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1 PEL data for integral models

1.1 PEL Shimura data

We start with a set D of Shimura data of PEL type, as explained in [Del71, § 4.9] or [GN,
§ 4.3]. That is, D consists of:

(1) a finite semisimple Q-algebra B, endowed with a positive involution ∗.

(2) a finite B-module V , endowed with a non-degenerate bilinear alternating pairing
〈·, ·〉, such that 〈bx, y〉 = 〈x, b∗y〉 for all b ∈ B and (x, y) ∈ V .

(3) an R-morphism h : C → EndB (V )R such that complex conjugation on C corre-
sponds by h to the adjunction in EndB (V )R with respect to the pairing 〈·, ·〉, and
such that (u, v) �→ 〈u, h(i)v〉 is a symmetric definite positive pairing over VR.

Let G be the reductive group over Q defined by:

G(R) = {g ∈ GL(V ⊗Q R), ∃μ ∈ R×,∀x, y ∈ V ⊗ R,

〈gx, gy〉 = μ〈x, y〉 and the action of g is B-linear}

We can attach to h a morphism μh : C× → GC that induces a decomposition VC = V0⊕V1,
where μh (z) acts by z on V1 and by 1 on V0. The reflex field E of the Shimura data is then
the subfield of Q̄ generated by the traces of the elements of B acting on V0.

Let X be the G(R)-conjugacy class of h−1 : C× → GR. Then for each compact
open subgroup K of G(A f ) that is small enough, consider the analytic space G(Q)\X ×
(G(A f )/K ). We recall now some of the results of [Del71] (see also a detailled explanation
in [GN]). There is an algebraic variety Sh(G,X )K such that Sh(G,X )K (C) = G(Q)\X ×
(G(A f )/K ). The variety Sh(G,X )K actually has a model over the reflex field E, and under
additional conditions, this model is actually unique. We call it the canonical model of
the Shimura variety Sh(G,X )K ([Del71, Définition 3.13]). In the situation we are studying,
where the Shimura data is of PEL type, the canonical model can be constructed as a union of
connected components of a moduli space parameterizing abelian varieties with given polar-
ization, endomorphisms and level structure, that can be expressed in terms of the Shimura
data D.
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1.2 New data

We now want to construct an integral model at p of the Shimura variety Sh(G,X )K , that
is a smooth model over the ring OE ⊗Z Z(p) . We need some extra data and assumptions in
order to ensure that this is possible, and in order to define this integral model as a moduli
space of abelian varieties.

We add to the Shimura data D the following element: let OB be a Z(p)-order in B that is
stable under the involution ∗ of B and becomes maximal after tensorization with Zp .

Moreover, we require additional conditions:

(1) B is unramified at p, that is BQp = B ⊗Q Qp is isomorphic to a product of matrix
algebras over unramified extensions of Qp .

(2) there exists a Zp-lattice Λ in VQp that is stable under OB , and such that the pairing
〈·, ·〉 induces a perfect duality of Λ with itself.

Note that condition (1) implies that OB ⊗Z Zp is isomorphic to a product of matrix
algebras over rings of integers of unramified extensions of Qp .

Example 1.1. Let B be an imaginary quadratic extension of Q. Then condition (1) simply
means that p does not ramify in B. We can choose for OB the Z(p)-order generated by the
ring of integers of B.

1.3 The reductive group

Consider the reductive group G attached to the Shimura data D. Because of the additional
conditions, GQp is unramified, as we can define a smooth reductive model G of GQp over
Zp . Indeed, fix a lattice Λ as in §1.2, (2). Let C0 be the subgroup of G(Qp) that stabilizes
the lattice Λ. Then C0 is the hyperspecial subgroup of the Zp-points of G.

Remark 1.2. A consequence of [Kot92, Lemma 7.2] is that, when the Shimura data is of
type A or C (see §1.4), the lattice Λ as in §1.2 (2) is essentially unique, as two such lattices
differ by the action of an element of G(Qp). As a consequence, the subgroup C0 of G(Qp)
is uniquely defined up to conjugation in these cases.

1.4 Classification

For later use, we recall the classification of Shimura data. Let C = EndB (V ). It is endowed
with an involution ∗ coming from the involution of B, and by construction G(Q) = {x ∈
C, xx∗ ∈ Q×}. Let CR = C ⊗Q R. Then we have three families of Shimura data:

Type A: CR is a product of copies of Mn (C) for some n.
Type C: CR is a product of copies of M2n (R) for some n.
Type D: CR is a product of copies of Mn (H) for some n.

Unitary groups correspond to type A. More precisely, if the data is of type A, then the
subgroup G1 of G such that G1(Q) = {x ∈ C, x∗x = 1} is the restriction of scalars to Q of
some inner form of a unitary group. The group of symplectic similitudes GSp corrsponds
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to type C, and orthogonal groups in even dimension to type D. As type D can be more
complicated and we are mostly interested in the case of unitary groups, we will sometimes
state results only for types A and C.

2 Preliminaries

In this Section we fix D a set of Shimura data as in §1.

2.1 Polarized abelian schemes with an action of OB

Let S be an OE ⊗Z Z(p)-scheme.

Definition 2.1. Let R be a subring of Q. An R-isogeny between two abelian schemes A
and A′ over S is an isomorphism in the category where the objects are abelian schemes
and the set of morphisms from A to A′ is Hom(A, A′) ⊗Z R. An R-polarization of A is a
polarization of A that is also an R-isogeny from A to the dual abelian scheme At .

Definition 2.2. We say that (A, λ, ι) is a Z(p)-polarized abelian scheme with an action of
OB if:

(1) A is an abelian scheme over S.

(2) λ is a Z(p)-polarization.

(3) ι is an injective ring homorphismOB → End(A)⊗ZZ(p) which respects involutions
on both sides: the involution ∗ on the left side, and the Rosati involution † coming
from λ on the right side.

2.2 The determinant condition of Kottwitz

We now have to find a way to explain how OB acts on the abelian scheme. More pre-
cisely we want to be able to express the fact that OB acts on Lie A the same way it acts
on V0.

2.2.1 The determinant condition for projective modules

We fix once and for all a generating family α1, . . . αt of OB as a Z(p)-module.
Let R be an algebra over OE ⊗Z Z(p) , and M be a finitely generated projective R-module.

