the near-wall region, and it is non-zero only in the
fringe region y > Ly/2. It is constructed in such a way that, for a given set of values dP/dx
and εL, the model’s equilibrium wall shear stress equals unity.

More specifically, from (3.2), the model’s mean streamwise stress balance is

τw + dP
dx

y = τmodel( y)+
∫ y

0
f ds, (3.10)

where, from the relation V = −εLyU (which follows from (3.3)), the model stress τmodel
is

τmodel( y) = ν
∂U
∂y

− 〈u′v′〉 − εL

(∫ y

0
[U2 + 〈u′u′〉] ds + y〈u′u′〉

)
. (3.11)

The no-flux boundary conditions imply that at y = Ly, (3.10) becomes∫ Ly

0
f dy = τw + dP

dx
Ly + εL

(∫ Ly

0
[U2 + 〈u′u′〉] dy + Ly〈u′u′〉|y=Ly

)
. (3.12)

If one then constrains f to satisfy∫ Ly

0
f dy = 1 + dP

dx
Ly + εL

(∫ Ly

0
[U2 + 〈u′u′〉] ds + Ly〈u′u′〉|y=Ly

)
, (3.13)
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Model case dP+/dx+ ε

NWP-ZPG 0 0
NWP-β1 5.503 × 10−3 0
NWP-β1.7 8.981 × 10−3 0
SG-NWP-ZPG 0 −2.985 × 10−7

SG-NWP-β1 5.503 × 10−3 −9.430 × 10−6

SG-NWP-β1.7 8.981 × 10−3 −1.064 × 0−5

Table 2. Imposed pressure gradient and slow-growth parameters for the model cases presented. Each value
was chosen to match the corresponding one from the large-scale simulations listed in table 1.
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Figure 5. For each case in table 1, the model stress τ+
model( y+) (equation (3.11)) agrees with the target

stress profile τ+
target( y+) = 1 + y+dP+/dx+ for y+ ∈ [0, 300], while in the fringe region y+ ∈ [300, 600], the

primitive F+( y+) of the forcing function f supplies momentum flux so that τ+
model( y+)+ F+( y+) agrees

with the target stress throughout the entire domain y+ ∈ [0, 600]. (a) SG-NWP-ZPG, (b) SG-NWP-β1 and
(c) SG-NWP-β1.7.

the desired result τw = 1 will follow. Assuming ergodicity, the identity

〈A〉 = 〈Ā〉 (3.14)

is true for any field A. Hence, if at each point in time∫ Ly

0
f ( y, t) dy = 1 + dP

dx
Ly + εL

(∫ Ly

0
uu( y, t) dy + Ly u′u′(Ly, t)

)
(3.15)

holds, then (3.13) will result at equilibrium. The functional form of f is described in § 3.3.
If one additionally sets the kinematic viscosity ν = 1, then at equilibrium the model is
scaled in viscous units, and the parameter εL reduces to the non-dimensional ε introduced
in (2.3).

3.2. Physical parameters
Each slow-growth near-wall patch model case is parameterized by two inputs; they are
the constant mean pressure gradient scaled in wall units dP+/dx+ and the asymptotic
growth parameter ε given by (2.3). The values for the various model cases presented –
two adverse-pressure-gradient cases and one zero-pressure-gradient case – are shown in
table 2. Note that for each pressure gradient value, there is a model case both with (ε /= 0)
and without (ε = 0) growth effects included. Figure 5 illustrates the statistically converged
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Slow-growth approximation of wall-bounded turbulence

L+
x = L+

z L+
y Nx Nz Ny �x+ �z+ �y+

w

1500 600 120 256 192 12.5 5.86 0.002817

Table 3. Summary of simulation parameters consistent for all simulation cases; Nx and Nz refer to the number
of Fourier modes, while Ny is the number of B-spline collocation points. Here, �x = Lx/Nx and similarly for
�z, and �yw is the collocation point spacing at the wall.

stress balances for the three slow-growth model cases. As the imposed pressure gradient
dP+/dx+ increases, the total momentum transport in the near-wall region increases, as
noted in § 2.2.

3.3. Computational parameters and numerical implementation
The remaining model parameters, consistent for all simulation cases, are summarized in
table 3 and are identical to those used by Carney et al. (2020). In particular, the size of the
rectangular domain Ω is taken to be L+

x = L+
z = 1500 and L+

y = 600, selected based on
the spectral analysis of Lee & Moser (2019). Their work suggests that, at least for the mild
favourable-pressure-gradient cases considered, the contributions to the turbulent kinetic
energy from modes with wavelengths λ+ < 1000 are universal and Reτ independent in the
region y+ � 300. Accordingly, L+

y is taken to be 2 × 300 = 600 to allow for a sufficiently
large fringe region to mollify the effect of the non-physical computational boundary at
y = Ly (see figure 4). The values L+

x = L+
z = 1500 were chosen because they were found

to be the smallest domain sizes capable of reproducing the universal small-scale turbulent
kinetic energies identified in the channel flow simulations of Lee & Moser (2019) (see
§ 3.3 of Carney et al. 2020). The majority of statistics reported in this work were from
simulations with these stream and spanwise dimensions; however, a range of values larger
than 1500 were also explored to assess the dependence of the model statistics on the
choice of Lx and Lz. In general, the statistics generated from these simulations exhibit
little to no variation as the domain sizes grow. The streamwise and spanwise velocity
variances are two exceptions to this, however. As discussed more fully in § 4.2, these
statistics are known to be influenced by low-wavenumber, large-scale structures present
in direct numerical simulations. As the NWP domain sizes grow, more of these large-scale
structures are included, and hence the stream/spanwise velocity variances continually
change with increasing Lx and Lz. The results are documented in the Appendix.

