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Self-similarity of wall-attached coherent structures in a turbulent channel at Reτ = 543 is
explored by means of resolvent analysis. In this modelling framework, coherent structures
are understood to arise as a response of the linearised mean-flow operator to generalised
frequency-dependent Reynolds stresses, considered to act as an endogenous forcing. We
assess the self-similarity of both the wall-attached flow structures and the associated
forcing. The former are educed from direct numerical simulation data by finding the flow
field correlated with the wall shear, whereas the latter is identified using a frequency space
version of extended proper orthogonal decomposition (Borée, Exp. Fluids, vol. 35, issue
2, 2003, pp. 188–192). The forcing structures identified are compared to those obtained
using the resolvent-based estimation introduced by Towne et al. (J. Fluid Mech., vol.
883, 2020, A17). The analysis reveals self-similarity of both wall-attached structures –
in quantitative agreement with Townsend’s hypothesis of self-similar attached eddies –
and the underlying forcing, at least in certain components.
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1. Introduction

The study of coherent structures in turbulent flow dates back to the early 1950s. Since
the first observations of these organised motions, for instance by Townsend (1951, 1976),
Mollo-Christensen (1967) and Crow & Champagne (1971), a substantial body of work has
been dedicated to developing an understanding of how they work and what dynamical
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role they play. Reviews for wall-bounded flow have been provided by Robinson (1991) and
Jiménez (2012).

Coherent structures can be seen in flow visualisations or simulations of boundary layers,
where they are manifest in the form of streaks (Wu & Moin 2009; Eitel-Amor et al. 2015;
Jodai & Elsinga 2016) or hairpin-like structures (Adrian 2007). They may be analysed
quantitatively in terms of their statistics and compared with frequency space models (Sen,
Bhaganagar & Juttijudata 2007; Baltzer, Adrian & Wu 2010; Jordan & Colonius 2013;
Cavalieri, Jordan & Lesshafft 2019; Lesshafft et al. 2019; Abreu et al. 2020b; Morra et al.
2021; Nogueira et al. 2021). A recent overview of the different structures observed in
wall-bounded turbulent flows, the focus of this study, can be found in Lee & Jiang (2019).

An early modelling idea, where wall-bounded flows are concerned, is that of the
attached-eddy hypothesis (AEH), introduced by Townsend (1951, 1976) and further
developed by Perry & Chong (1982). Underlying this hypothesis is the idea that eddies
in the logarithmic region of wall-bounded turbulent flows extend to the wall. This implies
that their characteristic dimensions scale with distance to the wall, which implies, in turn,
the existence of a self-similar organisation. A recent review of the literature on the AEH
can be found in Marusic & Monty (2019).

The original AEH considers coherent structures in the logarithmic region of boundary
layers (Townsend 1976) at high Reynolds number (Re), and predicts an α−1 decay in
the one-dimensional energy spectrum, where α is the streamwise wavenumber. The
α−1 decay was observed in wall-bounded turbulent flows at friction Reynolds number
Reτ ∼ 100 000 (Perry, Henbest & Chong 1986; Chandran et al. 2017), suggesting the
existence of attached eddies that dominate the kinetic energy in the logarithmic region.
The high Reynolds number of those studies makes it difficult to conclude on the validity
of the AEH in flows simulated numerically or studied at laboratory scale with low or
moderate Reynolds number. Cheng et al. (2020) showed that wall-attached structures
account for a significant portion of the flow energy even at low-Re flows, ranging from
Reτ = 180 to 1000. They extracted the structures that move together and reach up to the
wall, and observed geometric self-similarity among these structures. Chandran, Monty
& Marusic (2020) investigated the two-dimensional spectra of the streamwise velocity
component, where a transition from α−1/2 to α−1 scaling was observed as moving from
Reτ = 2400 to 26 000. Davidson, Krogstad & Nickels (2006a) and Davidson, Nickels &
Krogstad (2006b) showed that the α−1 decay is not observed at lower Reynolds numbers,
and they attributed this to the limited range of scales of attached eddy that can exist
at low Re, whence their smaller contribution to the energy spectrum. In view of this,
they suggested using the second-order structure function as a better indicator of attached
eddies. Agostini & Leschziner (2017) used structure functions to show that attached-eddy
behaviour can be observed at wall-normal distance, y+, ranging from 80 to 2000 in channel
flow at Reτ = 4200. Their study demonstrated that choosing the correct method to identify
attached eddies, as statistical entities, is crucial in finding evidence of the AEH in turbulent
flows that are attainable at lab scale or via numerical simulation.

There exist many techniques for the detection of coherent structures. One may use
two-point measurements (Tomkins & Adrian 2003; Monty et al. 2007; Baars, Hutchins
& Marusic 2017), conditional sampling (Hussain 1986; Hwang et al. 2016; Cheng et al.
2020; Hwang, Lee & Sung 2020) or modal decomposition techniques such as proper
orthogonal decomposition (POD) (Lumley 1967), dynamic mode decomposition (DMD)
(Schmid 2010) or spectral proper orthogonal decomposition (SPOD) (Lumley 1970; Picard
& Delville 2000; Schmidt et al. 2018; Towne, Schmidt & Colonius 2018). A review of these
decomposition techniques, except SPOD, can be found in Taira et al. (2017). It has been
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demonstrated how POD can be used to educe attached eddies in pipe flows at Reτ = 1300
(Hellström, Marusic & Smits 2016) and at Reτ = 685 (Hellström & Smits 2017). Those
studies showed how leading POD modes are self-similar and scale with distance to the
wall. This is in line with Townsend’s original hypothesis, which states that attached eddies
correspond to the most energetic motions of the boundary layer (Townsend 1976).

Coherent structures obtained through the aforementioned decomposition techniques do
not satisfy the Navier–Stokes equations. An attached-eddy model based, for instance, on
similarity analyses such as discussed above, provides a kinematic description only. A
number of studies have shown, using dynamical descriptions, how the energy-containing
motions at different scales in turbulent wall-bounded flows may be maintained through
a self-sustaining mechanism (see Cossu & Hwang (2017) for a review on the subject).
Those studies rely on overdamped large-eddy simulations of the filtered Navier–Stokes
equations (Hwang & Cossu 2010b; Hwang 2015), and they show that the self-sustaining
cycle exhibits self-similarity. We here use standard direct numerical simulations (DNS)
coupled with the resolvent framework to investigate such self-similar dynamics for the
wall-attached structures in the flow.

Resolvent analysis provides a dynamical framework to study coherent structures and the
nonlinear interactions that drive them (Hwang & Cossu 2010a; McKeon & Sharma 2010;
Schmidt et al. 2018; Cavalieri et al. 2019; Lesshafft et al. 2019). The approach involves
linearising the Navier–Stokes equations about the mean flow and retaining the nonlinear
terms as an inhomogeneous forcing of the linearised system. The problem can then be
cast in an input/output (forcing/response) form, with forcing and response connected by
the resolvent operator. Optimal forcing–response mode pairs can be identified from the
resolvent operator, revealing the most important linear growth mechanisms in the flow.
In many flows, the leading response mode is found to match closely coherent structures
educed from time-resolved flow data (McKeon & Sharma 2010; Lesshafft et al. 2019). It
has been shown in the literature (Hwang & Cossu 2010a; Moarref et al. 2013; McKeon
2017; Sharma, Moarref & McKeon 2017, among others) that for wall-bounded flows, the
optimal response mode exhibits a self-similar structure reminiscent of attached eddies.
However, the dynamics of coherent structures are ultimately determined by the details of
the nonlinear interactions at work in the flow, and these must be considered in order to
understand how forcing/response modes of the resolvent operator combine to produce the
observed behaviour (Zare, Jovanović & Georgiou 2017; Rosenberg, Symon & McKeon
2019; Pickering et al. 2019; Martini et al. 2020; Morra et al. 2021; Nogueira et al. 2021;
Symon, Illingworth & Marusic 2021). Consideration of the resolvent operator alone can
provide only a limited understanding of the dynamics of attached eddies in wall-bounded
flows. It is this that motivates the study that we undertake, where a data-driven approach
is elaborated to explore the self-similarity of wall-attached coherent structures and the
nonlinear interactions that drive them. It is important to understand if the self-similarity
seen in the flow structures is imposed only by the resolvent operator or if a self-similar
forcing also plays a role. The former scenario implies that nonlinear terms, although not
self-similar, are filtered by the self-similar resolvent operator such that the response is
self-similar. The latter scenario, on the other hand, indicates a dynamic self-similarity,
which can be useful for modelling wall-shear-related phenomena in turbulent flows.