Suppose that OB acts on M by R-linear endomorphisms. We then say that M is a R-module
with an action of OB . A special case of such a module with an action of OB is given by V0

(see definition in §1.1).
We consider the action of OB[X1, . . . Xt ] on M ⊗R R[X1, . . . Xt ]. We denote by detM ∈

R[X1, . . . Xt ] the determinant of the element X1α1 + . . . Xtαt for this action. Here the ring
R is understood.

It is clear that detM is functorial in R : that is, if f : R → R′ is a homomorphism of
OE ⊗Z Z(p)-algebras, and M ′ = M ⊗R R′, then OB acts on M ′ by R′-linear endomorphisms
and detM′ = f (detM ).
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We have the following result:

Lemma 2.3. detV0 ∈
(
OE ⊗Z Z(p)

)
[X1, . . . Xt ].

Proof. By definition of the reflex field E, all the elements det(b;V0) lie in E, so the
coefficients of detV0 are in E. Let F be a number field such that the action of B on V0 is
defined on F. Then the image of OB in the algebra of g×g matrices over F is an OF ⊗Z(p)-
order. Hence det(b,V0) is in OF ⊗ Z(p) for all b ∈ OB . So the coefficients of detV0 are
integral over Z(p) . This proves the Lemma. �

Lemma 2.4. Let k be a field, and V and W be two finite-dimensional k-vector spaces with
an action of OB . Then V and W are isomorphic if and only if detV = detW .

Proof. Let us denote OB ⊗Z k by A. Then A is a finite dimensional semisimple algebra
over k. Indeed, if char(k) = 0 then A = B ⊗Q k, and if char(k) = p then A is a product of
matrix algebras over extensions of Fp , as OB ⊗ Zp is a maximal order of B ⊗Qp , which is
itself a product of matrix algebras over unramified extensions of Qp . Moreover, V and W
are isomorphic as k-vector spaces with an action of OB if and only if they are isomorphic
as A-modules.

We write A = A1× · · ·× An where the Ai are simple k-algebras. We consider V and W as
A-modules. Then we have decompositions V = V1× · · · ×Vn and W = W1× · · · ×Wn where
Vi and Wi are Ai-modules. As Ai is simple it has only one isomorphism class of irreducible
representation. Hence V and W are isomorphic if and only if dimVi = dimWi for all i, and
it is clear that this information can be recovered from detV and detW . �

Definition 2.5. If R is an (OE ⊗Z Z(p) )-algebra, and M an R-module with an action of
OB , then we say that M satisfies the determinant condition if detM equals the image of
detV0 in R[X1, . . . Xt ].

We then show how the isomorphism class varies under specialization:

Lemma 2.6. Suppose R is an OE ⊗Z Z(p)-algebra that is a local ring with residue field
k, and let M be a finitely generated free R-module with an action of OB . Then M satisfies
the determinant condition if and only if M ⊗R k does.

Proof. We need only prove that M satisfies the determinant condition when M ⊗R k does.
Note that if R ⊂ R′, then the R′-module R′ ⊗R M satisfies the determinant condition if and
only if M satisfies the condition. Note also that as OB is finitely generated over Zp , there
exists a noetherian subring R0 ⊂ R, and a free R0-module M0 with an action of OB such
that M = M0 ⊗R0 R. So we can assume that R is noetherian if needed.

Fix K a finite extension of Qp containing E such that there exists a K-vector space W
with an action of B satisfying the determinant condition. As OB ⊗Z Zp is compact, W
contains an OK -lattice L with an action of OB , and L satisfies the determinant condition.
Suppose first that R is in fact an OK -algebra. Then by Lemma 2.4 M ⊗R k is isomorphic
to L ⊗OK k as a k-module with action of OB, as detM⊗Rk = detL⊗OK

k . Let us show now
that L ⊗OK R is a projective OB ⊗Z R-module. It is enough to show it when R = OK .
But OB ⊗Z OK is a product of matrix algebras over extensions of Zp . So the result
holds by Morita equivalence, as L is torsion-free. So the OB ⊗Z R-linear isomorphism
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L ⊗OK k → M ⊗R k lifts to an OB ⊗Z R-linear morphism L ⊗OK R → M . Now forget
the action of OB . Nakayama’s Lemma implies that this morphism is an isomorphism. As
L ⊗OK R satisfies the determinant condition, so does M .

Fix now F a finite extension of E such that the action of B on V0 can be realized on F,
that is, there exists an F-vector space L with an action of OB satisfying the determinant
condition. Suppose now that R is an F-algebra. Then by the same reasoning as before, we
show that M satisfies the determinant condition if M ⊗R k does, using this time the fact
that L is a projective OB ⊗Z F-module.

Assume now that we have an R-algebra R′ which is either an OK -algebra or an F-
algebra, which is such that R ⊂ R′, and such that for any maximal ideal m′ of R′, we have
m ⊂ (m′∩R). Then if the determinant condition holds for M⊗R k, it holds for M⊗R (R′/m′)
for allm′ as k ⊂ R′/m′, hence it holds for M ⊗R R′

m′ by the study of the two previous cases,
and so it holds also for M as R ⊂ R′, and R′ ⊂ ∏m′ R′

m′ (by [Mat89, Theorem 4.6]).
So we need only find such an R′. If p is invertible in R, we set R′ = R ⊗E F. If p is

not invertible in R, we set R′ = R̂ ⊗Zp OK , where R̂ is the p-adic completion of R (in this
situation we need to assume that R is noetherian). �

We conclude that detM depends only on specializations:

Corollary 2.7. Let R be an OE ⊗Z Z(p)-algebra such that spec R is connected, and let
M be a finitely generated projective R-module with an action of OB . Then M satisfies the
determinant condition if and only if there exists a maximal ideal m of R, with residue field
k, such that M ⊗R k satisfies the determinant condition.

2.2.2 The determinant condition for abelian schemes with an action of OB

Let (A, λ, ι) be a polarized abelian scheme with an action of OB over the base scheme S.
Then OB acts on Lie A, which is a locally free OS-module. For each open affine subset U
of S, we can define detLie A(U) ∈ Γ(U,OS )[X1, . . . Xt ] as in §2.2.1. By functoriality of
the definition of det, these sections are compatible, hence glue to define a global section
detLie A ∈ Γ(S,OS )[X1, . . . Xt ]. As Γ(S,OS ) is naturally an OE ⊗Z Z(p)-algebra it makes
sense to compare detLie A to the image of detV0 in Γ(S,OS )[X1, . . . Xt ]. Following [Kot92],
we set the following definition:

Definition 2.8. The triple (A, λ, ι) satisfies the determinant condition of Kottwitz ifdetLie A

is the image of detV0 .