For a given selection of model parameters (dP+/dx+, ε), the forcing function f
responsible for providing momentum flux to the near-wall region is constrained at each
time step to satisfy (3.15); otherwise, however, it is not uniquely specified. For the
simulations reported here, f is taken to be f ( y, t) = ψ(t)g( y), where g is a piecewise
cubic function

g( y) =
{

4/L4
y(Ly − 2y)2(5Ly − 4y) y ∈ [Ly/2, Ly]

0 y ∈ [0, Ly/2]
, (3.16)

which satisfies ∫ Ly

Ly/2
g( y) dy = 1, (3.17)

and g(Ly/2) = g′(Ly/2) = g′(Ly) = 0, so that the transition in forcing from the near-wall
region to the fringe region is smooth. In general, other function forms for g are of course
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Figure 6. Statistical convergence for the slow-growth model cases listed in table 2: solid lines, absolute error
|τ+

model( y+)− τ+
target( y+)|, where τmodel is defined in (3.11) and τtarget = τw + y dP/dx; dash–dotted lines,

standard deviation of the estimated statistical error for τ+
model in the region y+ ∈ [0, 300]. (a) SG-NWP-ZPG,

(b) SG-NWP-β1 and (c) SG-NWP-β1.7.

possible and, in particular, a quadratic profile satisfying (3.17) and g(Ly/2) = g′(Ly/2) =
0 was also implemented with no discernible changes in the statistics in the near-wall region
y+ ∈ [0, 300]. The time-dependent function ψ is defined as

ψ(t) = 1 + dP
dx

Ly + εL

(∫ Ly

0
uu( y, t) dy + Lyu′u′(Ly, t)

)
, (3.18)

which is simply the right-hand side of the forcing constraint (3.15). Together, (3.17) and
(3.18) ensure that the constraint (3.15) indeed holds.

As mentioned in § 3.1, the model is solved numerically using the velocity-vorticity
formulation of Kim et al. (1987). The numerical method is identical to that employed
by Carney et al. (2020) and Lee & Moser (2015), that is, a Fourier–Galerkin method
and a seventh-order B-spline collocation method for the stream/spanwise directions and
wall-normal direction, respectively. The equations of motion are integrated in time with
a low-storage, third-order Runge–Kutta (RK) method that treats diffusive terms implicitly
and convective terms explicitly (Spalart, Moser & Rogers 1991). Note that the forcing term
f ( y, t) in the evolution equation (3.2) for ū is a nonlinear (and non-local) expression, and
it is thus treated explicitly in the RK scheme, like the other nonlinear terms.

The computational resolution in both time and space is chosen to be consistent with
that of channel flow DNS. The number of Fourier modes (and corresponding effective
resolutions) used in each model simulation are listed in table 3. They are comparable with,
for example, the parameters listed in table 1 of Lee & Moser (2015). Additionally, the
collocation point spacing in the wall-normal direction is similar to previous DNS studies;
the total number of collocation points Ny below y+ = 600, as well as their distribution
�y+ in the near-wall region, are taken to be equal to the Reτ = 1000 case of Lee & Moser
(2015). As done by Carney et al. (2020), the model is implemented in a modified version
of the PoongBack DNS code (Lee, Malaya & Moser 2013; Lee et al. 2014).

3.4. Statistical convergence
The method of Oliver et al. (2014) is used to assess the uncertainty in the statistics reported
due to sampling error. For each (dP+/dx+, ε) case listed in table 2, the statistics are
collected by averaging in time until the estimated statistical uncertainty in the total model
stress profile τmodel( y) (see (3.11)) is less than a few per cent. Figure 6 shows that the
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sampling error |τ+
model( y+)− τ+

target( y+)| (where τtarget( y) = τw + y dP/dx) is no larger
than three per cent for each SG model case and, in particular, the errors are smaller than
the uncertainties; the errors are similarly small for the ε = 0 cases (not displayed).

4. Numerical results

Based on the underlying scale separation assumptions, the SG-NWP model can be
interpreted in one of two complementary ways. In the first, one considers it to be a
model for the small-scale near-wall turbulence in a wall-bounded flow with: (i) mean
pressure gradient in wall units dP+/dx+ and (ii) rate of change of the viscous length
scale ε identical to those imposed in the model. In this case, one aspires to have the
statistics from the model agree with those of the real flow at some fixed streamwise
location. Ideally, this match is exact for quantities that are insensitive to the unrepresented
large-scale motions, while for others, the match holds after applying a high-pass filter,
for example, for the streamwise velocity variance, as done by Lee & Moser (2019). This
is the interpretation explored in the results reported here. In the second interpretation,
the SG-NWP model represents the small-scale near-wall turbulence in a region of real
wall-bounded turbulent flow with local (i.e. scaled with the local wall shear stress) values
of dP+/dx+ and ε the same as those imposed in the model. In this case, the SG-NWP
model is analogous to the universal signal of Mathis et al. (2011), representing the
process that is modulated by large-scale outer-layer fluctuations in a real turbulent flow,
and it is compatible with the quasi-steady, quasi-homogeneous description of the scale
interactions in near-wall turbulence (Zhang & Chernyshenko 2016; Chernyshenko 2021).
It is this second interpretation where one could potentially employ the model to inform a
pressure-gradient-dependent wall-model for an LES, for example.