Our objective is to identify forcing structures that exist in the data and are associated
with observed wall-attached coherent structures. One approach that can be used to do
this has been proposed by Towne, Lozano-Durán & Yang (2020), where a resolvent-based
estimation (RBE) of forcing statistics was achieved by combining flow measurements with
the resolvent operator. Martini et al. (2020) extended that work by proposing an optimal
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estimation approach by which the space–time forcing field can be computed from a limited
set of flow measurements; the estimator requires a model for the forcing statistics. RBE
is recovered when a white model forcing is assumed, showing that this is an underlying
assumption of the RBE method.

In this work, we adopt an alternative approach, in which the extended proper orthogonal
decomposition (EPOD) of Borée (2003), which we cast in frequency space, is applied
in the resolvent framework so as to identify forcing structures that are associated with
an observed coherent structure. This method was first discussed in Towne et al. (2015).
We refer to this tailored implementation of EPOD as resolvent-based extended spectral
proper orthogonal decomposition (RESPOD). Related methods are observable inferred
decomposition (OID) (Schlegel et al. 2012) and approaches based on linear stochastic
estimation, such as in Kerherve et al. (2012). In each of these cases, linear mappings
are identified between a selected observable and some other field considered to drive
that observable (the flow structures in a jet responsible for sound radiation, for example).
But linear mappings so identified are not grounded in any rigorous dynamic framework.
The advantage of the RESPOD method is that a dynamic relation is granted within the
resolvent framework. Empirically observed coherent structures are used to identify the
forcing structures that exist in unsteady data and that drive the coherent structures via the
resolvent operator. The dynamic relationship between forcing and response is identified
such that it is consistent with the linearised Navier–Stokes equations. We use this approach
to find coherent structures that are correlated to the wall shear, i.e. that are wall-attached,
and the associated forcing.

A related effort is the work of Skouloudis & Hwang (2021), who superpose resolvent
modes with various wavenumbers, as a representation of attached eddies, so as to recover
the Reynolds shear stress of channels. This is referred to as a quasi-linear approximation
(QLA), which may be seen as a dynamic model of attached eddies based on the
linearised Navier–Stokes operator. For simplicity, the superposition is restricted to zero
streamwise wavenumber, and, for most cases, to zero frequency. As discussed in the
cited paper, even with restricted wavenumbers and frequencies, such a superposition
is non-unique, as there are several combinations of forcing modes that lead to the
same overall Reynolds shear stress. While the approach of Skouloudis & Hwang (2021)
leads to correct Reynolds number trends, a quantitative comparison with simulation data
reveals differences. Information on nonlinear terms driving flow responses may be built
into dynamic attached-eddy models for more accurate predictions. We anticipate that
self-similarity may be identified in both forcing and response modes with the techniques
that we aim to use in the present study. Use of the educed self-similar forcing in QLA is
expected to lead to structures that better match fluctuations in wall-bounded turbulence.

As we will discuss (§ 2), RESPOD is related to the RBE method of Towne et al. (2020).
RBE provides the ‘observable’ forcing that has the minimal norm required to generate
the observed coherent structure, and it eliminates all ‘silent’ components of forcing, i.e.
those components that, while present in the data, do not drive the response directly. We
will show that RESPOD finds, for a given coherent structure, all the correlated forcing,
including the silent components. These silent components, though redundant in terms of
the direct driving of coherent structures through the resolvent operator, provide additional
information regarding the forcing mechanisms at play, and, considered together with the
‘non-silent’, driving components, provide a more complete picture of the forcing structures
that actually exist in the unsteady data and are correlated with the observed coherent
structures. We thus obtain a more complete description of attached eddies and the scale
interactions by which they are driven.
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This paper is organised as follows. In § 2, the RBE and RESPOD methods are revisited.
The characteristics of the two methods are discussed via implementation on a toy model.
The methods are then applied in a turbulent channel flow problem in § 3. A DNS database
with friction Reynolds number Reτ = 543 is used. The methodology to trace attached
eddies in the turbulent channels and to compute the associated forcing is presented with
the results. Further discussions are provided in § 4.

2. Identifying the forcing associated with optimal response

2.1. Resolvent-based estimation
We consider the Navier–Stokes equations

M ∂tq(x, t) = N (q(x, t)), (2.1)

where q = [ρ, u, v, w, p]T is the state vector, N denotes the nonlinear Navier–Stokes
operator, and the matrix M is zero for the continuity equation and identity matrix for the
rest in incompressible flows, or the identity matrix in compressible flows. Discretisation in
space and linearisation around the mean, q̄(x), yields

M ∂tq′(x, t)− A(x) q′(x, t) = f (x, t), (2.2)

where A(x) = ∂qN |q̄ is the linear operator obtained from the Jacobian of N , and f (x, t)
denotes all the remaining nonlinear terms, interpreted as a forcing term in the above
equation. The equations are linearised using primitive variables (Karban et al. 2020). In
the resolvent framework, (2.2) is Fourier transformed and rearranged to obtain

q̂(x, ω) = R(x, ω) f̂ (x, ω), (2.3)

where x = [x, y, z]T is the space vector, ω is the angular frequency, the hat indicates a
Fourier transformed quantity, and R(x, ω) = (−iωM − A(x))−1 is the resolvent operator.
In what follows, notation showing dependence on x and ω will be dropped for brevity.

The cross-spectral densities of the response and forcing can also be related via the
resolvent operator

S = RPRH, (2.4)

where S = E{q̂q̂H} and P = E{ f̂ f̂ H} denote the response and forcing cross-spectral
density (CSD) matrices, respectively, with E{·} denoting the expectation operator obtained
by averaging different realisations, and the superscript H denoting the conjugate transpose,
or Hermitian.

The resolvent operator can be modified in order to explore the relationship between
subsets of the forcing and response. For instance, limited measurements at a selection of
points, ŷ, may be considered and related to forcing:

ŷ = Cq̂, (2.5)

ŷ = R̃ f̂ , (2.6)

where C denotes the measurement matrix and R̃ � CR is the modified resolvent operator
that connects forcing to those measurements. We will first investigate the case where C = I
and R is full-rank, i.e. R̃ is also full-rank, before extending our analysis to cases where R̃
may be singular. Note that (2.2) and (2.3) are exact and provide a bijective relation between
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the forcing and the response when the resolvent operator is full-rank, and an injective
relation when R is singular.

