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Generalizations of Frobenius’ Theorem on
Manifolds and Subcartesian Spaces

Jędrzej Śniatycki

Abstract. Let F be a family of vector fields on a manifold or a subcartesian space spanning a distri-

bution D. We prove that an orbit O of F is an integral manifold of D if D is involutive on O and it

has constant rank on O. This result implies Frobenius’ theorem, and its various generalizations, on

manifolds as well as on subcartesian spaces.

1 Introduction

1.1 Distributions

A generalized distribution on a manifold M is a subset D of TM such that, for each

p ∈ M, Dp = D ∩ TpM is a subspace of TpM. The dimension of Dp is called the

rank of D at p. A generalized distribution is smooth if it is locally spanned by smooth

vector fields. For the sake of brevity we use here the term distribution to mean a

smooth generalized distribution. In differential geometry the term distribution is

usually restricted to distributions of constant rank. In the definition adopted here,

rank of a distribution need not be constant.

An integral manifold of a distribution D on M is an immersed submanifold N of M

such that, for every q ∈ N , TιNM(TqN) = Dι(q), where ιNM : N →֒ M is the inclusion

map. A distribution D on M is said to be integrable if, for every p ∈ M, there exists an

integral manifold of D containing p. If D is integrable, then every integral manifold

of D can be extended to a maximal integral manifold of D.

Let D be the family of all vector fields on M with values in D. We say that D is

involutive if the family D is closed under the Lie bracket of vector fields. An integrable

distribution is involutive. The classical theorem of Frobenius is usually reformulated

in differential geometry as a criterion for integrability of distributions of constant

rank, see [12].

Theorem 1 (Frobenius’ Theorem) A constant rank distribution D on a manifold M

is integrable if it is involutive.

A necessary and sufficient condition for integrability of a distribution with vari-

able rank has been studied by Sussmann, who proved the following result [10].
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Theorem 2 (Sussmann’s Theorem) A distribution D on a manifold M is integrable if

and only if it is preserved by local one-parameter groups of local diffeomorphisms of M

generated by vector fields on M with values in D.

Integrability of a distribution D on manifold M implies that D is involutive and is

preserved by local one-parameter groups of local diffeomorphisms of M generated by

vector fields on M with values in D. A more general sufficient condition for integra-

bility of a distribution that contains sufficient conditions of both Frobenius’ theorem

and Sussmann’s theorem can be found in [2, p. 28, Theorem 3.25, part 2].

Theorem 3 (Kolář, Michor and Slovak) A distribution D on a manifold M is inte-

grable if it is involutive and its rank is constant on integral curves of vector fields on M

with values in D.

Frobenius’ theorem is clearly a special case of the theorem of Kolář, Michor and

Slovak since the assumption that rank D is constant implies that it is constant on

integral curves of vector fields on M with values in D. Similarly, if D is preserved by

local one-parameter groups of local diffeomorphisms of M generated by vector fields

on M with values in D, then D is involutive and rank D is constant on integral curves

of vector fields on M with values in D. Thus, Sussmann’s theorem is also a special

case of this theorem.

A distribution D on M gives rise to an equivalence relation ∼ on M defined by

p ∼ q if p can be joined to q by a piece-wise smooth curve γ whose tangent vectors

lie in D. Equivalence classes of this relation are orbits of the family D of vector fields

on M with values in D. For p ∈ M, the orbit through p of D can be expressed as

follows:

(1)

O = {exp(tnXn) ◦ · · · ◦ exp(t1X1)(p) | n ∈ N, (t1, . . . , tn) ∈ R
n, X1, . . . , Xn ∈ D},

where exp tX is the local one-parameter group of local diffeomorphisms of M gener-

ated by the vector field X. If q ∈ O, then in equation (1) we can replace p by q. If the

distribution D is integrable, then integral manifolds of D are orbits of D.

In equation (1), we get the same orbits if we replace the family D of all vector fields

on M with values in D by any family F of vector fields on M that span the distribution

D, [10]. In other words

(2)

O = {exp(tnXn) ◦ · · · ◦ exp(t1X1)(p) | n ∈ N, (t1, . . . , tn) ∈ R
n, X1, . . . , Xn ∈ F}.