The statistics reported here were computed from SG-NWP model cases with three
different pressure gradient values; for each value, a separate simulation with ε = 0
was also conducted to help understand the impact of asymptotic slow-growth effects.
The model statistics are compared with the three large-scale simulation cases described
at the beginning of § 2.2: the zero-pressure-gradient case SJM-β0, as well as the
adverse-pressure-gradient cases KS-β1 and BVOS-β1.7. The corresponding model cases
are thus referred to as SG-NWP-ZPG, SG-NWP-β1 and SG-NWP-β1.7 (ε /= 0), and
NWP-ZPG, NWP-β1 and NWP-β1.7 (ε = 0). The pressure gradients imposed in the
model correspond to the local values scaled in viscous units of the large-scale simulations
at the streamwise location marked ‘×’ in figure 1, and the model’s wall-normal statistical
profiles are compared with those of the large-scale simulations at these streamwise
locations. All model cases are summarized in table 2.

4.1. Mean velocity and shear stresses
Because the Reynolds stress of a zero-pressure-gradient boundary layer is dominated by
small-scale near-wall turbulent fluctuations and growth effects are relatively insignificant,
the mean velocity and Reynolds shear stress profiles from the NWP-ZPG model case are
in excellent agreement with the corresponding DNS profiles (Carney et al. 2020). The
O(ε) terms included in the SG-NWP-ZPG case only enhance the agreement; in particular,
there is a modest improvement in the Reynolds stress profile for y+ ∈ [100, 300] from the
NWP-ZPG case that reduces the maximum relative error from 4 % to 1.3 %, as shown in
figure 7(c). The slow-growth terms seem to not have an effect on the mean velocity U+, as
the NWP-ZPG and SG-NWP-ZPG profiles are nearly identical. In both cases, the relative
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Figure 7. (a) Mean velocity U+, (b) indicator function γ+ = y+∂U+/∂y+ and (c) Reynolds stress 〈u′v′〉+
versus y+ for the zero-pressure-gradient simulation cases. The vertical, black dash–dotted lines mark the
beginning of the fringe region y+ = 300, and the law-of-the-wall U+ = y+ and U+ = (1/κ) log( y+)+ B is
also marked with a red dash–dotted line in panel (a), where κ = 0.384 and B = 4.27 (Lee & Moser 2015).
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Figure 8. (a) Mean velocity U+, (b) indicator function γ+ = y+∂U+/∂y+ and (c) Reynolds stress 〈u′v′〉+
versus y+ for the adverse-pressure-gradient simulation cases. The vertical, black dash–dotted lines mark the
beginning of the fringe region y+ = 300, and the law-of-the-wall U+ = y+ and U+ = (1/κ) log( y+)+ B is
also marked with a red dash–dotted line in panel (a), where κ = 0.384 and B = 4.27 (Lee & Moser 2015).

error in U+ is less than 0.6 % for y+ ∈ [0, 300], and the error is similarly small for the
log-law indicator function γ+,

γ+( y+) = y+ ∂U+

∂y+ , (4.1)

in the range y+ ∈ [0, 100]. However, in both cases, there is mild disagreement of γ in the
range y+ ∈ [100, 300]. As expected, the profiles diverge for y+ > 300; recall that 〈u′v′〉
necessarily vanishes as a consequence of the v = 0 condition posed (for Fourier modes
(kx, kz) /=(0, 0)) at the upper computational boundary y = Ly.

Since growth effects fundamentally alter the balance of momentum transport in the
near-wall region for adverse-pressure-gradient boundary layers (recall figure 2), the model
cases NWP-β1 and NWP-β1.7 that do not account for these effects are not expected
to accurately reproduce the Reynolds shear stress profiles from the corresponding DNS
and wall-resolved (WR)LES cases KS-β1 and BVOS-β1.7. Figure 8 indeed shows that
this is the case; when ε = 0, the model severely overestimates the target profiles for
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y+ ∈ [70, 300]. Including the O(ε) terms from the slow-growth analysis, however, leads
to a significant improvement, as the SG-NWP-β1 and SG-NWP-β1.7 model cases both
have a maximum error of approximately 9 % and 7 %, respectively, for y+ ∈ [0, 300]. This
remarkable improvement demonstrates that the SG-NWP model’s O(ε) terms, as well as
the forcing function f in the fringe-region 300 ≤ y+ ≤ 600, provide a good approximation
of the momentum transport environment present in real, spatially developing wall-bounded
turbulent flows with mild adverse pressure gradients.