One consequence of the definition is the following: the dimension of Lie A and hence
that of A is equal to that of V0.

2.2.3 Some geometric properties of the determinant condition

We state what geometric consequences we can deduce from Proposition 2.6 and
Corollary 2.7:

Proposition 2.9. Let S be an OE ⊗Z Z(p)-scheme, and S0 a closed subscheme of S with
nilpotent definition ideal. Let (A, λ, ι) be an abelian scheme over S with an action of OB .
Suppose that the base change of (A, λ, ι) to S0 satisfies the determinant condition. Then so
does (A, λ, ι).
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Proposition 2.10. Let S be an OE ⊗Z Z(p)-scheme, and (A, λ, ι) an abelian scheme over S
with an action of OB. Then there is a closed subscheme T of S that is a union of connected
components, such that for any closed point x of S, (Ax, λx, ιx ) satisfies the determinant
condition if and only if x is a point of T.

2.2.4 The example of unitary groups

In the case of unitary groups over Q, we give a condition on Lie A that is equivalent to the
determinant condition of Kottwitz and that is simpler to state.

Let B be a quadratic imaginary extension of Q, and let τ be in B such that OB = Z[τ].
Fix a prime p that is unramified in B.

Let R be an OB, (p)-algebra, and M a locally free R-module with an action of OB . Then
we have a decomposition M = M+ ⊕ M− where M+ and M− are also locally free. Here
M+ is defined as the submodule of M where the action of τ from the action of OB and the
action of the image of τ in R coincide, and M− is the submodule where these action differ
by conjugation in OB . When R is connected we can then define the type of M as the pair
of integers (rk M+, rk M−).

Then, if S is an OE ⊗Z Z(p)-scheme, an abelian scheme A with an action of OB over
the base S satisfies the determinant condition if and only if Lie A has the same type as the
B-module V0.

2.3 Level structures

2.3.1 Tate modules

Denote by A
p
f

the ring of finite adeles of Q away from p, and by Ẑ(p) the ring
∏
��p Z� . We

denote V ⊗Q A
p
f

by V (p) .
Let (A, λ, ι) be a polarized abelian scheme with an action of OB , defined on an

OE ⊗Z Z(p)-schemes. Let s be any geometric point of S, and consider the Tate modules:
T (As) = lim

←−
N

As[N ], T (p) (As) = lim
←−

N prime to p

As[N ] = T (As) ⊗Ẑ Ẑ(p) and V (p) (As) =

H1(As,A
p
f
) = T (p) (As) ⊗Ẑ(p) A

p
f
.

They are endowed with a non-degenerate bilinear form, coming from the polarization λ,
and an action of OB , coming from the action of OB on A itself.

Let f be a separable isogeny from A to A′ with kernel C. Then f induces a morphism
T ( f ) : T (As) → T (A′s) which is injective with cokernel isomorphic to Cs . If f
is of prime-to-p degree then f induces T (p) ( f ) : T (p) (As) → T (p) (A′s) which is
injective with cokernel Cs . We also have an isomorphism V (p) ( f ) : V (p) (As) →
V (p) (A′s).

Suppose f is a separable R-isogeny for some subring R of Q. Then V ( f ) is still well-
defined but f does not necessarily map T (As) into T (A′s). In fact f maps T (As) into T (A′s)
if and only if f is an isogeny in the usual sense.

2.3.2 Level subgroups

Definition 2.11. A level subgroup of G is a compact open subgroup of G(Ap
f
).

In particular, for us a level structure is always “away from p”.
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Example 2.12. Fix a lattice L ⊂ V that is self-dual for 〈·, ·〉. Fix an integer N prime to p.
We define the principal level subgroup of level N of G(Ap

f
) as the compact open subgroup

{g ∈ G(Ap
f
), (g − 1)(L ⊗Z Ẑ(p) ) ⊂ N (L ⊗Z Ẑ(p) )}.

2.3.3 Definition of the level structures

Let S be an OE ⊗Z Z(p)-scheme, and s a geometric point of S. Let (A, λ, ι) be a polarized
abelian scheme with an action of OB . We say that a map ηp from V (p) to V (p) (As) respects
the structures on both sides if it respects the bilinear forms up to a scalar in (Ap

f
)×, and if

it is compatible with the OB-action on both sides.
Let g be in G(Ap

f
). If ηp respects the structures on both sides then so does ηp ◦ g. Hence

G(Ap
f
) acts on the set of such maps.

Definition 2.13. Let K p be a level subgroup. A level structure of level Kp on (A, λ, ι) is a
choice of a geometric point s for each connected component of S, and for each s a choice
of a K p-orbit η̄p of morphisms ηp : V (p) → V (p) (As) respecting the structures on both
sides and such that the orbit is fixed under the action of π1(s, S).

Remark 2.14. The last condition ensures that a level structure is in fact independant of
the choice of s. Moreover, a level structure exists at some point s if and only if for any
geometric point s′ in the same connected component as s there exists a level structure at s′.

3 The integral model as a moduli scheme

3.1 Definition of the moduli problem

Let us fix a set of Shimura data D as in §1. We also fix a compact open subgroup K p of
G(Ap

f
). We will define a moduli problem classifying abelian schemes with an action of OB

and K p-level structure.

Definition 3.1. Let FK p be the following category fibered in groupoids over the category
(Sch/OE ⊗Z Z(p) ) of OE ⊗Z Z(p)-schemes:

• The objects over a scheme S are quadruples A = (A, λ, ι; η̄p ), where (A, λ, ι) is aZ(p)-
polarized projective abelian scheme over S with an action of OB which respects the
determinant condition of Kottwitz (Definition 2.8 of §2.2), and η̄p is a level structure
of level K p over each connected component of S.

• The morphisms from A = (A, λ, ι; η̄p ) to A′ = (A′, λ ′, ι′; η̄ ′p ) over S are given by a
Z(p)-isogeny f : A → A′ compatible with the action of OB and the level structures,
that is:

(1) there exists a locally constant function r on S with values in Z×(p) such that
λ = r ( f t ◦ λ ′ ◦ f ).

(2) f induces a morphism from End (A) ⊗Z Z(p) to End (A′) ⊗Z Z(p) , that we
still denote by f ; then for all b ∈ OB , f ◦ ι(b) = ι′(b).
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(3) η̄ ′p = V (p) ( f ) ◦ η̄p , where we denote by V (p) ( f ) the morphism induced by
f from V (p) (As) to V (p) (A′s ) for any s.