We employ SPOD to identify coherent structures in the flow. This requires definition of
an inner product

〈a, b〉 =
∫
Ω

bHWa dx, (2.7)

where W denotes an energy norm. Equation (2.7) can be written in discrete form as

〈a, b〉 = bHW a, (2.8)

where W now accounts for both the energy norm and the numerical quadrature weights.
The SPOD modes, which are orthogonal with respect to the inner product defined by (2.8),
are obtained by solving the eigenvalue problem

SWψ = λψ, (2.9)

where ψ and λ denote the eigenvector (SPOD mode) and the eigenvalue (SPOD mode
mean square value). The CSD matrix S can be built from SPOD modes as

S =
∑

n

λnψnψ
H
n , (2.10)

where the subscript n denotes SPOD mode number.
For non-singular R, the forcing mode that generates a given SPOD mode, ψ , can be

obtained by inverting the resolvent equation

φ = Lψ, (2.11)

where L � (−iωM − A) and R = L−1. In the case of R̃, which is singular, direct inversion
is not possible, and the forcing mode associated with the SPOD mode, ψ , can then be
obtained by means of a pseudo-inverse of R̃:

φ = R̃+ψ . (2.12)

The mode φ in (2.12) can be understood as the minimal-norm forcing that creates the
response, ψ , through the resolvent operator, in what is called resolvent-based estimation
(RBE) (Martini et al. 2020; Towne et al. 2020). The forcing structures that are correlated
with the response but are ‘silent’, i.e. have no flow response, are not present in the forcing
modes estimated using RBE. This might be a desired property for the kinematic modelling
of forcing, as whatever is included in the estimated mode is ensured to contribute
to the response. However, from a dynamical modelling point of view, elimination of
the correlated-but-silent parts of the forcing may hide important dynamic traits of the
interaction mechanisms that underpin the forcing structures. Since the silent components
are correlated to the observable forces, they are likely generated by the same mechanisms.
Thus their study can facilitate identification of these mechanisms. To identify such
structures, we consider, in what follows, a data-driven approach that takes into account
the forcing and response structures that are actually contained in the data.

2.2. Resolvent-based extended spectral proper orthogonal decomposition
The approach that we present is adapted from the EPOD of Borée (2003), whose goal
was to identify correlations between an observed POD mode and some other target field.
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In Hoarau et al. (2006), the method was used in spectral domain. We revisit EPOD also
in frequency space, setting the target event as the forcing defined by (2.3). This specific
construction of EPOD was first discussed in Towne et al. (2015). We refer here to this
implementation as ‘resolvent-based, extended spectral proper orthogonal decomposition’
(RESPOD).

The SPOD modes defined by (2.9) are orthogonal with respect to the norm defined by
(2.8), i.e.

〈ψn,ψp〉 = δnp, (2.13)

where ψn is the nth SPOD mode. The SPOD modes provide a complete basis that can be
used to expand any realisation of the state vector as

q̂ =
∑

n

anψn, (2.14)

where the projection coefficient an associated with the nth eigenmode is obtained by the
projection

an = 〈q̂,ψn〉. (2.15)

The orthonormality of the SPOD basis, defined by (2.13), imposes that the projection
coefficients satisfy

E{anaH
p } = λnδnp. (2.16)

This can be seen as follows:

E{anaH
p } = E{〈q̂,ψn〉〈q̂,ψn〉H}

= E{ψH
n W q̂q̂HW Hψp} (using (2.8))

= ψH
n W E{q̂q̂H}W Hψp

= ψH
n W

∑
k

λkψkψ
H
k W Hψp (using (2.10))

= λnδnp. (2.17)

Here, the expectation operator corresponds to an ensemble average of Fourier realisations.
Borée (2003) used (2.14) and (2.16) to show that

E{q̂ aH
p } = E

{(∑
n

anψn

)
aH

p

}

=
∑

n

E{anaH
p }ψn

= λpψp, (2.18)

which provides an alternative way to compute ψp as

ψp = E{q̂ aH
p }

λp
, (2.19)

assuming that ap is known. Equation (2.19) corresponds to the snapshot approach, shown
by Towne et al. (2018) to provide a less costly alternative to eigendecomposition of (2.9).
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Note that for this, one needs to calculate the projection coefficients beforehand. Using the
decomposition given in (2.14), we can show that

〈q̂, q̂〉 =
∑

n

anaH
n . (2.20)

For a given Q̂ defined as the set of realisations of q̂, (2.20) can be written as

〈Q̂, Q̂〉 =
∑

n

anan
H, (2.21)

where an � 〈Q̂,ψn〉 denotes the projection coefficient vector. Note that (2.16) holds also
for an, implying the orthogonality of the projection coefficient vectors that correspond to
different SPOD modes. Given this orthogonality, rewriting (2.21) by normalising an with
λ

−1/2
n as

〈Q̂, Q̂〉 =
∑

n

(anλ
−1/2
n )λn(aH

n λ
−1/2
n ), (2.22)

we obtain the eigendecomposition of 〈Q̂, Q̂〉. Computing the eigendecomposition given in
(2.22), one can obtain the projection coefficients before calculating the SPOD vectors.

Given the forcing vector f̂ , its RESPOD mode is given by

χp = E{f̂ aH
p }
λp

. (2.23)

The RESPOD mode χp provides the forcing mode associated with the pth SPOD mode of
the response. In Borée (2003), it was shown that the extended modes can be used to isolate,
from the target event, the part that is correlated with the observed coherent structure.
Given, for instance, the rank-1 representation of q̂ as q̂1 = a1ψ1, the corresponding
RESPOD mode χ1 allows identification of f̂ 1 � a1χ1, which is the forcing correlated
with q̂1. This can be seen by comparing the two cross-covariances between the forcing and
the response given as

E{f̂ q̂H
1 } = E{f̂ aH

1 ψ
H
1 }

= E{f̂ aH
1 }ψH

1

= λ1χ1ψ
H
1 (2.24)

and

E{f̂ 1q̂H
1 } = E{a1χ1aH

1 ψ
H
1 }

= χ1E{a1aH
1 }ψH

1

= λ1χ1ψ
H
1 . (2.25)

This indicates that f̂ 1 contains all the forcing that is correlated with q̂1.

939 A36-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.225


Self-similar mechanisms in wall turbulence

As the target event we consider here is the forcing term in the resolvent framework,
which satisfies (2.6), substituting (2.6) into (2.19), we can show that

ψp = E{R̃ f̂ aH
p }

λp

= R̃
E{f̂ aH

p }
λp

= R̃χp, (2.26)

indicating that the correlated response and force modes are dynamically consistent, i.e.
they satisfy (2.6).

As mentioned earlier, the relation between forcing and response becomes bijective for a
non-singular resolvent operator; i.e. for a given response ψ , there is a unique forcing mode
that satisfies (2.26) and (2.11). This implies that for the non-singular resolvent operator,
the forcing mode identified by RESPOD becomes identical to the RBE mode predicted
using (2.11). But for the case of a singular resolvent operator, RESPOD finds both the
minimal-norm forcing (also predicted by RBE) necessary to generate the SPOD mode and
the correlated-but-silent components of the nonlinear scale interactions.