Similar to the zero-pressure-gradient case, the mean velocity and log-law indicator
profiles for the adverse-pressure-gradient model flows are essentially identical whether
or not slow-growth effects are included. For all four adverse-pressure-gradient model
cases, the relative error in the mean velocity profile U+ is less than 6 % in the near-wall
region y+ ∈ [0, 300]. The error in the log-law indicator function γ+ is similarly small for
y+ ∈ [0, 80], while each model case underpredicts γ for y+ ∈ [80, 300]. However, this
underprediction appears to be slightly worse for the SG-NWP cases than for those with
ε = 0. From the mean stress balance (3.10), for ε = 0, overprediction of the Reynolds
shear stress implies underprediction of the mean viscous stress, however, the slow-growth
terms present in (3.10) appear to be responsible for the underprediction when ε /= 0, given
that the Reynolds stress is more accurate. As discussed in § 2.1, it is expected that the
accuracy of the model would increase in the region y+ ∈ [80, 300] if it were compared
with a DNS/WRLES flow at the same pressure gradient dP+/dx+ and growth parameter
ε but larger Reτ .

4.2. Velocity variances
For a wall-bounded flow in a full size domain, the low-wavenumber contributions to the
Reynolds stress represent the mean influences of the large-scale structures on the near-wall
dynamics. It is well established that for channel and zero-pressure-gradient boundary layer
flows, these low-wavenumber features of the near-wall flow depend on Reτ (Hutchins
& Marusic 2007; Marusic et al. 2010a; Lee & Moser 2017; Samie et al. 2018; Lee &
Moser 2019). Their contribution to the turbulent kinetic energy and their modulation of
the small-scale, high-wavenumber energy both increase with increasing Reτ . Experimental
(Harun et al. 2013; Sanmiguel Vila et al. 2017, 2020) and computational (Lee 2017; Yoon
et al. 2018; Tanarro et al. 2020; Pozuelo et al. 2022) studies have demonstrated that a
similar result holds for adverse-pressure-gradient boundary layers; increasing the pressure
gradient parameter β leads to a significant enhancement of the large-scale energy, both in
the outer layer and in the near-wall region.

The SG-NWP model, by design, cannot accurately represent these large-scale structures,
as it instead seeks to isolate the dynamics of the near-wall small-scales associated
with the autonomous cycle of Jiménez & Pinelli (1999) from their influence. Since the
stream and spanwise velocity variances in both the zero and adverse-pressure-gradient
boundary layers considered here are known to depend on low-wavenumber contributions,
the corresponding model profiles are not expected to be accurate. Figure 9 shows this is
indeed the case. Although both the NWP-ZPG and SG-NWP-ZPG 〈u′u′〉 profiles appear
to be in excellent agreement with the corresponding profile from Sillero et al. (2013),
this is a serendipitous coincidence. For an experiment or simulation at a larger Reτ , the
streamwise velocity variance will grow (see figure 2 of Samie et al. (2018), for example),
but it will be modelled by a similar SG-NWP flow; although ε may differ slightly, the
pressure gradient will be the same. Similarly, at first glance, the model 〈u′u′〉 profiles in
the adverse-pressure-gradient cases (figure 9d– f ) are seen to be significantly larger than
their large-scale simulation counterparts. However, it should be noted that the KS-β1 and
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Figure 9. Velocity variances 〈u′
αu′
α〉 versus y+ for (a–c) zero-pressure-gradient and (d– f )

adverse-pressure-gradient simulations. The vertical, black dash–dotted lines mark the beginning of the
fringe region y+ = 300.

BVOS-β1.7 simulations are at relatively low Reτ (see table 1); at fixed β values but larger
Reτ , the profiles would be larger (Sanmiguel Vila et al. 2020; Pozuelo et al. 2022).

In contrast to the stream and spanwise velocity variances, the impact of large-scale
motions on the wall-normal velocity variance for zero and adverse-pressure-gradient
boundary layers is less well documented. For channel flows, Lee & Moser (2019)
established that the 〈v′v′〉 energy density in the near-wall region is concentrated primarily
at wavelengths less than 1000 in viscous units, and hence the near-wall patch profiles
from Carney et al. (2020) were indeed in agreement with those from large-scale
simulations. Figure 9 suggests a similar result holds true for the near-wall region of
adverse-pressure-gradient boundary layers. Although the agreement is not as good as the
zero-pressure-gradient cases, the SG-NWP model 〈v′v′〉 profiles compare reasonably well
with the KS-β1 and BVOS-β1.7 data; the maximum relative error for y+ ∈ [0, 300] is
14 % and 8.5 %, respectively. The NWP model without slow-growth effects, however,
overpredicts the adverse-pressure-gradient wall-normal velocity variance, similar to the
Reynolds shear stress profiles, illustrating the impact of the streamwise development of
the mean wall shear stress τw on the near-wall turbulent kinetic energy.

4.3. Small-scale turbulent kinetic energy
Universal small-scale dynamics in the near-wall region associated with the autonomous
cycle of Jiménez & Pinelli (1999) have been identified in channels (Lee & Moser 2019) and
zero-pressure-gradient boundary layers (Samie et al. 2018) by applying a high-pass filter to
the energy spectral density. Increases in the near-wall, small-scale energy have also been
reported in adverse-pressure-gradient boundary layers due to amplitude modulation effects
(Harun et al. 2013; Lee 2017; Yoon et al. 2018). Sanmiguel Vila et al. (2020) explicitly
computed small-scale contributions to the near-wall turbulent kinetic energy. Using a
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Figure 10. High-pass filtered velocity variances 〈u′
αu′
α〉SS versus y+ for each model case listed in table 2. The

vertical, black dash–dotted lines mark the beginning of the fringe region y+ = 300.

cutoff wavelength of λ+x ≈ 4300, they found a collapse in the peak of the small-scale
contribution to 〈u′u′〉+ at y+ ≈ 15 for a range of β values from 0 to approximately 2.2.
In contrast, Lee (2017) found that the small-scale contributions to the streamwise velocity
variance increased with the pressure gradient, however, this result was based on a much
more restrictive high-pass filter; all contributions from spanwise wavelengths λ+z � 180
were filtered out. Using the same filter as Carney et al. (2020) defined by (4.2) below,
the small-scale near-wall energy from SG-NWP flows is found to increase with increasing
pressure gradient, in agreement with the conclusion of Lee (2017).