3.2 Known results about the moduli problem

We summarize here what is known about the moduli problem. We will explain these results
in more detail in the rest of the Chapter.

3.2.1 Representability

Theorem 3.2. FK p is a smooth Deligne-Mumford stack and it is representable by a quasi-
projective scheme when K p is small enough.

The part of the Theorem concerning representability will be proved in § 4, where we will
also explain what “small enough” means. The part about smoothness will be proved in § 5.

When FK p is representable by a scheme, we denote this scheme by SK p . In some cases

we know a little more about SK p ([Kot92, end of § 5]:

Proposition 3.3. Suppose that EndB (V ) is a division algebra and let K p be small enough
that FK p is representable by a scheme SK p . Then SK p is projective over specOE ⊗Z Z(p) .

3.2.2 Hecke operators

Theorem 3.4. The family of schemes SK p , for K p the small enough compact open sub-
groups of G(Ap

f
), form a tower of schemes with finite smooth transition morphisms. The

group G(Ap
f
) acts on the tower via Hecke operators.

This is the object of §6.

3.2.3 Generic fiber

The generic fiber of the schemes we have constructed are isomorphic (except for some
special cases) to the Shimura varieties SK in characteristic zero that were defined in the
first Chapter, when K = K pC0, where C0 is the hyperspecial subgroup of G(Qp) defined
in §1.3. Moreover this is compatible with the action of Hecke operators. More precisely we
will see in §7:

Theorem 3.5. When the Shimura data is of type A or C we have the following isomorphism
for each compact open subgroup Kp of G(Ap

f
):

SK p ⊗OE ⊗ZZ(p) E
∼−→ SK pC0

Moreover, the induced isomorphism between the towers (SK p ⊗ E)K p and (SK pC0 )K p is
compatible with the action of G(Ap

f
) on both sides.

4 Representability of the moduli problem

4.1 Statement of the Theorem

The goal of this Section is the proof of the following Theorem (which is a more precise
version of Theorem 3.2):
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Theorem 4.1. For all level subgroups K p , FK p is a Deligne-Mumford stack. Moreover if
K p is small enough so that it is contained in a principal level subgroup of level N ≥ 3, the
functor FK p is representable by a quasi-projective scheme over OE ⊗Z Z(p) .

We will prove this Theorem by comparing our moduli problem to the case of the Siegel
modular varieties, that is the case where the endomorphism ring is trivial, which is already
known by the results of [MFK94]. This is the proof outlined in [Kot92]. Another strategy
to study the representability of the moduli problem would be via Artin’s criterion. This
has the advantage of being more direct and not to rely on the difficult results of [MFK94],
but it has the drawback that it only shows that the moduli problem is representable by an
algebraic space when the level is small enough. To prove that it is in fact representable by
a quasi-projective scheme one then has to use additional arguments. A detailed proof using
this strategy can be found in [Lan13].

4.2 The Siegel case

We first study the so-called Siegel case. In this case the scheme we obtain is the Siegel
moduli space of abelian varieties.

4.2.1 Siegel Shimura data

We define the Siegel Shimura data D as follows: we take B = Q, OB = Z(p) , and V = Q2g

endowed with the standard symplectic form. In this case the group G is the similitude
symplectic group GSp2g , and there exists only one conjugacy class of maps h satisfying
the conditions of §1.1 (3). The reflex field is Q. As B = Q, this means that we can forget
about the action of OB in the definition of the moduli problem.

4.2.2 The result of [MFK94]

We describe the result of [MFK94] concerning the case of the Siegel Shimura data. Fix an

integer g ≥ 1 and an integer N ≥ 3.

Definition 4.2. Let A(N ) be the category fibered in groupoids on Z[1/N ]-schemes such
that: For any Z[1/N ]-scheme S, the set of objects of AS is the set of triples A = (A, λ; α)
where A is a projective abelian scheme of dimension g, λ is a principal polarization, and α
is a symplectic similitude (with multiplicator in (Z/NZ)×) between (Z/NZ)2g

S
and A[N ]S .

Here we consider (Z/NZ)2g to be endowed with the standard symplectic form. If A, A′ are
objects of AS , then the morphisms from A to A′ are the isomorphisms f : A → A′ such
that λ = f t ◦ λ ′ ◦ f and α′ = f ◦ α.

The main result is the following ([MFK94], Theorem 7.9, see also [MB85], Theorem 3.2
of Chapter VII):

Proposition 4.3. The category fibered in groupoids A(N ) is representable by a (smooth)
quasi-projective scheme.

4.2.3 Reformulation of the moduli problem

In order to compare more easily our situation to that studied in [MFK94] we give another
formulation of the moduli problem. As Q2g = V is endowed with the standard symplectic

https://doi.org/10.1017/9781108649711.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108649711.004


Sandra Rozensztajn 105

form, Z2g is a self-dual lattice. We write L for Z2g ⊗Z Ẑ
(p) . Let K (N ) be the principal level

subgroup of level N for some N prime to p, as defined in Example 2.12, with respect to
the lattice L. Let FK (N ) be the category fibered in groupoids as in Definition 3.1, with the
Siegel Shimura data.

Proposition 4.4. In the case of the Siegel Shimura data, when N is prime to p, FK (N ) and
the restriction of A(N ) to the subcategory of Z(p)-schemes are isomorphic.

Proof. In the proof, we abbreviate A(N ) by A and FK (N ) by F . Let S be a Z(p)-scheme,
and let AS and FS be the categories of objects of A and F over S. We must construct an
equivalence of categories between AS and FS . We can assume that S is connected, and fix
a geometric point s of S.

Let (A, λ; α) be an object of AS . We want to construct an object of FS . The morphism
α : (Z/NZ)2g

S
→ A[N ]S gives a symplectic similitude αs : (Z/NZ)2g → A[N ]s that

is invariant under the action of π1(s, S). This morphism αs then extends to a symplectic
similitude ηp0 : L → T (p) (As), which also induces a symplectic similitude ηp : V (p) →
V (p) (As). The map ηp is not uniquely defined, but its K (N )-conjugation class is uniquely
determined by αs , and so is invariant under the action of π1(s, S). Hence the orbit η̄p of ηp

defines a level structure η̄p extending α. Hence to each (A, λ; α) we can attach (A, λ; η̄p )
which is an object of FS . Morphisms in AS also define morphisms in FS , hence our
construction is functorial.