2.3. Comparison of RBE and RESPOD using a simple model
As a toy model to illustrate the techniques, we consider two rank-3 resolvent operators, Rf
and Rs, that are, respectively, full-rank and singular:

Rf =
⎡
⎣3 0 0

0 2 0
0 0 1

⎤
⎦ , Rs =

⎡
⎣3 0 0 0 0

0 2 0 0 0
0 0 1 0 0

⎤
⎦ . (2.27a,b)

Both systems are driven by random forcing vectors, f̂ f = [c1, c2, c3]T and
f̂ s = [c1, c2, c3, 3c1, c4]T, respectively, where ci is a random number with zero mean
and unit variance. The random forcing realisations are generated using Matlab random
number generator. The random number seeding is re-initialised for each simulation to
ensure using the same random value series, which makes the results repeatable. The
fourth and fifth components in f̂ s project onto the null space of Rs, but the fourth
component is fully correlated to the first since both contain the same random variable, c1.
Re-initialisation of the random number generator ensures that the first three components
of f̂ f and f̂ s, those that are observable through the corresponding resolvent operators,
are identical. The responses obtained for the two systems are thereby identical. Two tests
are carried out using 10 and 500 realisations, respectively. The leading SPOD mode for
both singular and non-singular systems is obtained as ψ = [−0.9622, 0.2576, −0.0890]T

when 10 realisations are considered, and ψ = [−0.9943, −0.1056, 0.0148]T with 500
realisations. As the forcing in the full-rank model problem is white, i.e. P = I , by
inspection, one can see that the expected value for the leading SPOD mode is
ψ = [1, 0, 0]T (or its negative). The predictions based on realisations converge to the
expected value with an algebraic convergence.
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Using 10 realisations, the forcing modes computed using RBE and RESPOD,
respectively φf /s and χ f /s, are, for the full-rank system,

φf =
⎡
⎣−0.3207

0.1288
−0.0890

⎤
⎦ and χ f =

⎡
⎣−0.3207

0.1288
−0.0890

⎤
⎦ , (2.28a,b)

while for the singular system we obtain

φs =

⎡
⎢⎢⎢⎣

−0.3207
0.1288

−0.0890
0
0

⎤
⎥⎥⎥⎦ and χ s =

⎡
⎢⎢⎢⎣

−0.3207
0.1288

−0.0890
−0.9622
0.0283

⎤
⎥⎥⎥⎦ . (2.29a,b)

The same results for the cases based on 500 realisations are given as

φf =
⎡
⎣−0.3314

−0.0528
0.0148

⎤
⎦ , χ f =

⎡
⎣−0.3314

−0.0528
0.0148

⎤
⎦ , φs =

⎡
⎢⎢⎢⎢⎣

−0.3314
−0.0528
0.0148

0
0

⎤
⎥⎥⎥⎥⎦ and χ s =

⎡
⎢⎢⎢⎢⎣

−0.3314
−0.0528
0.0148

−0.9943
0.0066

⎤
⎥⎥⎥⎥⎦ .

(2.30a–d)

As expected, the results obtained using RBE and RESPOD are identical in the full-rank
system. The fourth component of χ s is three times the first component, where this
correlation information was included in the definition of f̂ s. Although the RBE method,
which finds the minimal-norm forcing for a given response, and the RESPOD method,
which finds the correlated forcing for a given response, ask different questions, their results
are the same when the resolvent operator is full-rank. This is because for a full-rank
resolvent operator, no silent forcing exists. When different numbers of realisations are
considered, RBE and RESPOD yield identical results when the resolvent operator is
full-rank; this is because the SPOD response mode and the RESPOD forcing mode have
identical convergence in that case. This will be the case when the two methods are based
on the exact same realisations, and the realisations are consistent, i.e. they satisfy (2.6).
The results may differ if the database contains noise on the response and/or the forcing,
which is outside the scope of this study.

For the singular case, the forcing predictions obtained using RBE and RESPOD differ
in the silent forcing components. RBE, by construction, predicts zero forcing in these
components, while RESPOD captures the correlated information between the first and
fourth components, and the fifth component, which is uncorrelated with the response,
tends to zero. In a more complicated system, involving turbulent flow for example, this
additional information obtained from RESPOD may be expected to provide additional
insight regarding the mechanisms that underpin the forcing.

Note that although the SPOD modes are unit vectors in the Euclidean norm, the
associated forcing modes obtained using RESPOD or RBE are not unit vectors. In (2.23),
we see that the RESPOD mode is normalised using the response eigenvalue, so a unit norm
is not ensured. Similarly, (2.11) implies that for a unit SPOD vector, the associated forcing
mode obtained using RBE is not necessarily a unit vector. The norm of the forcing mode
obtained by RBE/RESPOD is related by the associated gain. In RBE, amplified forcing
modes will have a smaller-than-unity norm, such that Rφ will be unity. In RESPOD,
besides the associated gain, the norm also depends on the correlated-but-silent parts.
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3. Identifying wall-attached structures and their forcing in turbulent channel flow

We use the tools outlined above to analyse turbulent channel flow, our objective being
to educe, from DNS data, wall-attached structures and the forcing by which they are
driven. We investigate if these wall-attached structures are reminiscent of attached eddies
discussed widely in the literature.

Attached eddies begin to dominate the one-dimensional energy spectrum of a
wall-bounded flow only beyond a certain value of Re (Reτ ∼ 100 000) (Perry et al. 1986;
Chandran et al. 2017). But it has been shown that structure-eduction techniques can be used
to identify such structures at lower Re: structure functions were used by Davidson et al.
(2006a,b) and Agostini & Leschziner (2017), while Hellström et al. (2016) and Hellström
& Smits (2017) used POD. In our study, we analyse structures that are correlated to the
wall shear in a turbulent channel flow at Reτ = 543, our objective being to establish: (1) if
these exhibit self-similar features consistent with attached eddies; and (2) if the associated
forcing, identified using both RBE and RESPOD, also exhibits a self-similar organisation.
The underlying aim is to lay the groundwork for a resolvent-based dynamic attached-eddy
model, as discussed in the Introduction.

In the work of Yang & Lozano-Durán (2017), wall shear in the flow direction was shown
to manifest self-similarity along the log layer, reminiscent of attached eddies, and this
was used to build a model for momentum cascade. Here, we use instead the wall shear
in the spanwise direction as the reference quantity to detect wall-attached structures. Our
attempt to use the streamwise wall shear did not yield clear self-similarity in the associated
coherent structures, and thus is not reported here.

3.1. Database and definitions
The flow data are provided by DNS of the incompressible Navier–Stokes equations
using the ‘ChannelFlow’ code (see www.channelflow.ch for details). The DNS details are
provided in table 1, where Tmax and 	t denote the total simulation time and the time step,
respectively, and Lx/y/z and Nx/y/z denote the domain and the grid size, respectively; the
superscript + denotes a near-wall unit. For dealiasing, a larger number of Fourier modes
(3/2 times Nx and Nz) was used in the simulations. The subscripts x, y and z denote the
streamwise, wall-normal and spanwise directions, respectively. The mean velocities and
the root-mean-square values of the DNS data used were compared against the literature
(del Álamo & Jiménez 2003) in Morra et al. (2021), and are therefore not presented here.
To show the statistical convergence of the simulation, we check the balance in the mean
momentum equation given as

0 = 1
Reτ

+ d2U+
x

dy+2 − uv+

dy+ , (3.1)

where Ux denotes the mean streamwise velocity, u and v denote the velocity fluctuations
in the streamwise and wall-normal directions, respectively, an overbar indicates temporal
averaging, and the superscript + denotes quantities in wall units (see Wei et al. (2005) for
further details). Integrating (3.1) in y+ yields

− y = dU+
x

dy+ − uv+. (3.2)

The terms in (3.2) are plotted in figure 1, where it is seen that the summation of dU+
x /dy+

and −uv+ satisfies (3.2), hence the momentum balance is reached.
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0.5

–0.5

0

1.0

–1.0

–uv+

–y

1.00.8–0.8 0.6–0.6 0.4–0.4 0.2–0.2 0

y

dUx
+/dy+

dUx
+/dy+ –uv+

Figure 1. Momentum budget plot for the DNS of the channel flow.

Reτ Rebulk T+
max 	t+ Lx × Lz Nx × Ny × Nz 	x+ 	z+ 	y+

min 	y+
max

543 10 000 8.84 × 103 2.95 2π × π 384 × 257 × 384 8.88 4.44 4.09 × 10−2 6.66

Table 1. Details of the DNS database.