Thus, we can rewrite the theorem of Kolář, Michor and Slovak in an alternative,

equivalent form.

Theorem 4 (Kolář, Michor and Slovak, alternative version) Let D be a distribution

on M and F a family of vector fields on M that spans D. The distribution D is integrable

if and only if it is involutive and has constant rank on every orbit of F.

All the generalizations of Frobenius’ theorem discussed above deal with integra-

bility of a distribution as a whole, and not with individual integral manifolds. In
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particular, the theorem of Kolář, Michor and Slovak implies that if a family F of vec-

tor fields on M spans an involutive distribution D such that the rank of D is constant

on every orbit of F, then all orbits of F are maximal integral manifolds of D. In

particular, all orbits of F are immersed submanifolds of M.

Here, we weaken assumptions of the theorem of Kolář, Michor and Slovak and

investigate necessary and sufficient conditions for a single orbit O of a family F of

vector fields on M to be an integral manifold of the distribution D spanned by F. In

this way, we obtain criteria for deciding when an orbit of a family of vector fields has

a structure of an immersed submanifold of M.

Definition A distribution D spanned by a family F of vector fields on M is said to

be involutive on an orbit O of F if, for every X,Y ∈ F, the Lie bracket [X,Y ](p) ∈ Dp

for every p ∈ O.

We obtain the following result.

Theorem 5 Let F a family of vector fields on M, and D the distribution on M spanned

by F. An orbit O of F is an integral manifold of D if and only if the rank of D is constant

on O and D is involutive on O.

Clearly, Theorem 5 implies the theorem of Kolář, Michor and Slovak Hence, it

implies Frobenius’ theorem and Sussmann’s theorem.

The statement of Theorem 5 has not been given in the literature, even though its

proof could have been distilled from the proof of the theorem of Kolář, Michor and

Slovak [2]. Here, we give a proof Theorem 5 that is an adaptation of the proof of

Frobenius’ theorem given in [12]. It has an advantage that it can be easily generalized

to subcartesian spaces.

1.2 Differential Spaces

A differential space is a topological space S endowed with a family C∞(S) of functions

on S satisfying the following conditions:

(i) The family { f −1((a, b)) | f ∈ C∞(S), a, b ∈ R} is a sub-basis for the topology

of S.

(ii) If f1, . . . , fn ∈ C∞(S) and F ∈ C∞(R
n), then F( f1, . . . , fn) ∈ C∞(S).

(iii) If f : S → R is such that for every x ∈ S there exist an open neighbourhood

Ux of x and a function fx ∈ C∞(S) satisfying fx|Ux
= f|Ux

, then f ∈ C∞(S).

Differential spaces were introduced by Sikorski [4], see also [5, 6].

Let R and S be differential spaces with differential structures C∞(R) and C∞(S),

respectively. A map ρ : R → S is said to be smooth if ρ∗ f ∈ C∞(R) for all f ∈ C∞(S).

A smooth map between differential spaces is a diffeomorphism if it is invertible and

its inverse is smooth.

Clearly, smooth manifolds are differential spaces. However, the category of differ-

ential spaces is much larger than the category of manifolds.

If R is a differential space with differential structure C∞(R) and S is a subset of

R, then we can define a differential structure C∞(S) on S as follows. A function
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f : S → R is in C∞(S) if and only if for every x ∈ S, there is an open neighborhood

U of x in R and a function fx ∈ C∞(R) such that f|S∩U = fx|(S∩U ). The differential

structure C∞(S) described above is the smallest differential structure on S such that

the inclusion map ι : S → R is smooth. We shall refer to S with the differential struc-

ture C∞(S) described above as a differential subspace of R. It should be noted that

the topology of a differential subspace S of R is the same as the topological subspace

induced by the inclusion map ι : S → R. If S is a closed subset of R, then the dif-

ferential structure C∞(S) described above consists of restrictions to S of functions in

C∞(R).

A Hausdorff differential space S such that every point of S has a neighbourhood

diffeomorphic to a differential subspace of R
n is called a subcartesian space. The

original definition of subcartesian space was given by Aronszajn in terms of a singular

atlas [1]. The characterization of subcartesian spaces used here can be found in [9,

11]. A review of properties of subcartesian spaces needed here can be found in [8].

