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SOME PROPERTIES OF THE PROJECTIVE TENSOR PRODUCT
U®X DERIVED FROM THOSE OF U AND X

PAaTrICK N. DOWLING

Let X be a real or complex Banach space and let U ‘be a Banach space with an
unconditional basis. We show that the projective tensor product of U and X, URX,
has the complete continuity property (respectively, the analytic complete continuity
property) whenever U and X have the complete continuity property (respectively,
the analytic complete continuity property). More general versions of these results are
also obtained. Moreover, the techniques applied here to the projective tensor product,
can also be used to establish some Banach space properties of the Fremlin projective
tensor product.

1. INTRODUCTION

The mathematics literature abounds with fesults relating to the following question:
What properties that are shared by the Lebesgue space L”[0,1], 1 < p < o0, and a
Banach space X are also enjoyed by the Lebesgue-Bochner spaces L”([0, 1], X)?7 Some
well known examples of such results are those of

Kwapien [21] - L#([0,1], X) does not contain ¢ if X does not contain cy;
Pisier (23] - L*([0, 1), X) does not contain ¢! if X does not contain ¢'; and
Turett and Uhl [31] - L#([0, 1], X ) has the Radon-Nikodym property if X
has the Radon-Nikodym property.
Many of these results have been extended to the more general setting of Kéthe-Bochner
spaces, E(X), where E is a Kothe function space. In 1992, Hensgen [19] developed
a method, based on semi-embeddings, that allowed him to conclude that the Kéthe-
Bochner space E(X) has property (P) whenever both E and X have property (P), where
property (P) is a Banach space property with certain characteristics.

Less well known are Banach space properties that lift from X to LP[0,1]®X, the
projective tensor product of L?[0, 1] and X. The reason for this is twofold; in general, Ba-
nach space properties are very unstable under the projective tensor product — for example,
Bourgain and Pisier [1] gave an example of a Banach space X with the Radon-Nikodym
property and such that X®X contains a copy of cs. Secondly, the projective tensor
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product norm can be difficult to compute with. However, Bu and Diestel [5, 3] were
able to give a representation of the elements of L?[0,1]®X as elements of a vector-valued
sequence space, and using this representation, they were able to prove that L?[0, 1]®X
has the Radon-Nikodym property whenever X has the Radon-Nikodym property and
1 < p < oo. This result was extended by Bu and Dowling [7] and Dowling [13] to
show that L?[0,1)®X has the analytic Radon-Nikodym property (respectively, the near
Radon-Nikodym property, the complete continuity property, the analytic complete con-
tinuity property, contains no copy of ¢g) if X has the same property and 1 < p < co. All
of these results use the Bu-Diestel representation of L?[0, 1]®X, which in turn depends
heavily on the fact that LP[0, 1], for 1 < p < 00, has a boundedly complete unconditional
basis. Later on Bu, Diestel, Dowling and Oja (6] were able to extend the results in
(3, 5, 7] to the setting of U®X, where U is a Banach space with a boundedly complete
1-unconditional basis.

In this paper we shall show, using techniques similar to those of Hensgen [19], that
many Banach space properties that lift from X to E(X) can also be shown to lift to
E®X, where E is a Banach space with a boundedly complete unconditional basis. Of
course, a Banach space with a 1-unconditional basis is a Kothe function space [22]. It
is interesting to note that if X is'an infinite dimensional Banach space and 1 < p < o0,
then L?([0,1],X) and LP?[0,1)®X are not isomorphic [10] (see [17] for extensions of
this result). The key ingredient that we shall use in getting our results is the fact that
E®X semi-embeds in E(X) whenever E is a Banach space with a boundedly complete
unconditional basis [6].

2. PRELIMINARIES AND RESULTS

Let U be a Banach space with a boundedly complete 1-unconditional normalised
basis (e;){2,. The basis (e;)$2; being 1-unconditional means that, for all n € N, and

scalars a1, as,...,8, and sy, S2,...,5, with |s;] =1 foreach 1 < i < n,
n n ‘
Z LH A S Z a;€iil.
i=1 =1
It is easy to show that for each n € N,
n n
Z: aieif| € E be;
i=1 i=1

whenever a,,as, ...,a, and by, b,, ..., b, are scalars with |a;| < |b;] for each 1 € 7 < n.
Hence the 1-unconditionality of U ensures that U is a Kothe function space [22].
The vector-valued sequence space U(X) is defined by

UX) = {a‘c = (z;); :x; € X,Z |lz;||e; converges in U},
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and the norm on U(X) is given by

U

[s o]
IZlluen = ”Z el
i=1

Now suppose that P is a Banach space property satisfying the following conditions;

(1) P is a separably determined property; that is, a Banach space X has P if
every separable closed subspace of X has P.