Let us show now that this functor is faithful. Let A = (A, λ; α) and A′ = (A′, λ ′; α′)
be objects in AS . Let f : A → A′ be a Z(p)-isogeny which is a morphism in the
category FS . Then f is an isomorphism, as by construction of the level structures
f induces an isomorphism from T (p) (A) to T (p) (A′). Moreover we necessarily have
λ ′ = f t ◦ λ ◦ f , as λ and λ ′ are principal polarizations. Hence f is a morphism in the
category AS .

Finally let us show that this functor is essentially surjective. We need to see that any
object in FS is isomorphic to an object coming from AS . Let A = (A, λ; η̄p ) be an object
of FS . We need to find A′ = (A′, λ ′, η̄p′) and a morphism A → A′ in FS such that λ ′ is a
principal polarization and η̄ ′p : V (p) → V (p) (A′s) induces a symplectic similitude between
(Z/NZ)2g

S
and A[N ]S .

Observe first that we need only find an object A′ in FS with a map A′ → A (or,
equivalently, with a map A → A′) such that η ′p induces an isomorphism between L
and T (p) (A′s). Indeed such a level structure then induces a π1(s, S)-invariant symplectic
similitudeαs : (Z/NZ)2g → A[N ]s that gives us the isomorphismα : (Z/NZ)2g

S
→ A[N ]S .

Moreover, if we have such an A′ we can change the polarization λ ′ to make it principal.
We know that the bilinear forms on L and T (p) (A′s) differ by a scalar a in (Ap

f
)×. By

multiplying λ ′ by some prime-to-p integer n, we multiply the bilinear form on T (p) (A′s)
by n, and so we change a into na. So we can assume that a is in (Ap

f
)× ∩ Ẑ(p) . Let � be

a prime not dividing p. We know that the isogeny λ ′ is divisible by � if and only if the
pairing on T�As coming from λ ′ is divisible by �. Hence we can divide λ ′ by some integer
n prime to p so that the pairing on L and the pairing on T (p) (A′s) coming from the new λ ′

differ by an element of Ẑ(p)×. But then the new polarization λ ′ induces an isomorphism
T (p) (A′s) → T (p) (A′s

t ) and so is principal, as we already know that its degree is prime
to p.
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Now we try to find A′ = (A′, λ ′, η̄p′) and a morphism A → A′ in FS such that η̄ ′p :
V (p) → V (p) (A′s) induces a symplectic similitude between L and T (p) (A′s). We note first
that T (p) (As) and ηp (L) are commensurable lattices in V (p) (As).

Fix a submodule M ⊂ T (p) (As) with finite index which is invariant under the action of
π1(s, S). Then, from the interpretation of the Tate module as a π1, we see that there exists
A′ and a prime-to-p isogeny f : A′ → A such that f (T (p) (A′s)) = M . We can define a
polarization on A′ by λ ′ = f t ◦ λ ◦ f . If moreover M ⊂ ηp (L), then we can define a level
structure on A′ by the condition that ηp = f ◦ η ′p . Then A′ = (A′, λ ′; η̄ ′p) is an object of
FS and f induces a map A′ → A in FS .

We apply this to M = T (p) (As) ∩ ηp (L). The construction gives us an A′ with a map
to A which satisfies moreover that T (p) (A′s) ⊂ η ′p (L). So now we need only treat the case
where T (p) (As) ⊂ ηp (L).

Fix a submodule M ⊂ V (p) (As) that is invariant under the action of π1(s, S), and suppose
that T (p) (As) ⊂ M with finite index. Then there exists an étale subgroup scheme C ⊂ A
with Cs isomorphic to M/T (p) (As), such that the isogeny f : A → A′ = A/C induces an
isomorphism from M to T (p) (A′s). There is some prime-to-p integer n such that (n f −1)
is an isogeny from A′ to A, then we can endow the abelian scheme A′ with a polarization
λ ′ = (n f −1)t ◦ λ ◦ (n f −1). We can define a level structure on (A′, λ ′) by η̄ ′p = f ◦ η̄p .
Assume now thatT (p) (As) ⊂ ηp (L) = M . Then f defines a morphism inFS from (A, λ; η̄p )
to (A′, λ ′; η̄ ′p). Moreover η̄ ′p has the property that η̄ ′p(L) = T (p) (A′s). So this treats the
case where T (p) (As) ⊂ ηp (L). �

4.3 From the Siegel case to the PEL case

Fix a Shimura data D as in §1. We denote by GSp(V ) the symplectic similitude group
attached to the vector space V and the given alternating pairing on it, forgetting the action
of B. Then the reductive group G from the data D is naturally a subgroup of GSp(V ).

We fix a level subgroup K p ⊂ GSp(Ap
f
), and set K p

G
= K p ∩ G(Ap

f
) which is a level

subgroup of G(Ap
f
). We can define two moduli problems as in Definition 3.1. One is attached

Shimura data D, and the level subgroup K p
G

, we denote it by F . The other is attached to the
Siegel Shimura data, and the level subgroup K p , we denote it by S.

We have a natural transformation fromF toS, which is defined by sending the quadruple
(A, λ, ι; η̄) over an S-scheme to (A, λ; ˜̄η), where ˜̄η is the K p-orbit generated by η̄.

We have to prove that the functor F is relatively representable over S, and that F is
projective over S. More precisely we will show:

Proposition 4.5. Let K p be such that S is representable by a scheme. Then F is relatively
representable over S by a scheme that is projective over S.

By §4.2, S is representable by a scheme for example when Kp is a principal level
subgroup of level N ≥ 3 prime to p.

4.3.1 Construction of a scheme

In this Paragraph we fix an OE ⊗Z Z(p)-scheme S, an abelian scheme A over S, a Z(p)-
polarization λ of A, and a K p-level structure η̄p on (A, λ).
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We will need the following result:

Lemma 4.6. Let S be a locally noetherian scheme, and A a projective abelian scheme
over S. Then the functor from S-schemes to the category of sets that attaches End(AT ) to T
is representable by a union of projective schemes over S. We will denote by E the scheme
representing the functor T �→ End(AT ) ⊗Z Z(p) . It is also a union of projective schemes
over S.