Let S be a differential space. A derivation of C∞(S) at p ∈ S is a linear map

u : C∞(S) → R : f 7→ u · f satisfying Leibniz’ rule u · ( f h) = (u · f )h(p) + (u ·h) f (p)

for all f , h ∈ C∞(S). The space TZ
p S of derivations of C∞(S) is called the (Zariski)

tangent space of S at p. The space TZS =

⋃

p∈S TZ
p S has the structure of a differential

space and the projection map τ : TZS → S is smooth. If S is subcartesian, so is TZS.

A global derivation on S is a linear map X : C∞(S) → C∞(S) : f 7→ X · f that

satisfies Leibniz’ rule X·( f h) = (X· f )h+(X·h) f for all f , h ∈ C∞(S). For each p ∈ S,

the value of a global derivation X at p is X(p) ∈ TZ
p S defined by X(p) · f = (X · f )(p)

for every f ∈ C∞(S). Thus, evaluation at p gives a map from the space Der(C∞(S))

to TZ
p S. It should be noted that this map need not be an epimorphism. Hence, the

different notions of tangent vectors, which are equivalent for manifolds, need not

be equivalent for differential spaces. For this reason, we refer to TZS as the Zariski

tangent bundle space of S.

In [7], we proved existence and uniqueness of maximal integral curves of deriva-

tions on subcartesian spaces. We say that a global derivation X of C∞(S) is a vector

field on S if translations along integral curves of X are local diffeomorphisms exp tX

of S.

As in the case of a smooth manifold, we define a distribution on a differential space

S to be a linear subset D of TZS that is locally spanned by smooth vector fields. For

each p ∈ S, Dp = D ∩ TZ
p S is a subspace of TZ

p S. The dimension of Dp is the rank of

D at p.

In [8], we generalized Sussmann’s theorem to subcartesian spaces. The main result

of this paper is a generalization of Theorem 5 to subcartesian spaces.

Theorem 6 Let S be a subcartesian space, F a family of vector fields on S, and D the

distribution on S spanned by F. An orbit O of F is an integral manifold of D if and only

if the rank of D is constant on O and D is involutive on O.

Since, by definition, a distribution on a subcartesian space is spanned by vec-

tor fields, and vector fields on a subcartesian space M generate local one-parameter

groups of local diffeomorphisms of M, it is easy to see that Theorem 6 implies Theo-

rem 5, the theorem of Kolář, Michor and Slovak, Sussmann’s theorem, and Frobenius’
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theorem for subcartesian spaces. In other words, Frobenius’ theorem, Sussmann’s

theorem, the theorem of Kolář, Michor and Slovak, and Theorem 5 remain valid if

we replace manifold M by subcartesian space S.

2 Proof of Theorem 5

Let O be an orbit of a family F of vector fields on a manifold M which spans a distri-

bution D such that rank D|O = m, where D|O denotes the restriction of D to points

of O. In addition we assume that distribution D is involutive on O.

2.1 Covering of the Orbit by Manifolds

For every q ∈ O, there exists ξ = (X1, . . . , Xm) ∈ Fm such that the vector fields

X1, . . . , Xm are independent in an open neighbourhood V of q in M and span D

restricted to V ∩ O.

Let ρξ,q be a map from a neighbourhood of 0 ∈ R
m to M given by

(3) ρξ,q(t1, . . . , tm) = exp(tmXm) ◦ · · · ◦ exp(t1X1)(q).

For each i = 1, . . . , m, and u ∈ R,

u
d

dt
exp(tXi)(q) = uXi(exp(tXi)(q).

Hence, for each (u1, . . . , um) ∈ R
m,

Tρξ,q|(t1,...,tm)(u1, . . . , um)

= u1

d

dt1

(exp(tmXm) ◦ · · · ◦ exp(t1X1))(q) + · · ·

+ um
d

dtm

(exp(tmXm) ◦ · · · ◦ exp(t1X1))(q)

= u1T exp(tmXm) ◦ · · · ◦ T exp(t2X2)(X1(exp(t1X1)(q))) + · · ·

+ umXm(exp(tmXm) ◦ · · · ◦ exp(t1X1)(q))

(4)

In particular,

(5) Tρξ,q|(0)(u1, . . . , um) = u1X1(q) + · · · + umXm(q).