(2) P is separably semi-embeddably stable; that is, if X is a separable Banach
space which semi-embeds in a Banach space Y and Y has P, then X has
P.

REMARK 1. Conditions (1) and (2) imply that if a Banach space X has P, then so
does every closed subspace of X. Conditions (1) and (2) also imply that if X and Y are
isomorphic Banach spaces and Y has P, then X has P.

One of the main results in [6] is the following

THEOREM 1. IfU is a Banach space with a boundedly complete unconditional
basis and X is a Banach space, then U®X semi-embeds in U(X).

We are now in a position to state our main result.

THEOREM 2. LetU be a Banach space with a boundedly complete unconditional
basis and X is a Banach space. Let P be a Banach space property that is separably
determined and separably semi-embeddably stable. If U(X) has ‘P, then U®X also has
P.

PRrROOF: As P is a separably determined property, we only need to show that every
separable subspace of U®X has P. To this end, let S be a separable subspace of URX .
Then, by [5], there is a separable subspace X, of X such that S is a subspace of U ®Xo.
U(X) has P by assumption, so U(Xj) also has P as it is a subspace of U(X). Note also
that U®X, is separable. Moreover, since U® X, semi-embeds in U(X,) by Theorem 1,
and P is separably semi-embeddably stable, U®X, has P. Thus S has P since it is a
subspace of U®X, and U®X, has P. This completes the proof. 0

3. APPLICATIONS

The applications that we consider will be to Banach space properties that lie between
the Radon-Nikodym property and the property of not containing a copy of ¢g. It is
important to note that a Banach space U with a boundedly complete basis has the
Radon-Nikodym property [10]. Many (though not all) of these properties we consider
can be phrased in terms of properties related to subsets of compact Abelian metrisable
groups.
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Throughout this section G will denote a compact metrisable Abelian group, B(G) is
the o-algebra of Borel subsets of G, and A is normalised Haar measure on G. The dual
group of G will be denoted by T

Let X be a real or complex Banach space. We denote by L}(G, X) (respectively,
L>(G, X)) the Banach space of (all equivalence classes of) A-Bochner integrable functions
on G with values in X (respectively, (all equivalence classes of) A-measurable X-valued
functions that are essentially bounded).

If u is a countably additive X-valued measure on B(G), we say that it is of bounded
variation if sup ¥, ||#(A4)|| < co, where the supremum is taken over all finite measurable

Aem

partitions of G. The measure u is said to be of bounded average range if there is a
positive constant ¢ so that ||u(A)|| < eA(A), for every A € B(G).

We shall denote by M!(G, X), the space of all X-valued measures on B(G) that are
of bounded variation, and M>(G, X) will denote the space of all X-valued measures on
B(G) that are of bounded average range.

Let A be a subset of I'. Fory € I"and f € L}(G, X), we define the Fourier coefficient
of f at v by

iy = /G FEyTE)aAED).

Similarly, if u € M'(G, X), we define the Fourier coefficient of u at y by
a0 = [ 7)dute).

A measure y € M(G, X) will be called a A-measure if fi(y) = 0 for all v ¢ A.