The Fourier realisations are calculated using 128 fast Fourier transform (FFT) points
with 80 % overlap between successive time blocks. The second-order exponential
windowing function given in Martini et al. (2019) is used to perform the Fourier transform.
The forcing correction associated with the windowing function is added to the Fourier
realisations of the forcing as described in Martini et al. (2019) to ensure that the forcing
and the response are related accurately to each other via the resolvent operator, as shown
by Morra et al. (2021) and Nogueira et al. (2021).

The resolvent framework for incompressible isothermal viscous flows is given as
follows. Defining utot = U + u and ptot = P + p – where U = [Ux, 0, 0]T and u =
[u, v, w]T are the mean and fluctuation velocities, respectively, defined in Cartesian
coordinates ordered in streamwise, wall-normal and spanwise directions, and P and p are
the mean and fluctuating pressure – the governing equations for momentum fluctuations
are given as

∂tu + (U · ∇)u + (u · ∇)U = −∇p + 1
Re

∇2u + b + f ,

∇ · u = 0,

⎫⎬
⎭ (3.3)

where Re = Ubulkh/ν denotes the Reynolds number, ν is the molecular viscosity,
f = −(u · ∇)u and b = −∇P + Re−1∇2U − (U · ∇)U . Spatial derivative operators are
given as ∇ = [∂x, ∂y, ∂z]T and ∇2 = ∇ · ∇. Defining the state vector q = [u, v, w, p]T,
and taking the Fourier transform in all homogeneous dimensions (x, z and t) with the
ansatz q̂(α, y, β, ω) exp(i(αx + βz − ωt)), the governing equations given in (3.3) can be
written in matrix form as

iωM q̂ − Aq̂ = Bf̂ , (3.4)
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considering that ω, α and β are not simultaneously zero, such that the b term, which
varies only in y, has no contribution. Note that taking the Fourier transform in x and z
allows an accurate and inexpensive explicit construction of the resolvent operator using
pseudo-spectral methods.

Defining the transformation matrix û = Cq̂, we can write (3.4) in resolvent form as

û = R f̂ , (3.5)

where R = C(−iωM − A)−1B, and a hat denotes a Fourier-transformed variable. The
matrices A, B, C and M are given in explicit form in Appendix A.

To investigate the wall-attached structures, we will define a measurement matrix

C̃ = [0 0 ∂z|y=0 0], (3.6)

which yields, when we left-multiply it with (3.5),

τz = C̃R f̂ , (3.7)

where τz = ∂zw|y=0 is the spanwise wall shear. We choose to measure τz considering that it
is strongly associated to quasi-streamwise vortices. We then apply the RESPOD to obtain
the forcing that is correlated with the wall shear. Note that since τz is a scalar quantity, it
has one SPOD mode that is also scalar, and the associated forcing is bound to be rank-1,
which yields

ψ = C̃Rχ . (3.8)

The RESPOD mode χ , when multiplied with the resolvent operator R, yields the
velocity field that is correlated with τz. The proof is provided in the following. Using
the velocity vector û as the target event in (2.23) instead of the forcing f̂ , one can obtain
the velocity field ξ that is correlated with τz as

ξ = E{ûaH}
λ

, (3.9)

where, for the particular case of τz being a scalar, a = 〈τz, 1〉 and the eigenvalue λ is
obtained simply by E{τzτ

H
z }. Substituting (3.5) into (3.9) gives

ξ = Rχ , (3.10)

which proves the above statement. Since ξ , also rank-1, corresponds to all and the only
parts in û that are correlated with τz (see the discussion in § 2.2 or alternatively Borée
(2003)), we consider it as the wall-attached part of û.

3.2. Power spectral densities
The DNS database is decomposed into Fourier modes in streamwise and spanwise
directions. In figure 2, we show the power spectral density (PSD) of τz at different
α+ and β+ values. Peak energy location is seen to move towards higher ω and β

for increasing α while the amplitude reduces. Attached eddies are expected to be the
main energy-containing structures in the flow (Townsend 1976) and exhibit a self-similar
organisation. Self-similarity implies that structures in the same hierarchy should have
constant streamwise-to-spanwise and streamwise-to-wall-normal ratios. In a flow database
that is decomposed into Fourier modes in the streamwise and spanwise directions,
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Figure 2. PSD map of τz for different α+ values.

self-similarity can be investigated by imposing it in the horizontal plane by fixing the
streamwise-to-spanwise aspect ratio (AR) and searching for it in the wall-normal direction,
similar to Hellström et al. (2016) and Hellström & Smits (2017). In what follows, we first
set λ+

x /λ
+
z = 6, where λx and λz are the streamwise and spanwise wavelengths, and look

for self-similar structures at this AR. We then extend our analysis to a range of ARs and
provide an overall view of self-similarity for the given channel flow. We first investigate
self-similarity of structures at frequencies with high spectral energy, which is followed by
investigation of self-similarity in less energetic structures.

Maximum-energy-containing frequency ωmax for different α+ values with AR = 6 is
shown in figure 3. We see that ωmax increases almost linearly with α+. We approximate
this trend with the red line shown in the figure, which is the best linear fit minimising
L1-norm error. The L1-norm is chosen for the trend line to be less sensitive to outliers. The
frequency corresponding to each (λ+

x , λ
+
z ) pair is selected using this trend line.

The accuracy of the forcing database in Reτ = 543 flow is verified by comparing the
state q̂ to its resolvent-based prediction R f̂ in figure 4. Such an evaluation has already
been performed by Morra et al. (2021) for two dominant structures, and it is here extended
to a broader range of wavenumbers. As seen in the figure, the resolvent-based prediction
of the response matches the DNS state data for the entire wavenumber span considered.

The square root of PSD of the wall shear τz calculated at ωmax is shown in figure 5. The
amplitude is seen to decrease for increasing α+ as expected from figure 2. The trend is
almost linear for α+ > 7.4 × 10−3.

3.3. Wall-attached coherent structures and associated forcing for AR = 6
We now focus on the wall-attached structures at the peak-energy frequency, ω+

max, for
each (λ+

x , λ
+
z ) pair with AR fixed at 6. The modes are forced to be symmetric in u and
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Figure 3. Maximum-energy-containing frequency, ωmax, of spanwise wall shear τz for different Fourier-mode
pairs with AR = 6. The red dashed line indicates the best fit minimising L1-norm error.
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Figure 4. PSD of the response q̂ (solid lines) in comparison to its resolvent-based prediction R f̂ (markers) at
ωmax for different Fourier-mode pairs with AR = 6. Wavelengths plotted are λ+

x = 487, 569, 683, 853, 1137
and 1706.

w (and anti-symmetric in v) about the channel centre in the wall-normal direction by
averaging the flow fields in the bottom and the upper halves of the channel (considering
a minus sign in v), as in Abreu et al. (2020a). In figure 6, wall-shear-associated forcing
modes obtained using RESPOD and RBE methods, respectively, and the velocity fields
generated by these forcing modes, are shown. Note that the mode amplitudes are adjusted
to have unit wall shear. The forcing from the RBE method, φ, shows that the spanwise
and wall-normal components of forcing drive the wall-shear dynamics observed in the
flow at this AR, while the streamwise component is almost not required. For the forcing
from the RESPOD method, χ , on the other hand, the forcing mechanisms that generate
wall shear involve to a large extent the streamwise component of forcing, although its
overall contribution to wall-shear dynamics can be small, as suggested by the RBE results.
This indicates strong cancellations among the responses to different forcing components,
similar to the results in Morra et al. (2021). This will be investigated further at the end
of this subsection. As discussed earlier, the response ξ = Rχ yields the velocity field
associated with the wall shear. Similarly, Rφ can be interpreted as best prediction of the
correlated velocity field when no data for forcing are available. This amounts to flow
estimation using low-rank measurements with the assumption of forcing CSD P = I , as
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Figure 5. Amplitude spectral density of spanwise wall shear τz at ωmax for different Fourier-mode pairs with
AR = 6.
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Figure 6. Comparison of the wall-shear-associated forcing modes obtained by RESPOD (a,e,i) and RBE
(b, f,j), and the corresponding velocity fields ((c,g,k) and (d,h,l), respectively), at λ+

x = 341, 487, 682, 1137
and 1706, with λ+

x /λ
+
z = 6.

discussed in Martini et al. (2020). We see that the velocity modes associated with the wall
shear are significantly overpredicted when RBE is used.