Since the vectors X1(q), . . . , Xm(q) are linearly independent, it follows that

Tρξ,q|(0) : R
m → TqM

is one-to-one. Hence, there exists an open connected neighbourhood Wξ,q of 0 in R
m

such that the restriction of ρξ,q to Wξ,q is a one-to one immersion of Wξ,q into M. We

redefine ρξ,q so that it has domain Wξ,q ⊆ R
m. Thus,

(6) ρξ,q : Wξ,q → M : (t1, . . . , tm) 7→ exp(tmXm) ◦ · · · ◦ exp(t1X1)(q)
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is a one-to-one immersion. Therefore, the image

(7) Uξ,q = ρξ,q(Wξ,q)

is an immersed submanifold of M, contained in O. Equation (1) implies that

(8) O =

⋃

ξ∈Fm

⋃

q∈O

ρξ,q(Wξ,q).

2.2 Topology of the orbit

Let ι : O → M denote the inclusion map, and let the map σξ,q : Wξ,q → O be defined

by ρξ,q = ι ◦ σξ,q. We topologize O with the strongest topology T which makes all

maps σξ,q continuous. In this topology each σξ,q is an open map. In particular, each

ρξ,q(Wξ,q) is open in O. The topology T has a basis of open sets consisting of sets

ρξ,q(Wξ,q) and all their open subsets.

Since each ρξ,q : Wξ,q → M is continuous, it follows that, for every V open in M,

ρ−1
ξ,q (V ) is open in Wξ,q. Therefore, σ−1

ξ,q (ι−1(V )) = ρ−1
ξ,q (V ) is open in Wξ,q which

implies that ι−1(V ) is open in O. Hence, the inclusion map ι : O → M is continuous.

Note that the topology T on O may be finer than the subspace topology induced by

ι : O → M.

2.3 Local Integral Manifolds

We show here that every point q ∈ O has a connected open neighbourhood in O

which is an integral manifold of D. The argument follows the proof of Frobenius’

theorem given in [12]. It is based on induction on m = rank D|O, where D|O is the

restriction of D to O.

If rank D|O = 1, then every point q ∈ O has a neighbourhood U in O that is the

range of an integral curve of a vector field X in D which spans D|U , and TpU = Dp

for every p ∈ U . Hence, U is an integral manifold of D through q. This holds for

every manifold M, every family F of vector fields on M, and every orbit O of F such

that the rank of the distribution D spanned by F is equal to 1 on the orbit O. Since

rank D|O = 1, it follows that D is involutive on O.

Suppose now that for every manifold M, every family F of vector fields on M, and

every orbit O of F such that the rank of the distribution D spanned by F is m − 1 on

the orbit O and D is involutive on O, each point q ∈ O has an open neighbourhood

in O that is an integral manifold of D. We prove that the same property holds in the

case when rank D|O = m and D is involutive on O.

We now use the notation established in preceding sections. As before, O is an orbit

of a family F of vector fields on a given manifold M which spans a distribution D such

that rank D|O = m, and D is involutive on O. Each point q ∈ O has a neighbourhood

Uξ,q which is open in O and has the structure of an immersed submanifold of M. We

show here that there is a connected open neighbourhood of q in O contained in Uξ,q

that is an integral manifold of D.

Without loss of generality, we may assume there are local coordinates (y1, . . . , yn)

on M, with domain V containing q, such that yi(q) = 0 for i = 1, . . . , n = dim M,
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the connected component W of q in Uξ,q ∩ V is given by the slice y j = 0, for j =

m + 1, . . . , n, and

(9) Xm =

∂

∂ym

on V.

On V let

(10) Yi = Xi − (Xi · ym)Xm, for i = 1, 2, . . . , m − 1, Ym = Xm.

Then, Y1, . . . ,Ym are smooth vector fields on V and (Y1(p), . . . ,Ym(p)) span Dp for

all p ∈ Uξ,q ∩V . Let S be the slice ym = 0, and let

(11) Zi = Yi|S for i = 1, 2, . . . , m − 1.