DEFINITION 3: ([14, 11]) Let G be a compact metrisable Abelian group, let A be
a subset of I', and let X be a Banach space.
(1) X is said to have type I-A-Radon-Nikodym property (I-A-Radon-Nikodym
property) if every A-measure x in M®(G, X) is differentiable; that is, there
is a function f € L'(G, X) such that u(E) = [ fdX for all E € B(G).
(2) X has type II-A-Radon-Nikodym property (II-A-Radon-Nikodym prop-
erty) if every- A-continuous, A-measure in M!(G, X) is differentiable.
DEFINITION 4: ([29]) Let G be a compact metrisable Abelian group, let A be a
subset of I, and let X be a Banach space.
(1) X is said to have type I-A-complete continuity property (I-A-complete con-
tinuity property) if every A-measure x in M*®(G, X) has a relatively com-
pact range. .
(2) X is said to have type II-A-complete continuity property (II-A-complete
continuity property) if every A-continuous, A-measure in M!(G, X) has
relatively compact range.
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REMARK 2. If G = {-1,1}", the Cantor group, then I' = {-1,1}™ and Fourier
coefficients of measures on B(G) with values in a real Banach space are well-defined.
If A = T, then I-A-Radon-Nikodym property and II-A-Radon-Nikodym property are
equivalent, and equivalent to the usual Radon-Nikodym property. Similarly, I-A-complete
continuity property and II-A-complete continuity property are equivalent and equivalent
to the usual complete continuity property. Furthermore, since I' is infinite and discrete,
it contains an infinite Sidon subset [30, page 126]. If A is such an infinite Sidon set, then
by [12], a real Banach space has II-A-Radon-Nikodym property if and only if it does not
contain a copy of ¢g. In particular, I-A-Radon~Nikodym property, II-A-Radon-Nikodym
property, I-A-complete continuity property and II-A-complete continuity property are all
equivalent to not containing a copy of cy.

REMARK 3. If G = T, the circle group, then I' = Z and Fourier coefficients of mea-
sures on B(G) with values in a complex Banach space are well-defined. If A = Z,
then I-A-Radon-Nikodym property and II-A-Radon-Nikodym property are equivalent,
and equivalent to the usual Radon-Nikodym property. Also I-A-complete continuity
property and II-A-complete continuity property are equivalent, and equivalent to the
usual complete continuity property. If A = N U {0}, then I-A-Radon-Nikodym prop-
erty and II-A-Radon-Nikodym property are equivalent, and equivalent to the analytic
Radon-Nikodym property (see [11]). Similarly, I-A-complete continuity property and II-
A-complete continuity property are equivalent, and equivalent to the analytic complete
continuity property (see [28]). If A is an infinite Sidon subset of I, then I-A-Radon—
Nikodym property, II-A-Radon-Nikodym property, I-A-complete continuity property and
II-A-complete continuity property are all equivalent, and equivalent to the property of
not containing a subspace isomorphic to ¢y (see [12, 28]).

Another property that can be considered in our scheme is the near Radon-Nikodym
property. .

DEFINITION 5: ([20]) A bounded linear operator T from L![0, 1] to a Banach space
X is said to be near representable if for each Dunford-Pettis operator D : L![0,1]
— L'[0,1], the composition operator T o D : L'[0,1] — X is Bochner representable.
A Banach space X is said to have the near Radon-Nikodym property if every near rep-
resentable operator from L'[0,1] to X is Bochner representable.

To be able to apply Theorem 2 to a property, we first need to determine whether the
property is both separably determined and separably semi-embeddably stable. It is well
known that I-A-Radon-Nikodym property, II-A-Radon-Nikodym property, I-A-complete
continuity property and II-A-complete continuity property are all separably determined
and separably semi-embeddably stable properties for all A [2, 11, 29]. Similarly, the
near Radon-Nikodym property is a separably determined and separably semi-embeddably
stable property [20].

If U is a Banach space with a boundedly complete unconditional basis, then U
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has the Radon-Nikodym property and hence it has I-A-Radon-Nikodym property, II-
A-Radon-Nikodym property, I-A-complete continuity property, II-A-complete continuity
property and the near Radon-Nikodym property for all A. However, it is unknown in
general whether all of these properties lift from X to U(X). Some of the known lifting
results are; _ .
(1) When A = I, then II-A-Radon-Nikodym property is equivalent to the

Radon-Nikodym property, and U(X) has the Radon-Nikodym property by

a result of Bukhvalov [8]. Following Randrianantoanina and Saab [26}, and

independently Hensgen [19], we see that when A is a Riesz set, then U(X)

has II-A-Radon-Nikodym property whenever X has II-A-R,adon—leodym

property.

(2) For complete continuity properties, the results are similar. When A =T,
then II-A-complete continuity property is equivalent to the complete con-
tinuity property and U(X) has the complete continuity property whenever
X has the complete continuity property [25]. When A is a Riesz set, then
U(X) has II-A-complete continuity property whenever X has II-A-complete
continuity property [24].

(3) U(X) has the near Radon—Nikodym property whenever X has the near
Radon-Nikodym property [27].