As mentioned above, the difference between the minimal-norm forcing φ and the
wall-shear-correlated forcing χ implies that contributions to τz from each component
of Pχ = χχH cancel each other to a significant extent. To understand the effect of a
particular component of χ (or φ), we calculate the wall shear using χ (or φ) with
that component masked. The resulting wall-shear PSDs for partially masked χ and φ,
respectively, are shown in figure 7. The forcing modes are scaled such that using the full
forcing mode generates a wall shear with unit amplitude at each wavenumber pair. For
the wall-shear-correlated forcing χ , we see that the wall-normal component has the least
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Figure 7. Square root of PSD of τz obtained using partially masked χ (a) and φ (b) at different wavenumbers,
with AR = 6. Unmasked PSDs are all unity, shown by the dashed lines.

effect on the resulting τz amplitude at every wavenumber pair. In the case of minimal-norm
forcing φ, on the other hand, the streamwise component has negligible effect on wall-shear
dynamics. This implies that the mechanisms involved in the two forcing modes are indeed
different, although amounting to the same overall response. For φ, wall shear is generated
by a pure streamwise vortical forcing at every wavenumber. For χ , it is the streamwise and
spanwise components that are important, with the latter being the main driving component.
This implies that turbulence does not follow the optimal path to generate wall-shear
fluctuations. The fact that masking χx increases

√
E{τzτ ∗

z } implies that simultaneous
presence of the streamwise and spanwise components causes some cancellation in the
wall-shear fluctuation amplitude.

Note that the predictions from the RBE method can be improved using an eddy-viscosity
model. The eddy viscosity is often used to enhance modelling properties of the resolvent
operator (Morra et al. 2019; Pickering et al. 2019). It was used in Towne et al. (2020)
and was more effective to recover flow (q) statistics. As shown in Morra et al. (2021),
the eddy viscosity embeds some of the forcing statistics in the resolvent operator, but
not all (Amaral et al. 2021). A drawback of using eddy viscosity is that the forcing of
an eddy-viscosity-based resolvent operator does not correspond to the actual nonlinear
Navier–Stokes terms. Since we are interested in these nonlinear terms, we use the
molecular-viscosity-based resolvent operator, as it allows us to probe directly the nonlinear
terms via the forcing f .

3.4. Self-similarity of wall-attached forcing and response structures for AR = 6
Townsend’s AEH states that the attached eddies scale in size with respect to their distance
to the wall (Townsend 1976; Perry & Chong 1982). We will assess the validity of this
assumption for the wall-attached structures investigated in this study. As mentioned earlier,
by keeping the AR fixed, we impose self-similarity in the streamwise and spanwise
directions. Regarding the modes seen in figure 6, although the amplitudes show different
trends, particularly for different forcing components, we see that the mode shapes exhibit
to a certain extent a self-similar trend, except for the wall-normal component of the forcing
mode χ . The self-similarity can be made apparent by a proper scaling of the modes in the
wall-normal direction and normalisation of each mode with its peak amplitude. To assess
the self-similarity in the wall-normal direction, Hellström et al. (2016) proposed a scaling
based on the peak of the POD modes. In a similar spirit, we propose a scaling based on
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Figure 8. Mode centre y+
h obtained using ξx (square) and χz (triangle) at different wavenumbers, with

AR = 6. The dashed line shows the 1/β+ trend.

the integral function

g(α, y) =
∫ y

0
|ξx(α, y, β(α), ωmax(α))| dy, (3.11)

where ξx is the streamwise component of the wall-shear-correlated velocity mode ξ ,
and we use this function to define a characteristic length scale yh such that g(α, yh) =
g(α,H)/2, where H is the channel half-height. In other words, yh(α) is the wall-normal
position that divides the area under |ξx| into two equal parts. The β+ dependence of y+

h
is shown in figure 8. We repeat this analysis with χz instead of ξx and show the results
in the same figure. The component χz is chosen as it is the dominant component in
generating wall shear, as shown in figure 7. Consistent with the attached-eddy hypothesis
(Townsend 1976; Perry & Chong 1982), the wall-attached structures with the same AR
computed at the peak-energy frequency, ωmax, follow a β−1 trend except for the very small
scales (β+ > 0.09). The forcing modes also follow a similar trend, which again deviates
from β−1 at small scales. The wall-attached structures scaling with β−1, consistent with
the AEH, suggests a self-similar behaviour. The forcing modes following a similar trend
suggests that the mechanisms that generate these structures may also be self-similar, i.e.
dynamic self-similarity in addition to Townsend’s kinematic self-similarity.

The characteristic eddy length scale, yh, can now be used to normalise the structures
seen in figure 6. We reconstruct the forcing and response modes in the y–z plane, which
corresponds to channel cross-section. Mode phases at each (λ+

x , λ
+
z ) pair are shifted to

have ∠τz = 0. We use yh based on ξx to scale both the forcing and response modes
in the y- and z-directions. We normalise the wall-normal and spanwise components
of both forcing modes, χ and φ, with χx, and similarly those of the response modes
with ξx. The reconstructed modes, shown in figure 9, reveal self-similarity of the
wall-attached structures and the associated forcing. The streaks and the streamwise
vortices seen in the response modes ξ indicate that the wall shear τz is associated with the
lift-up mechanism (Brandt 2014). As discussed earlier, the RBE method overpredicts the
wall-shear-correlated velocity field. The modes are once again reminiscent of the lift-up
mechanism, with the streaks and the streamwise vortices considerably more tilted in the
spanwise direction. The optimal forcing φ, which is sufficient to create the wall shear
observed in the flow, has a streamwise-vortex-like structure. This is consistent with the
optimal forcing modes in Couette flow discussed in Hwang & Cossu (2010a). The forcing
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Figure 9. Reconstruction of wall-shear-associated forcing modes χ (a,e,i) and φ (b, f,j), and the corresponding
velocity fields ((c,g,k) and (d,h,l), respectively) in the y–z plane at three wavenumbers (from top to bottom).
Colour plots indicate the x-component, while vectors show y- and z-components. The domain is rescaled using
yh for each wavenumber.

modes that actually take place in the flow, on the other hand, do not reveal immediately
such a simple structure, although showing self-similarity in itself.