Carney et al. (2020) directly compared the near-wall patch model’s high-pass filtered
Reynolds stress to the filtered profiles of several channel flow DNS of Lee & Moser (2019).
After filtering out contributions from wavemodes that do not satisfy

min{|kx|, |kz|} > kcut, (4.2)

where kcut = 2π/λcut and λ+cut = 1000, the model’s Reynolds stress profiles were in
close agreement with the filtered DNS profiles, indicating the NWP model successfully
reproduces the universal small-scale dynamics. Although the high-pass filtered Reynolds
stresses of the present slow-growth NWP model cannot be directly compared with data
from the literature, we report them here nonetheless to illustrate the effect of pressure
gradient and growth on the small-scale energies.

Let K denote the set of all wavenumbers included in an SG-NWP simulation, and let
k = 2π/λcut with λ+cut = 1000 as just mentioned. Define KSS to be the subset of K with
the property that (kx, kz) ∈ KSS if (4.2) holds. If Eij denotes the Fourier transform of the
two point correlation tensor

Rij(rx, y, rz) = 〈u′
i(x + rx, y, z + rz)u′

j(x, y, z)〉 (4.3)

in the variables rx and rz, then the small-scale energies shown in figure 10 are defined to
be

〈u′
iu

′
j〉SS( y) =

∑
(kx,kz)∈KSS

Eij(kx, y, kz). (4.4)

It is clear that for each component 〈u′
αu′
α〉, the model’s near-wall, small-scale energy

increases as the pressure gradient dP+/dx+ increases, whether or not slow-growth
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effects are included. The agreement between simulations with and without O(ε) terms is
particularly strong for the streamwise small-scale energy in the region y+ � 50, suggesting
that the increase in small-scale, near-wall energy in this region can be attributed solely to
the adverse-pressure-gradient effects, and not to growth effects.

4.4. Turbulent kinetic energy budget
The mean dynamics of the turbulent kinetic energy k = u′

iu
′
i/2 are governed by the

turbulent kinetic energy (TKE) budget equation

D〈k〉
Dt

= −

Pk︷ ︸︸ ︷
〈u′

iu
′
j〉
∂Ui

∂xj
−

Tk︷ ︸︸ ︷
∂〈ku′

j〉
∂xj

+

Dk︷ ︸︸ ︷
ν
∂2〈k〉
∂xj∂xj

−

Υk︷ ︸︸ ︷
∂〈 p′u′

j〉
∂xj

−

εk︷ ︸︸ ︷
ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
. (4.5)

For a wall-bounded turbulent flow that is homogeneous in the spanwise direction and
slowly developing in the streamwise direction, one can derive a ‘slow-growth’ version
of (4.5) using the same multiscale asymptotic analysis outlined in § 2.3; namely, one
transforms x and y according to (2.8) and then inserts the scaling ansatz (2.6) into the
resulting equation. The resulting ‘slow-growth’ TKE budget equation can be shown to be

SG Adv.︷ ︸︸ ︷
2ε〈k〉+U+ = −

P+
k,SG︷ ︸︸ ︷(

〈u′v′〉+ ∂U+

∂y+ + ε
∂

∂y+ ( y+U+)[〈u′u′〉+ − 〈v′v′〉+]
)

−

T+
k,SG︷ ︸︸ ︷(

∂

∂y+ 〈kv′〉+ + 3ε〈ku′〉+ + ε y+ ∂

∂y+ 〈ku′〉+
)

−

Υ +
k,SG︷ ︸︸ ︷(

∂

∂y+ 〈 p′v′〉+ + 3ε〈 p′u′〉+ + ε y+ ∂

∂y+ 〈 p′u′〉+
)

+

D+
k,SG︷ ︸︸ ︷

∂2

(∂y+)2
〈k〉+ −

ε+k,SG︷ ︸︸ ︷〈
∂u′

i
∂xj

∂u′
i

∂xj

〉+
, (4.6)

where the O(ε2) contributions are neglected. If one alternatively starts with the
slow-growth continuity (2.17) and momentum (2.19) equations from § 2.3 and derives an
equation governing the dynamics of 〈u′

iu
′
i〉+/2 in the standard way, then, modulo O(ε2)

terms, nearly the same exact equation will result. The only difference is that, in this latter
derivation, an extra O(ε) correction to the dissipation εk appears that is not present in (4.6).
The term is proportional to y〈u′

i∂x∂yu′
i〉 and arises from the O(ε) viscous term in (2.19).