Since equations (9) and (10) imply that

(12) Yi · ym = 0 for i = 1, 2, . . . , m − 1,

it follows that Zi are vector fields on S. In other words, Zi(p) ∈ TpS for all p ∈ S,

and i = 1, . . . , m − 1.

Consider a distribution D ′ on S spanned by vector fields Zi . Let D
′ be the family

of all vector fields on S with values in D. Let ζ = (Z1, . . . , Zm−1) and Uζ,q be a

neighbourhood of q in the orbit O ′ of D ′ constructed as in Section 2.3. Taking into

account equations (7) and (3), we can make the identification

(13) Uζ,q = Uξ,q ∩ S.

On Uζ,q, the rank of D ′ is constant and equal to m − 1. Moreover, for every i, j =

1, . . . , m − 1 and p ∈ UO ′ , we have [Zi, Z j](p) ∈ TqS ∩ Dp ⊆ D ′
p. Hence, D ′ is

involutive on O ′, and we may invoke the inductive hypothesis. By shrinking Uζ,q if

necessary, we may assume that Uζ,q is an integral manifold of D ′ passing through q.

In terms of the coordinates (y1, . . . , yn) on M with domain V , introduced above,

equation (13) implies that Uζ,q ∩ V is given by the slice yi = 0, for i = m, . . . , n =

dim M. Moreover, the induction hypothesis implies that

(14) (Zi · yk)|(ym,ym+1,...,yn)=0 = 0 for i = 1, . . . , m − 1 and k = m + 1, . . . , n.

Equations (11) and (14) imply that

(15) (Yi · yk)|(ym,ym+1,...,yn)=0 = 0 for i = 1, . . . , m − 1 and k = m + 1, . . . n.

We are going to prove that

(16) (Yi · yk)|(ym+1,...,yn)=0 = 0 for i = 1, . . . , m and k = m + 1, . . . n.

Equation (16) implies that the vector fields Y1, . . . ,Ym are tangent to the slice

(17) Sξ,q = {p ∈ V | yk = 0 for k = m + 1, . . . , n},
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which is equivalent to the statement that Sξ,q is an integral manifold of D.

Equation (9) implies that

(18) (Ym · yk)|(ym+1,...,yn)=0 = 0 for k = m + 1, . . . n.

For i = 1, . . . , m − 1 and j, k = m + 1, . . . , n, we differentiate the left-hand side of

equation (16) with respect to ym and obtain

∂

∂ym

(Yi · yk)|(ym+1,...,yn)=0 = Ym · (Yi · yk)|(ym+1,...,yn)=0

= Yi · (Ym · yk)|(ym+1,...,yn)=0 + ([Ym,Yi] · yk)|(ym+1,...,yn)=0.

The first term on the right-hand side vanishes on account of equation (18). More-

over, the assumption that D is involutive on O implies that there exist smooth func-

tions cmil(y1, . . . , ym) such that

(19) ([Ym,Yi] · yk)|(ym+1,...,yn)=0 =

m
∑

l=1

cmil(y1, . . . , ym)(Yl · yk)|(ym+1,...,yn)=0.

Hence, equation (19), for i = 1, . . . , m − 1 and k = m + 1, . . . , n, reads

(20)
∂

∂ym

(Yi · yk)|(ym+1,...,yn)=0 =

m−1
∑

l=1

cmil(y1, . . . , ym)(Yl · yk)|(ym+1,...,yn)=0.

Fix a slice of Wξ,q of the form y1 = const, . . . , ym−1 = const, ym+1 = 0, . . . , yn = 0.

On such a slice, for every k = m + 1, . . . , n, (Yi · yk) are functions of ym alone, and

equation (20) becomes a system of m − 1 homogeneous linear differential equations

for m−1 functions (Yi · yk)(ym), where i = 1, . . . , m−1. Such a system has a unique

solution with given initial data at ym = 0, which vanish identically by equation (15).