An application of Theorem 2 now yields

COROLLARY 6. Let G be a compact metrisable Abelian group, let A be a subset
of T, let U be a Banach space with a boundedly complete unconditional basis, and
let X be a Banach space. Suppose that A = T or that A is a Riesz set. Then URX
has II-A-Radon-Nikodym property (respectively, II-A-complete continuity property, near
Radon—Nikodym property) whenever X has the same property.

In particular, Corollary 6 yields the following results from [7]

COROLLARY 7. ([6]) Let U be a Banach space with a boundedly complete uncon-
ditional basis. If X is a Banach space with the Radon-Nikodym property (respectively,
analytic Radon-Nikodym property, near Radon-Nikodym property, contains no subspace
isomorphic to cy), then U®X has the same property.

From Corollary 6 we also obtain the following new result

COROLLARY 8. Let U be a Banach space with a boundedly complete uncondi-
tional basis. If X is a Banach space with the complete continuity property (respectively,
analytic complete continuity property), then U @X has the same property.

One final property that does not exactly fit in to our scheme is property (P) of Costé
and Lust-Piquard [9)].

DEFINITION 9: ([9]) A Banach space X is said to have property (P) if each oper-
ator T : L![0,1] = X is.representable if and only if for every weak*-null sequence (¢,)
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in L[0;1], the sequence (T'(¢,)) defines an element of o®X.

' Property (P) is separably semi-embeddably stable [9, Proposition 4]. However, we
only know that it is separably determined in spaces with the separable complementation
property [9, Theorem 4). Recall that a Banach space has the separable complementation
property if for each separable subspace Xo of X, there is a separable complemented
subspace X; of X that contains X,. Hensgen [19, Proposition 2.8] proved that if £ and
X have property (P) and X has the separable complementation property, then E(X)
has property (P). It is also easily seen that E(X) has the separable complementation
property whenever X has the separable complementation property. Consequently, an
application of Theorem 2 yields :

COROLLARY 10. Let U be a Banach space with a boundedly complete uncon-
ditional basis. If X is a Banach space with the property (P) and X has the separable
complementation property, then U ®X has property (P).

4. A SPECIFIC APPLICATION TO THE FREMLIN TENSOR PRODUCT

In this section we shall restrict our attention to Banach lattices. Fremlin {15, 16]
defines an order in X ® Y, where X and Y are Banach lattices by

(X®Y)r={ueXQ®Y:(u,f®g)>0forall fe X**,geV**}

and the positive projective norm on X ® Y by

Z ©(Tx, Yr)

k=1

n
:u=sz®'yk,<p€M},

k=1

fullo = int

where M is the set of all positive bilinear functionals on X x Y of norm less than or equal
one. The completion of X ® Y with respect to the norm || - ||jx|, is denoted by X®¢Y
and is called the Fremlin tensor product of X and Y. It should be noted that X@pY is
a Banach lattice.

In [4], Bu and Buskes derive a sequential representation of #&gX, where X is a
Banach lattice and 1 < p < oo, by adapting the methods of the earlier representation
result for #@X by Bu and Diestel [5]. In particular, they were able to show that if X
is a Banach lattice and 1 < p < 0o, then #&7X semi-embeds in #(X) [4, Theorems 7
and 15]. The reader should note that in [4], /(X)) is denoted by £™"9(X).

The techniques used in proving Theorem 2 are again available in this special situation
of @ X, where X a Banach lattice and 1 < p < oo, and produce

THEOREM 11. Letl < p < oo and let X be a Banach lattice. Let P be a Banach
space property that is separably determined and separably semi-embeddably stable. If
X has P, then P®pX also has P.
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REMARK 4. Actually, a little more can be said in Theorem 11. Since Banach lattices
have the separable complementation property [18)], the separably determined condition
can be weakened in the obvious manner; namely, a Banach space X has P if every
separable complemented subspace of X has P.

An application of Theorem 11 and the last remark, along with the results of the last
section, yields ,

COROLLARY 12. Let 1l < p < oo. If X is a Banach lattice with the Radon~
Nikodym property (respectively, analytic Radon-Nikodym property, near Radon-Nikodym
property, contains no subspace isomorphic to ¢y, complete continuity property, analytic
complete continuity property, property (P)), then #@rX has the same property.

REMARK 5. Qingying Bu recently informed the author that the conclusion of Corol-
lary 12 remain true if #* is replaced by Banach lattice U with a boundedly complete
unconditional basis whose order is defined coordinately by the unconditional basis. The
author wishes to thank Professor Bu for pointing out this extension to him.
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