Because the SG-NWP model momentum equation (3.7) neglects some of the O(ε) terms
that arise from the asymptotic analysis in § 2.3, there are some discrepancies between
(4.6) and the model’s TKE budget equation. In particular, there are discrepancies in the
production Pk,SG, as well as the turbulent and pressure transport terms Tk,SG and Υk,SG.
Although the errors introduced by these discrepancies are in each case relatively small,
they are documented below when comparing the model’s TKE budget to those of the
large-scale simulations.
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Figure 11. (a,c) Production of TKE versus y+, where the results from the large-scale simulations display P+
k

from (4.5), while the model results display the sum of P+
k,SG from (4.6) and (4.8); (b,d) Dissipation of TKE

versus y+. For both quantities, the ZPG and APG flows are displayed in panels (a,b) and (c,d), respectively.
The vertical, black dash–dotted lines mark the beginning of the fringe region y+ = 300.

First, since the mean advection U+∂+
x 〈k〉+ + V+∂+

y 〈k〉+ from the large-scale
simulations and the slow-growth advection

2ε〈k〉+U+ (4.7)

from the NWP model cases have a maximum value no larger than 10−3, they are not plotted
here.

For the production Pk,SG, the inconsistency between the continuity equations (2.17) and
(3.8) leads to some ‘spurious’ O(ε) production terms for the SG-NWP model given by

P+
k,spur = ε

(
U+〈u′u′〉+ + 1

2
y+U+ ∂

∂y+ 〈u′u′〉+
)
. (4.8)

Figure 11(a,c) displays P+
k from (4.5) for the large-scale simulation cases, and the sum of

P+
k,SG from (4.6) and the spurious production (4.8) for the SG-NWP flows. Note that for

the zero and adverse-pressure-gradient flows considered in this work, production is due
almost exclusively to the product of ∂U/∂y and the Reynolds shear stress. For example,
this term accounts for approximately 97.5 % of the total production for the three large-scale
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flows from table 1. Similarly, the O(ε) terms account for only 0.2 %, 5.7 % and 4.7 % of
the SG model’s production P+

k,SG for y+ ∈ [0, 300] for SG-NWP-ZPG, SG-NWP-β1 and
SG-NWP-β1.7, respectively, while the spurious production (4.8) is no larger than 0.1 %,
3.7 % and 3.4 % of P+

k,SG for these three model cases.
As expected, there is little difference between the SG-NWP-ZPG and NWP-ZPG

production profiles, since the mean velocity gradient and Reynold shear stress profiles for
both model flows are nearly identical. Both are in excellent agreement with the SJM-β0
DNS case. For the adverse-pressure-gradient cases, the SG-NWP model’s production
P+

k,SG + P+
k,spur is consistently smaller than the corresponding cases when ε = 0. At the

near-wall production peak (y+ ≈ 12), this results in better agreement with the BVOS-β1.7
case for the SG-NWP model than the ε = 0 case, while for the KS-β1 case, the agreement
is slightly worse. In both cases, the slow-growth model underpredicts the production
profiles from the large-scale simulations for y+ � 60, consistent with the results for the
mean streamwise velocity gradient.

Unlike the production of turbulent kinetic energy, the dissipation εk = ν〈∂ju′
i∂ju′

i〉 does
not possess any additional slow-growth contributions, as previously noted. Figure 11(b,d)
displays the dissipation profiles for the model and large-scale simulation cases. Although
there is no discernible difference between the NWP model with and without slow-growth
effects in the zero-pressure-gradient case, they do impact the model dissipation profiles in
the adverse-pressure-gradient cases. In particular, they effect a reduction in the maximum
dissipation that occurs at the wall, resulting in better agreement with the large-scale
simulation values.

Similar to the dissipation, the viscous transport does not possess any O(ε) slow-growth
contributions. However, there are indeed some O(ε) ‘spurious’ contributions to the
SG-NWP model’s turbulent transport given by

T+
k,spur = ε

(
〈ku′〉+ + y+

〈
k
∂u′

∂y

〉+)
(4.9)

that arise from omitting the O(ε) contribution to the fluctuating continuity equation (2.17).
The omission of both this term and the O(ε) pressure term in (2.19) from the SG-NWP
model equations also leads to some errors in the pressure transport. In particular, the
model’s pressure transport does not include any slow-growth contributions, in contrast
to Υk,SG, so that in effect there is a spurious contribution given by

Υ +
k,spur = −ε

(
3〈 p′u′〉+ + y+ ∂

∂y+ 〈 p′u′〉+
)
. (4.10)

The SG-NWP turbulent T+
k,SG + T+

k,spur, pressure Υ +
k,SG + Υ +

k,spur and viscous D+
k,SG

transport profiles are displayed in figure 12 and show a reasonable agreement to the
corresponding profiles T+

k , Υ +
k and D+

k (as defined in (4.5)) from the large-scale
simulations. In particular, the SG-NWP model predicts a lower value of viscous transport
at the wall than the corresponding model simulations with ε = 0, similar to the dissipation
profiles. In contrast, the pressure transport at the wall is notably less accurate when
including slow-growth effects. The error is not due to the spurious pressure transport;
the spurious terms generally contribute no more than 5 % to the model’s total turbulent
and pressure transport profiles, similar to the TKE production. Since pressure is generally
responsible for enforcing continuity, it is possible that the O(ε) error in the fluctuating SG
continuity equation (3.8) is responsible for the relatively large error. It would be useful to
test this hypothesis in future work; a reformulation of the velocity-vorticity method due
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Figure 12. (a,d) Turbulent, (b,e) pressure and (c, f ) viscous transport of TKE versus y+. The results from
the large-scale simulations display T+

k , Υ +
k and D+

k from (4.5), respectively, while the model results display
T+

k,SG + T+
k,spur , Υ +

k,SG + Υ +
k,spur and D+

k . The vertical, black dash–dotted lines mark the beginning of the fringe
region y+ = 300.

to Kim et al. (1987) used here will be required to account for the fact that the velocity
fluctuations are not divergence free.