3.5. Extension of self-similarity analysis to other ARs
Given the self-similarity observed at the wall-attached structures with AR = 6, we now
extend our analysis to other ARs ranging from 2 to 10. Once again we look for the
dominant structures extracted by choosing the maximum-energy-containing frequency for
each (λ+

x , λ
+
z ) pair for a given AR. Figure 10 shows the peak-energy frequency ω+

max versus
wavenumber plots for different ARs, together with the linear trends minimising L1-norm
error. We see that all the trends for different ARs collapse onto the same line, given by
ω+ = 9.04α+ + 0.0166. We use this linear trend to set the frequency for a given (λ+

x , λ
+
z )

pair at a given AR.
We calculate the mode centre yh and investigate its change with respect to the spanwise

wavenumber β. Similar to the analysis conducted for the AR = 6 case, we compute yh
using ξx and χz, respectively, and show the results for different ARs in figure 11. Overall,
we observe the β−1 trend for both the response and forcing structures at every AR, which
imply that self-similarity may be present for all the dominant wall-attached structures and
the associated forcing for a broad range of ARs. In general, the small-scale structures near
the wall are seen to deviate from the β−1 trend for all the ARs. This deviation may be due
to increasing viscous effects at this region. We see that at certain ARs, the largest forcing
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Figure 10. Peak-energy-containing frequencies for different wavenumber pairs with fixed AR. Different
markers indicate different AR values. The coloured dashed lines correspond to the best-fit lines for different
ARs, using the same colour code.
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Figure 11. Mode centre y+
h obtained using ξx (square) and and χz (triangle) at different wavenumbers. Each

subplot shows results for a different AR. The dashed lines show the 1/β+ trends.

and/or response structures also deviate from the β−1 trend. This may be caused by these
structures being affected by the other half-channel at the given Re.

To quantify self-similarity, we define the following measure. Given ζ as any component
of any response or forcing mode for a given (λ+

x , λ
+
z ) pair at a given AR, we first normalise

ζ with its peak value, given as ζn, and then perform yh scaling as

ζn( y) = ζ̃n( y/yh), (3.12)
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to get ζn in self-similar coordinates, where yh is calculated using ξx. After performing this
analysis for all the wavenumber pairs at a given AR, we find the ‘mean’ self-similar mode
by averaging these modes as

E{ζ̃n} = 1
N

N∑
i

ζ̃ (i)n , (3.13)

where N denotes the total number of wavenumber pairs at that AR. We then compute
the alignment of ζ̃ (i)n , which corresponds to the ith wavenumber pair, with this mean
self-similar mode as

γ
(i)
ζ = |〈ζ̃ (i)n ,E{ζ̃n}〉|√

〈ζ̃ (i)n , ζ̃
(i)
n 〉
√

〈E{ζ̃n},E{ζ̃n}〉
. (3.14)

According to (3.14), γ (i)ζ becomes 1 in case of perfect self-similarity, and 0 in case of no
self-similarity. Assuming that a self-similar behaviour is present in all the data considered,
the averaging process will clearly reveal the self-similar profile, with each data point
showing small deviations from it. Note, however, that if self-similar behaviour is found
in only a limited range of parameters, e.g. λz, then including data points outside this range
can mask the self-similar behaviour. That is, the approach used is prone to false negatives,
being a conservative identification method.

In figure 12, we show the similarity maps γχ , γφ and γξ for different ARs and α+
values. White regions in the figure correspond to wavenumber pairs that are not contained
in the database. In general, as all the modes have similar phase and the mode shapes are
never too different from each other, for almost all the cases the self-similarity coefficient
given in (3.14) takes values close to 1. However, we observed by visual inspection that
self-similarity is sufficiently clear only for γ > 0.9. Therefore, we set this as the lower
limit in the maps shown in figure 12. The wall-attached structures given by ξ show strong
self-similarity except the very-large-scale structures, which, once again, potentially are
affected by the other half-channel. We see a slight reduction in the self-similarity of the
smallest scales, particularly in the wall-normal and spanwise velocity components, ξy and
ξz, respectively. This reduced self-similarity is in agreement with the deviation of the
small-scale structures from the β−1 trend as shown in figure 11.

Parallel to the wall-attached structures, the associated minimal-norm forcing, φ shows
also self-similarity, although slightly reduced, in all its components except the large-scale
structures. Note that the minimal-norm forcing φ involves only the response and the
resolvent operator. Given that the response is self-similar, this result implies that the
resolvent operator induces self-similarity as well. This is in line with the findings of Hwang
& Cossu (2010a), McKeon (2017) and Sharma et al. (2017).

Regarding the wall-shear-correlated forcing χ , we observe self-similarity in the
streamwise and spanwise components, χx and χz, respectively, with that in χz being
slightly higher. No such self-similarity is seen in the wall-normal component χy. A
potential reason for that may be the lower amplitude of forcing modes in the y-direction
compared to other components, as illustrated in figure 6; statistical convergence for
low-amplitude components is sufficiently harder, as χy is the smallest and the least
effective forcing component in terms of wall-shear dynamics (see figure 7). Even
being limited to χx and χz, given that wall shear is determined mainly by these
components, the self-similarity seen in χ implies self-similar mechanisms associated
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Figure 12. Self-similarity maps γχ (a,d,g), γφ (b,e,h) and γξ (c, f,i), for different ARs and α+ values. Panels
(a–c), (d–f ) and (g–i) correspond to the x-, y- and z-components, respectively.

with the wall-attached structures. The presence of such self-similar mechanisms may be
beneficial for modelling wall-shear dynamics and attached eddies.

The mean self-similar modes of forcing and response for different ARs are shown in
figure 13. The streamwise and wall-normal response components, ξx and ξy, respectively,
have similar mode shapes for all ARs. The spanwise component has a double-peak
structure, becoming more apparent with increasing AR, which implies that the streamwise
vortex, and the lift-up mechanism, become more evident at higher AR. The double-peak
in the spanwise component of the minimal-norm forcing φz seen at every AR indicates
that the optimal forcing for wall shear always has a vortex-like structure. We do not see
such a structure in the correlated forcing χ . Note that the correlated forcing contains
both solenoidal and non-solenoidal parts, which may result in disappearance of the vortex
shape. A similar observation was reported in Morra et al. (2021).

The similarity analysis provided in this subsection involves only the mode shapes,
ignoring any amplitude information. To investigate the trends in the mode amplitudes, we
plot also the peak values for the absolute value of each mode component in figure 14, this
time without normalising the modes to have unit wall shear. We see in figure 14 that mode
amplitudes of correlated velocity decay with constant power with increasing β+, with the
decay rate being ∼2. The only exception is at AR = 2, which is shown in red. The decay
rate is nearly the same for all three components at all ARs from 3 to 10. Mode amplitude
increases up to AR = 6, and then saturates. In the minimal-norm forcing φ, the amplitude
of the streamwise component is seen to be an order of magnitude smaller than the spanwise
component. The amplitude difference increases with AR: φx becomes smaller, while
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Figure 13. Mean self-similar modes for χ (a,d,g), φ (b,e,h) and ξ (c, f,i). Panels (a–c), (d–f ) and (g–i)
correspond to the x-, y- and z-components, respectively.

φz remains unchanged. Similar to the minimal-norm forcing, wall-normal and spanwise
components of wall-shear-correlated forcing, χy and χz, respectively, have nearly the same
amplitudes with increasing AR. The amplitude of the streamwise component χx, on the
other hand, increases up to AR = 6 and saturates for higher AR, similar to the response
mode.

3.6. Self-similarity at sub-dominant wall-attached structures
We will now investigate if the self-similarity observed in the dominant wall-attached
structures extends to sub-dominant structures as well. To achieve this, we shift the trend
line used to select the frequency for a given wavelength pair, as seen in figure 15. The ratio
of the corresponding wall-shear spectra to that of the dominant structures investigated
above is shown in figure 16. We see that when shifting to higher frequencies, the energy
content at small wavenumbers drops significantly, while at high wavenumbers, it remains
comparable to the energy in dominant structures.