Proof. This follows from the theory of Hilbert schemes, as an endomorphism of AT is a
special case of a subscheme of A ×T A. A detailed proof of this Lemma can be found in
[Hid04, Section 6.1]. �

In our special case, the abelian scheme A is endowed with a prime-to-p polarization λ.
So E naturally comes with an involution r , which is the Rosati involution. Let m = 2n and
a1, . . . am be a set of generators of OB as a Z(p)-algebra with an+i = a∗i . We define a closed
subscheme Z of Em as follows: let T be an S-scheme, and (x1, . . . xm) ∈ Em(T ). Then
(x1, . . . xm) is in Z if and only if any Z(p)-polynomial relation verified by (a1, . . . am) is
also verified by (x1, . . . xm) and by (r (x1), . . . r (xm)), where r (xi ) = xn+i . The abelian
scheme AZ is then endowed with an algebra homomorphism OB → End(AZ ) ⊗Z Z(p) ,
which is compatible with the Rosati involution. That is, AZ is a polarized abelian scheme
with an action of OB as in §2.1.

We know by Proposition 2.10 that the locus where the OB-action on AZ satisfies the
determinant condition is a union of connected components of Z .

Moreover, AZ is also endowed with a K p-level structure, by base change from the level
structure on A. We want to understand the locus where this level structure comes from a
K p
G

-level structure. Let Z ′ be a connected component of Z , and fix a geometric point z of Z ′.
Then the K p-level structure corresponds to a π1(z, Z ′)-invariant K p-orbit η̄p of symplectic
similitudes V (p) → V (p) (Az ). Consider the condition: there exists an element f in η̄p which
is OB-equivariant, and such that its K p

G
-orbit is π1(z, Z ′)- invariant. This condition does not

depend on the choice of z on Z ′ by Remark 2.14. This condition is satisfied if and only if η̄p

comes from a K p
G

-level structure on AZ′ , and then is comes from a unique such structure,
as two elements f as in the condition differ by an element of Kp

G
. So the locus where the

K p-level structure comes from a K p
G

-level structure is a union of connected components
of Z .

We denote by XD the union of the connected components of Z where the determinant
condition holds and the K p-level structure comes from a K p

G
-level structure. Let AXD be

the abelian scheme over XD coming from A. As follows from the construction of XD , we
have:

Lemma 4.7. The abelian scheme AXD is naturally endowed with a structure of a polarized
abelian scheme with K p

G
-level structure.

4.3.2 Comparing F to S
We now show the relative representability ofF overS whenS is representable by a scheme.
We fix a scheme S, and a morphism S → S, and consider the functor F ′ = F ×S S. We
have to show that F ′ is representable by a scheme.
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The given morphism S → S amounts to an equivalence class of triples (A, λ; η̄) whereA
is an abelian variety over S, endowed with a prime-to-p polarization λ, and a level structure
η̄ of level K p . We choose a representative of this equivalence class. We can then construct
a scheme XD over S as in §4.3.1.

We then define a natural transformation F ′ → XD . Let T be an S-scheme. An element of
F ′(T ) is an equivalence class of quadruples (A, λ, ι; η̄), such that its image by the forgetful
functor F → S is in the same equivalence class as (A, λ; η̄)T . That is, there is a prime-to-p
isogeny f : A → AT , compatible with the polarizations and the level structures. Then
f induces an isomorphism between End(A) ⊗Z Z(p) and End(AT ) ⊗Z Z(p) . We use this
isomorphism to define a morphism ι : OB → End(AT ) ⊗Z Z(p) . Hence we get a point in
XD (T ).

We have to show that this construction is well-defined, that is, it does not depend on the
choice of (A, λ, ι; η̄) in the equivalence class. But this comes from the fact that any element
of (A, λ; η̄)T has no non-trivial automorphism, as we have chosen the level such that S is
representable by a scheme.

Lemma 4.8. This natural transformation is an isomorphism.

Proof. We only have to find a natural transformation XD → F ′ that is a quasi-inverse to
the transformation we have just defined. But this is Lemma 4.7. �

Hence F ′ is representable by the scheme XD . The connected components of XD are
projective over the scheme representing S, which is itself quasi-projective over OE ⊗Z Z(p) .
To finish the proof of Proposition 4.5, we only have to show that XD has only a finite number
of connected components. But this comes from the fact thatF is locally of finite presentation
over OE ⊗Z Z(p) , as can be seen using the criterion of Proposition 4.15 of [LMB00].

4.4 Reduction to the case of principal level structures

We now finish the proof of Theorem 4.1 for the set of Shimura data D. Fix a lattice L ⊂ V
as in Example 2.12, and denote by KG (N ) ⊂ G(Ap

f
) the principal level subgroup of level

N relative to this choice of L. If N ≥ 3 and N is prime to p, then Proposition 4.5 implies
that FKG (N ) is representable by a scheme.

Let K p be a level subgroup of G(Ap
f
), and let K

′p level subgroup that is contained in
K p . Then we have a functor FK

′p → FK p that sends the object (A, λ, ι; η̄p )/S to the object
(A, λ, ι; ˜̄ηp )/S where ˜̄ηp is the K p-orbit generated by η̄p (see also §6).

Assume now that K
′p is KG (N ) for some N ≥ 3 and prime to p, so that FK

′p is a
scheme, and in particular a Deligne-Mumford stack. This functor makes the scheme FK

′p

an étale presentation of the stackFK p . HenceFK p is a Deligne-Mumford stack by [LMB00,
Proposition 4.3.1].

If K p ⊂ KG (N ) for an N ≥ 3, then FK p is representable by an algebraic space. This
follows from Lemma 4.9 below and [LMB00, Corollary 8.1.1]: a Deligne-Mumford stack
where the objects have only the trivial automorphism is representable by an algebraic space.
But then we have a finite morphism FK p → FKG (N ) , which is hence schematic, so FK p is
representable by a scheme as FKG (N ) is.
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We used the following rigidity lemma:

Lemma 4.9. Let K p be a level subgroup contained in a principal level subgroup KG (N )
with N ≥ 3. Then for any scheme S over OE ⊗Z Z(p) and any object A of FK p,S , A has
only the trivial automorphism.

Proof. It follows from the fact that an automorphism of a polarized abelian variety over an
algebraically closed field that acts as the identity on the N-torsion subgroup for some
N ≥ 3 is the identity automorphism (see [Ser], or [Mil86] in the book [CS86] for a
proof). �

5 Smoothness

Theorem 5.1. The stack FK p is a smooth Deligne-Mumford stack. When K p is small
enough so that SK p is a scheme, then it is a smooth scheme.