5. Discussion

A primary goal of the SG-NWP model is to understand how pressure gradients affect
the small-scale motions in a wall-bounded turbulent flow. The model is formulated by
homogenizing a ‘real’ patch of near-wall turbulence and simulating the result in a restricted
domain localized to the wall. The domain is periodic in the streamwise and spanwise
directions, similar to the minimal flow unit simulations first conducted by Jiménez &
Moin (1991). Within the domain, the pressure gradient is assumed to be constant, while
streamwise growth of the mean wall-shear stress that occurs in a turbulent boundary layer,
for example, is accounted for asymptotically, similar to the related works by Spalart (1988)
and Topalian et al. (2017). Far-field boundary conditions in the wall-normal direction are
formulated by using a fringe-region (Colonius 2004) in which the mean flux of streamwise
momentum in the wall-normal direction is prescribed as a function of the pressure gradient
and the asymptotic growth parameter.

Overall, the model simulates only the near-wall small-scale motions. The dynamics of
any turbulent structures larger than the NWP model domain size in the stream and/or
spanwise direction are approximated only by the evolution of the Fourier modes of
the velocity fields with kx = 0 and/or kz = 0. By comparing the model statistics to
those generated by a direct numerical simulation that resolves all scales of motion, the
relative importance of the large-scale motions can be assessed. The relative importance
of streamwise growth of the near-wall region can also be assessed by comparing model
cases that include the asymptotic terms (i.e. cases with ε /= 0) to those that do not (cases
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with ε = 0). The present investigation is hence in a similar spirit to the computational
‘experiments’ that were recommended and conducted by Jiménez & Pinelli (1999).

To this end, several conclusions can be drawn from the results presented in § 4.
First, the mean velocity profile can be accurately computed for y+ ∈ [0, 300] (to
within approximately 6 %) without resolving the large-scale structures. This accuracy
is insensitive to whether asymptotic growth effects are included or not. The Reynolds
shear stress profiles can also be accurately computed (up to an error of approximately
9 %) without resolving the large-scale structures. The accuracy greatly deteriorates if
growth effects are not accounted for (especially for y+ � 20), however, highlighting
the effect that the spatial development of the mean wall-shear has on the near-wall
stress balance in adverse-pressure-gradient flows. Similar conclusions can be drawn for
the wall-normal velocity variance. In contrast, the SG-NWP model cannot accurately
compute the stream and spanwise velocity variance statistics, as the modulation and
superposition effects known to be present in channel flows, zero-pressure gradient TBLs
and adverse-pressure-gradient TBLs are simply not represented in the model.

Another important conclusion concerns the universality of small-scale motions in
the near-wall region. It is well established for channel flows and zero-pressure-gradient
boundary layers that the viscous-scaled TKE associated with small-scale motions is
independent of Reτ (Samie et al. 2018; Lee & Moser 2019; Carney et al. 2020; Wang et al.
2021b). The results here strongly suggest that for flows with adverse pressure gradients,
small-scale universality in the near-wall region should be pressure gradient dependent.
The SG-NWP model’s high-pass filtered, viscous-scaled TKE increased with the strength
of the applied adverse pressure gradient. It is natural to speculate that universality might
be recovered if the small-scale TKE is instead scaled in so-called pressure-viscous units
(Gungor et al. 2016), the non-dimensionalization based on the kinematic viscosity ν

and upi := (ν/ρ(dP/dx))1/3. This was not the case, however, in our numerical tests
(not shown). Consequently, the generalization to adverse-pressure-gradient flows of the
‘universal signal’ constructed by Mathis et al. (2011) for zero-pressure gradient flows
ought to depend on the APG strength.

The current modelling approach of simulating only the small-scale motions is, in a
sense, the reciprocal of what is done in large eddy simulations, where only the large
scales are simulated, and the small-scales are approximated with a subgrid model. It is
thus natural to try and link the SG-NWP model to an LES. As a quantitative model of
near-wall turbulence, the SG-NWP model defines a two-parameter family of near-wall
turbulent flows, parameterized by the imposed pressure gradient dP+/dx+ and the growth
parameter ε. For such an application, one would invoke the scale-separation assumption
discussed in § 2.1 and use SG-NWP flows matched to the local pressure gradient and
growth parameter associated with the large-scale, outer-layer flow simulated by the LES.
The coupling could be formulated sequentially (i.e. by precomputing a library of input
and output responses) or concurrently (i.e. ‘on the fly’) (Abdulle et al. 2012). See the
works of Sandham, Johnstone & Jacobs (2017), Wang, Huang & Xu (2021a), Elnahhas,
Lozano-Durán & Moin (2021) and Chen & He (2022) for examples of the latter.