We calculate mode centre yh based on ξx for these sub-dominant structures, and
investigate its change with β in figure 17. It is observed that the β−1 trend appears only at
wavenumbers where τz contains energy at levels comparable to the dominant structures.
Figure 18 shows the self-similarity maps γχ , γφ and γξ for these sub-dominant structures,
similar to figure 12. Consistent with the yh versus β trends in figure 17, we observe
self-similarity only at wavenumbers that contain high energy. The analysis was repeated
for different shift values for ω, and similar results were obtained but are not presented
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Figure 14. Mode amplitudes for χ (a,d,g), φ (b,e,h) and ξ (c, f,i) at different wavenumber pairs. Panels (a–c),
(d–f ) and (g–i) correspond to the x-, y- and z-components, respectively. ARs range from 2 to 10; AR = 2 is
shown in red, and the rest with greyscale. Dashed lines indicate the 1/(β+)2 trends.
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Figure 15. Shifted trend line for ω+ corresponding to sub-dominant wall-shear structures.

here for brevity. These results imply that high-energy-containing wall-attached structures,
even if sub-dominant, and the associated forcing show self-similarity at a wide range of
wavenumbers and ARs. Parallel to the lack of self-similarity in the wall-normal component
of the forcing, the reason for not observing self-similarity in the low-energy modes may
once again be slower convergence rates for these modes.
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Figure 16. Ratio of the amplitude of τz calculated at sub-dominant frequencies to that calculated at ωmax at
different wavenumbers.

4. Conclusions

We investigated the self-similarity of wall-attached structures in turbulent channel flows
with a view to identifying attached eddies in the boundary layer. A flow database, obtained
by direct numerical simulations (DNS), is considered with Reynolds number Reτ = 543.
The analysis is based on the attached-eddy hypothesis (AEH) (Townsend 1976; Perry &
Chong 1982), which holds that attached eddies are high-energy-containing structures that
dominate the logarithmic region of the boundary layer, and whose size is determined
by their distance to the wall. Guided by this definition, we explore self-similarity by
considering the wall-normal organisation of streamwise–spanwise Fourier-mode pairs
associated with a fixed aspect ratio; we then identify flow structures and forcing modes
associated with wall shear in the spanwise direction, τz. Spanwise wall shear was chosen
as the representative quantity for quasi-streamwise vortices. The single-point measurement
considered here amounts to a rank-1 system, which allows, within the linear framework
provided by the resolvent analysis (Hwang & Cossu 2010a; McKeon & Sharma 2010;
Cavalieri et al. 2019; Lesshafft et al. 2019), identification of the flow structure associated
with the wall shear, i.e. wall-attached structures, and the associated forcing. We used
resolvent-based spectral proper orthogonal decomposition (RESPOD) to perform an
identification of wall-attached response and forcing modes. The method was compared
to the resolvent-based estimation (RBE) approach of Towne et al. (2020), which yields
the minimal-norm forcing to generate a given response. We observe that using a linear
scaling between the frequency and the streamwise wavenumber, the resulting wall-attached
structures exhibit self-similarity in line with the AEH for a wide range of wavenumbers
and aspect ratios. The frequency scaling is determined regarding the linear trend observed
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Figure 17. Mode centre y+
h obtained using ξx (square) and and χz (triangle) at different wavenumbers at

sub-dominant frequencies. Each subplot shows results for a different AR. The dashed lines show the 1/β+
trends.

in the peak frequency of the power spectral density (PSD) of τz with respect to the
streamwise wavenumber. Keeping the slope of the linear scaling constant, we observe
that self-similarity extends to structures at sub-dominant frequencies as well. Although
we do not particularly seek energetic structures, it was shown in Cheng et al. (2020),
where a number of turbulent channels (including one at Re = 550) were investigated, that
the wall-attached structures are dominant regarding the energy that they contain. As we
observe self-similarity in wall-attached structures in a wide range of frequencies and aspect
ratios, we expect these structures to be relevant in terms of the AEH.

We extend the analysis to investigate such self-similarity for the forcing structures,
again, associated with the wall-shear. Our findings reveal that both the minimal-norm
forcing required to obtain the measured wall-shear dynamics (obtained by RBE) and the
wall-shear-correlated forcing (obtained by RESPOD) that also drives the wall-attached
flow structures exhibit self-similar behaviour.

The self-similarity of forcing modes obtained using RBE can be associated with the
works of Hwang & Cossu (2010a), Moarref et al. (2013) and Sharma et al. (2017),
among others, where it was shown that self-similarity is a property of the resolvent
operator. Given the SPOD modes that are self-similar, it may be expected that associated
forcing modes predicted by RBE would be self-similar. But the demonstration of a forcing
self-similarity using the RESPOD approach illustrates how that self-similarity is indeed
present in the actual forcing data, suggesting a self-similar organisation of the nonlinear
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Figure 18. Self-similarity maps γχ (a,d,g), γφ (b,e,h) and γξ (c, f,i), for different ARs and α+ values,
obtained at sub-dominant frequencies. Panels (a–c), (d–f ) and (g–i) correspond to the x-, y- and z-components,
respectively.

scale interactions that drive attached eddies. The self-similar forcing structures are shown
to lead to elongated streaky structures, which are sustained by the lift-up mechanism,
consistent with the discussion of Cossu & Hwang (2017) in which streaks and streamwise
vortices participate in the lift-up mechanism as two interconnected elements of a single
attached eddy.

The self-similar forcing educed from the DNS data may be used to construct dynamical
models of attached eddies, following ideas similar to the works of Moarref et al. (2013),
Hwang & Eckhardt (2020) and Skouloudis & Hwang (2021). These works superpose
coherent structures obtained with the linearised Navier–Stokes operator such that the
overall Reynolds stresses are obtained. As presented in this work, RESPOD is an
appropriate technique to obtain the forcing that is coherent with a given flow response.
The observed self-similarity of the forcing modes may be included in dynamic models of
attached eddies for improved predictions of flow properties.

Another promising direction is the use of the identified self-similar forcing to build flow
estimators from a limited number of sensors. Linear estimators require assumptions of the
forcing, and the quality of predictions depends on the accuracy of the forcing statistics
included in the estimation (Chevalier et al. 2006; Martini et al. 2020; Amaral et al. 2021).
For wall turbulence, the specification of a self-similar forcing may be a viable approach to
construct accurate estimators, especially for high Reynolds numbers for which one cannot
obtain DNS data.
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Studies of coherent structures in flows have benefited greatly from the analysis of the
linearised Navier–Stokes operator, which, by its non-normality, leads to more amplified
structures that are more likely observed in a turbulent flow. However, a more refined
view is obtained if the actual nonlinear terms, which constitute a forcing in resolvent
analysis, are used in the input. The framework developed in this work is not restricted to
wall turbulence, and may be used in other flows to extract the properties of nonlinearities
driving the observed coherent structures.
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Appendix A. Linear operators used in resolvent analysis of channel flow

The linear operators used in (3.5) are given as

A =
[Lk −∇
∇T 0

]
, B = M =

⎡
⎢⎣

I 0 0
0 I 0
0 0 I
0 0 0

⎤
⎥⎦ and C =

⎡
⎣ I 0 0 0

0 I 0 0
0 0 I 0

⎤
⎦ , (A1a–c)

where Lk is the spatial linear Navier–Stokes operator (McKeon 2017) given as

Lk =
⎡
⎣−iαUx + ∇2/Re −∂yUx 0

0 −iαUx + ∇2/Re 0
0 0 −iαUx + ∇2/Re

⎤
⎦ , (A2)

where ∇ = [iα, ∂y, iβ]T and ∇2 = ∂2
y − (α2 + β2) are the gradient and Laplace

operators, respectively.
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