We need only prove this when K p is small enough so that SK p is a scheme, as the transition
morphisms between the SK p with varying level subgroups are étale. As SK p is locally of
finite presentation, we only have to prove that SK p is formally smooth. We make use of the
infinitesimal lifting criterion for smoothness, noting that as OE ⊗ Z(p) is noetherian, we
need only test artinian algebras. That is, it suffices to show:

Proposition 5.2. Let R be an artinian OE ⊗Z Z(p)-algebra. Let S0 = spec R0 and S =
spec R such that R0 = R/I with I2 = 0. If (A0, λ0, ι0; η̄0) on S0 satisfies the determinant
condition of Kottwitz, then it lifts to a (A, λ, ι; η̄) on S that also satisfies the determinant
condition.

5.1 First reductions

Let us first take care of the level structure:

Lemma 5.3. If (A0, λ0, ι0) lifts to (A, λ, ι) then any level structure η̄0 on (A0, λ0, ι0) lifts
to a level structure η̄ on (A, λ, ι).

Lifting η̄ amounts to lifting some sections of A0[N ] to sections of A[N ], for a family of
integers N prime to p. As A[N ] is étale over S, this is automatic.

We now take the determinant condition out of the picture: if (A0, λ0, ι0) on S0 satisfying
the determinant condition of Kottwitz lifts to (A, λ, ι) on S, then the lift automatically
satisfies the determinant condition by Proposition 2.9.

Moreover we also know the following result, which is a consequence of the “rigidity
lemma” ([MFK94, Theorem 6.1]):

Lemma 5.4. Let A and B be two abelian schemes over S, then the restrictionHom(A, B) →
Hom(A0, B0) is injective.

From this we can deduce that if λ0 and ι0 both extend to a lifting A of A0, then the
compatibility condition between involutions is automatically satisfied.
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5.2 The theory of Grothendieck-Messing

Consider the situation as in the hypothesis of Proposition 5.2. As R is artinian, on each
component of S, p is either invertible or nilpotent. The generic fiber of the moduli space is
smooth, as it is the canonical model of a Shimura variety (see §7), so the existence of a lift
in the case where p is invertible is already known. So we can assume that p is nilpotent on
S. Hence we can use the theory of Grothendieck-Messing to study the problem of lifting
A0. Let us recall the part of the theory relevant to the situation. The complete constructions
and proofs can be found in [Mes72].

There is a functor from the category of abelian schemes over S0 to the category of locally
free sheaves on S associating to an abelian scheme A0/S0 the evaluation of the Dieudonné
crystal D(A0) on the inclusion S0 → S, that we will denote by D(A0)S . For any abelian
variety A/S lifting A0, D(A0)S is canonically isomorphic to H1

DR (A/S).
In the case where A0 is a Z(p)-polarized abelian scheme with an action of OB , D(A0)S

also has an action of OB . Moreover the polarization induces a morphism D(A0)S →
D(At

0)S = D(A0)∗S , which is an isomorphism because the polarization is separable, and
which is compatible with the action of OB on both sides. Hence the polarization induces a
non-degenerate alternating pairing on D(A0)S that is skew-hermitian with respect to OB.

A submodule ofD(A0)S is said to be admissible if it is locally a direct factor, and reduces
to (Lie A0)∗ on S0.

Theorem 5.5 (Grothendieck-Messing). There is an equivalence of categories between the
category of abelian schemes over S and the category of pairs (A0, F), where A0 is an abelian
scheme over S0 and F an admissible submodule ofD(A0)S , given by A �→ (A |S0, (Lie A)∗).

In order for the lifting A of A0 to be polarized with an action of OB, it is enough that
(Lie A)∗ is an OB-stable totally isotropic submodule of D(A0)S .

We are then reduced to the following linear algebra problem: Let M be a projective
module of rank 2g over R with an action of OB and a non-degenerate alternating pairing
that is skew-hermitian with respect to OB . Let M0 = M ⊗R R0, and let N0 ⊂ M0 be a
locally direct factor submodule of M0 of rank g stable under the action of OB and totally
isotropic for the alternating pairing. Then we need to find a lifting of N0 to a submodule N
of M that has the same properties.

The way to find such a submodule depends of the type of the group G. Details can be
found in [LR87] and [Zin82]. We will only treat a simple example: the case of unitary
groups over Q.

5.3 An example: unitary groups over Q

Let B be an imaginary quadratic extension of Q, with involution the complex conjugation,
and suppose that the prime p is split in B. Then A = OB ⊗Z Zp is Zp ×Zp and the involution
exchanges the factors. Let e1 = (1, 0) and e2 = (0, 1). Then eiM is totally isotropic for
i = 1, 2 as e∗1 = e2. Moreover a submodule Q of an A-module is A-stable if and only if
Q = e1Q ⊕ e2Q.

We can further simplify the problem: Let A0 be the universal abelian scheme over SK p .
We know that H1

DR (A0/S) and (Lie A0)∗ are locally free modules on SK p . As smoothness
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is a local question on SK p , we can assume that the exact sequence 0 → (Lie A0)∗ →
H1

DR (A0/S) → Lie(At
0) → 0 is split and that these modules are in fact free, This amounts

to assuming that we have a decomposition M0 = N0⊕P0, with N0 and P0 free. This implies
that M is a free R-module with basis any lifting of a basis of M0. Let us denote eiN0 by
N0,i for i = 1, 2. Then the N0,i are projective. We can also assume that they are free, by the
same reasoning as before.

Let us choose a basis of M0 consisting of the union of a basis of N0,i , i = 1, 2, and a basis
of P0. We can lift the basis of N0,i to a family in eiM , which gives us free liftings Ni ⊂ eiM
of N0,i . They are totally isotropic, but not necessarily orthogonal. As the bilinear form is
non-degenerate, we can modify the lifting of the basis of N0,2 such that N2 is orthogonal
to N1, and still N1 ⊂ e1M . Then N = N1 ⊕ N2 is the lifting of N0 we were looking for.
Indeed, N is A-stable, totally isotropic, projective (even free), and M/N is projective, as
it is isomorphic to the submodule P of M generated by any lifting of the chosen basis
of P0.

6 Hecke operators

We explain here the relation between the Shimura varieties when the level varies and the
action of the Hecke operators.