Finally, as mentioned in the fundamental modelling assumptions discussed in § 2.1,
the SG-NWP modelling approach necessarily breaks down when the ‘real’ flow to be
modelled approaches separation, i.e. as uτ → 0. The model is currently formulated to
operate in viscous units; the forcing function f in the fringe region ensures the model’s wall
shear stress at equilibrium equals unity. The strength of the forcing increases with ε and
dP+/dx+, however, both of which blow up as uτ → 0. Hence, an alternative scaling will be
needed to improve on the current approach to model flows sufficiently close to separation.
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One starting point for future research may be to revisit the study by Nickels (2004) using
data from recent large-scale DNS and WRLES of separated flows, e.g. Hickel & Adams
(2008), Gungor et al. (2016).

6. Conclusions

The slow-growth (SG) model described here was formulated to extend the near-wall
patch (NWP) representation of wall-turbulence presented by Carney et al. (2020) to flows
with non-negligible streamwise development of mean quantities. A primary objective is
to provide a computationally accessible quantitative model of wall-turbulence for such
situations, for example, in boundary layers with adverse pressure gradients. Another is
to characterize the extent to which the dynamics of the small-scale motions, isolated
from modulations by large-scale structures, are responsible for observed characteristics of
near-wall turbulence. As in Spalart (1988) and Topalian et al. (2017), the model equations
of motion are informed by asymptotic analysis of the Navier–Stokes (NS) equations; the
fundamental assumption in the current setting is a separation between the viscous length
scale and the length scale over which the mean wall shear stress evolves.

Because the SG-NWP model domain size scales in viscous units, the simulations require
orders of magnitude fewer computational resources compared with large-scale DNS and
wall-resolved LES. For example, the model’s computational grid is approximately a factor
of 5700 and 1000 smaller than the DNS calculations of Sillero et al. (2013) and Kitsios
et al. (2017), respectively, and a factor of approximately 144 smaller than the wall-resolved
LES of Bobke et al. (2017).

The SG-NWP model could hence be deployed as a vehicle for relatively inexpensive
numerical ‘experiments’ on near-wall dynamics influenced by pressure gradients. For
example, the model could be used to study the interactions of the near-wall, small-scale
dynamics with such complications as heat transfer, turbophoresis or chemical reactions.
The model should be particularly well suited for investigating the effects of surface
roughness on the near-wall region.

Finally, although the separation of scales on which the SG model is based is well
founded for a variety of practically relevant flows, it is important to keep in mind that
it is still limited to a range of pressure gradients that are not too large when scaled in
viscous units. Because the viscous length scale changes more rapidly with stronger adverse
pressure gradients, the asymptotic analysis on which the model is founded will no longer
be valid. In particular, this makes the model inadequate to describe near-wall flow near a
point of boundary layer separation.
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Figure 13. Mean velocity and mean velocity gradient profiles versus y+ for the DNS adverse-pressure-
gradient simulation KS-β1 and SG-NWP-β1 model cases with various domain sizes L+

x × L+
z .

Appendix. Effect of wall-parallel domain size on statistical quantities

A number of simulations were conducted at fixed values of dP+/dx+ and ε that correspond
to the model case SG-NWP-β1 from table 2 to assess the sensitivity of the model’s
statistics to the size of the near-wall patch domain size in the stream and spanwise
directions. In particular, simulations were conducted with L+

x × L+
z = 1500 × 1500 (as

listed in table 3), as well as with 1500 × 3000, 3000 × 3000 and 4500 × 4500. In each
case, the number of Fourier modes Nx and Nz were increased proportionally to maintain
the resolution �x+ and �z+ listed in table 3.

Figures 13 and 14 show the mean velocity, the mean velocity derivative and the Reynolds
stress terms for each domain size case, as well as the DNS profiles from Kitsios et al.
(2017). The mean velocity, its derivative and the Reynolds shear stress 〈u′v′〉 all exhibit
only slight variations as a function of the domain size. The wall-normal variances show
a small increase with increasing L+

x and L+
z , but the difference is less than a few percent.

The turbulent kinetic energy budget terms (not shown) are also either unaffected or show
slight trends comparable to that of the wall-normal velocity variance.

In contrast, the streamwise velocity variances show a mild decrease with increasing
domain size, while the spanwise velocity variances show a non-trival increase. As
mentioned in § 3.3, the differences can be attributed to the fact that the NWP includes
more large-scale structures as L+

x and L+
z increase. At even larger domain sizes, the NWP

size will begin to approach that of the full DNS; for example, at L+
z ≥ 3000, the NWP

spanwise domain length is at least a third of that of the DNS, owing to the relatively low
Reτ at which it was conducted. In the limit as the NWP stream and spanwise domain
sizes approach that of the DNS, it is reasonable to expect the NWP velocity variances to
convergence to some limiting profiles. However, these limits need not correspond to the
DNS statistics, since the two flows are fundamentally different in multiple aspects. For
example, they differ in the wall-normal domain size, the boundary conditions at y = Ly
and the use of a fringe region in the NWP. Another important difference is the treatment
of boundary conditions in the stream and spanwise directions; the DNS uses periodic
conditions and a recycling technique to account for boundary layer growth, while the NWP
uses slow-growth asymptotics to account for streamwise growth in the near-wall region.
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