6.1 The tower of Shimura varieties

Let K p and K
′p be compact open subgroups of G(Ap

f
), such that K p ⊂ K

′p . Then we have
a natural morphism from FK p to FK

′p which sends a quadruple (A, λ, ι; η̄) over the base
S to the quadruple (A, λ, ι; η̄ ′), where η̄ ′ is the K

′p-orbit generated by η. Hence we have
a morphism of moduli schemes SK p → SK′p . As in the characteristic zero case, we then
have a whole tower of integral models (SK p )K p .

If K p is a normal subgroup of K
′p , then SK p → SK′p is an étale Galois covering of Galois

group K
′p/K p . More generally, for all K p ⊂ K

′p compact open subgroups of G(Ap
f
), the

morphism SK p → SK′p is finite étale and surjective.
The tower is smooth in the following sense: each of the schemes is smooth for K p small

enough (as explained in §5), and the maps in the tower are also smooth.

6.2 Action of the Hecke operators

We also have Hecke operators: the group G(Ap
f
) acts on the tower via its action on the level

structure. That is: for each g ∈ G(Ap
f
), g maps FK p to Fg−1K pg by sending (A, λ, ι; η̄) to

(A, λ, ι; η̄ ◦ g).

7 Relation to the generic fiber

We will now see how the scheme SK p relates to the Shimura variety Sh(G, X )K (C) =
G(Q)\X × G(A f )/K and to its canonical model.
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7.1 Modular definition of the canonical model

We first recall the construction of the canonical model. Let K be a compact open subgroup
of G(A f ), and let Sh(G, X )K (C) = G(Q)\X × G(A f )/K .

We can obtain a canonical model of this Shimura variety via a moduli space, as follows:

Definition 7.1. Let Q be the following category fibered in groupoids over the category
(Sch/E) of E-schemes:

• The objects over a scheme S are quadruples A = (A, λ, ι; η̄), where (A, λ, ι) is a
polarized projective abelian scheme over S with an action of OB which respects the
determinant condition of Kottwitz (Definition 2.8 of §2.2), and η̄ is a level structure
of level K over each connected component of S, that is, a K-orbit of isomorphisms
between V ⊗A f and H1(As,A f ), for s a geometric point of S, that is invariant under
the action of π1(s, S) (so that the definition does not depend on the choice of s).

• The morphisms from A to A′ over S are given by a Q-isogeny f : A → A′ compatible
with the action of OB and the level structures, that is:

(1) there exists a locally constant function r on S with values in Q× such that
λ = r ( f t ◦ λ ′ ◦ f ).

(2) f induces a morphism from End (A) ⊗Z Z(p) to End (A′) ⊗Z Z(p) , that we
still denote by f ; then for all b ∈ OB , f ◦ ι(b) = ι′(b).

(3) η̄ ′ = V ( f ) ◦ η̄, where we denote by V ( f ) the morphism induced from V (As)
to V (A′s ).

The functor Q is representable by a scheme SK when K is small enough. Then SK
is a disjoint union of canonical models over E of the Shimura variety Sh(G, X )K . More
precisely, as is explained in [Kot92, § 8]:

Proposition 7.2.

SK = �ker1 (Q,G)Sh(G′,X )K

where ker1(Q,G) is the set of locally trivial elements of H1(Q,G) and parametrizes the
inner forms G′ of G that are locally isomorphic to G at every place.

The failure of the Hasse principle is essentially harmless, as follows from the study of
ker1(Q,G) in [Kot92, § 7]. Recall that if the data is of type A, then G is the restriction of
scalars to Q of a unitary group. We denote by n the dimension of the hermitian space giving
rise to this group.

Proposition 7.3. When G is of type C, or of type A with even n, ker1(Q,G) is trivial. When
G is of type A with odd n, all the groups G′ are isomorphic to G.

In particular, under the hypotheses of the proposition, SK is in fact isomorphic to a finite
union of copies of the canonical model of the Shimura variety Sh(G,X )K .
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7.2 Relationship to the integral model

Let C0 be the hyperspecial maximal compact open subgroup of G(A f ) at p defined in §1.3,
that stabilizes a lattice Λ ⊂ VQp . Note that when the Shimura data is of type A or C, then
by Remark 1.2 there is no ambiguity about C0 up to conjugation by an element of G(Qp).
If K p is a compact open subgroup of G(Ap

f
), then K = K pC0 is a compact open subgroup

of G(A f ).

Theorem 7.4. We have then the following isomorphism when the Shimura data is of type
A or C:

SK p ⊗ E
∼−→ SK pC0

Moreover, the induced isomorphism between the towers (SK p ⊗ E)K p and (SK pC0 )K p is
compatible with the action of G(Ap

f
) on both sides.

It follows from this result that the generic fiber of the integral model SK p is a union of
copies of the canonical model of the Shimura variety Sh(G,X )K .

Let FK p the category we introduced in Definition 3.1 in order to define the moduli
problem for the integral model of the Shimura variety, relative to the level subgroup Kp .
In what follows we will abbreviate FK p by F . We write F |E for the restriction F to the
set of E-schemes. Hence if F is representable by the OE ⊗Z Z(p)-scheme SK p then F |E is
representable by SK p ⊗ E.

Theorem 7.4 is a consequence of the following Proposition (which is similar to
Proposition 4.4):

Proposition 7.5. When the Shimura data is of type A or C, the categories fibered in
groupoids Q and F |E are isomorphic. The isomorphism is compatible with the action of
the Hecke operators on the towers on both sides when K p varies.

Proof. Let S be an E-scheme. Let us explain how to define an equivalence of categories
fromF |E,S toQS . Let A = (A, λ, ι; η̄p ) be an object ofF |E,S . The problem is in the definition
of η̄ ′: we already have a K p-orbit of isomorphisms η̄ between V ⊗A

p
f

and H1(As,A
p
f
) and

we have to extend it to the whole of A f . That is, we have to find a C0-orbit of isomorphisms
between Λ and H1(As,Zp).

Observe that V and H1(As,Q) are isomorphic B-modules, as they become so after
tensorization by Q� for any � � p (this follows from the existence of the level structure
outside p). Then V ⊗ Qp and H1(As,Qp) are isomorphic as B-modules. Moreover both
have self-dual OB-lattices. Now we use the condition on the Shimura data: as it is of type A
or C, we know by [Kot92, Lemma 7.2] that the latticesΛ and H1(As,Zp) are isomorphic as
hermitian modules with an action of OB . Moreover the C0-orbit of the isomorphism is then
well-defined independently of choices. Hence we can uniquely extend the level structure
η̄p to η̄. �
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