Hence, (Yi · yk)(ym) = 0 for each i. This implies that (Yi · yk) |(ym+1,...,yn)=0= 0 for

i = 1, . . . , m − 1 and all y1, . . . , ym. This result, together with equation (20) implies

that equation (16) holds. Hence, the slice Sξ,q ⊆ Uξ,q given by equation (17) is an

integral manifold of D. Moreover, Sξ,q is an open connected neighbourhood of q in

the orbit O.

2.4 Transition Functions

For each q ∈ O and ξ = (X1, . . . , Xm) ∈ F
m, we have an open neighbourhood Sξ,q of

q in O that is an integral manifold of D. Moreover, Sξ,q = ρξ,q(W ′
ξ,q), where

ρξ,q(t1, . . . , tm) = exp(tmXm) ◦ · · · ◦ exp(t1X1)(q),

see equation (6). Moreover, W ′
ξ,q = ρ−1

ξ,q (Sξ,q) is an open neighbourhood of 0 ∈ R
m.

Suppose that Sξ,q and Sζ,p are two such integral manifolds of D such that Sξ,q ∩
Sζ,p 6= 0. Since Sξ,q and Sζ,p are open in O, the intersection Sξ,q ∩ Sζ,p is open. Let
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W1 = ρ−1
ξ,q (Sξ,q ∩ Sζ,p) and W2 = ρ−1

ζ,p(Sξ,q ∩ Sζ,p). Since ρζ,p is invertible, there exists

a function τ12 : W1 → W2 such that

(21) τ12(r) = ρ−1
ζ,p ◦ ρξ,q(r),

for all r ∈ W1. We want to show that τ12 is smooth. Let r = ρξ,q(t1, . . . , tm)

and u = (u1, . . . , um) in R
m. Since Sξ,q is an integral manifold of D, the vector

Tρξ,q|(t1,...,tm)(u1, . . . , um) is in D and there exist real numbers di j(p) such that

(22) Tρξ,q|(t1,...,tm)(u1, . . . , um) =

∑

i, j

uidi j(r)X j(r),

where (X1, . . . , Xn) = ξ. The matrix (di j(r)) is invertible and it depends smoothly

on r. Similarly, r = ρζ,p(s1, . . . , sm) for a unique (s1, . . . , sm) ∈ W2, and there is a

unique invertible matrix (ei j(r)), which depends smoothly on r, such that

(23) Tρζ,p|(s1,...,sm)(v1, . . . , vm) =

∑

i, j

viei j(r)Z j(r),

where (Z1, . . . , Zm) = ζ . Expressing ζ in terms of ξ, we get

(24) Z j(r) =

∑

k

f jk(r)Xk(r),

where the matrix ( f jk) is invertible and depends smoothly on r. If

Tρζ,p|(s1,...,sm)(v1, . . . , vm) = Tρξ,q|(t1,...,tm)(u1, . . . , um),

then linear independence of vectors X1, . . . , Xm together with equations (22), (23)

and (24) give

(25)
∑

i, j

vieik(r) fk j (r) =

∑

i

uidi j(r),

which is a system of m linear equations in m unknowns (v1, . . . , vm). Since the ma-

trices (eik(r)) and ( fk j (r)) are invertible, their product
∑

k(eik(r) fk j (r)) is invertible,

with inverse (g jk(r)) which depends smoothly on r. Hence there exists a unique solu-

tion

(26) vk =

∑

i, j

uidi j(r)g jk(r)

of equation (25). Equation (26) gives an explicit expression for the derivative of

τ12 : W1 → W2, (21), at (t1, . . . , tm). Since (di j(r)g jk(r)) depends smoothly on r, and

r = ρξ,q(t1, . . . , tm) depends smoothly on (t1, . . . , tm), it follows that τ12 is a smooth

map.

Summarizing, we have shown that as q varies over O, and ξ varies over elements

of Fk which locally span D, the maps ρ−1

ξ,q|Sξ,q
: Sξ,q → R

m are compatible charts of

a smooth structure on O. The orbit O with the maximal atlas generated by these

charts is a maximal (connected) integral manifold of D. This completes a proof of

Theorem 5.
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3 Proof of Theorem 6

In this section S is a subcartesian space, F a family of vector fields on S which spans

a distribution D such that rank D|O = m, where D|O denotes the restriction of D to

points of O. In addition, we assume that distribution D is involutive on O.

In the first section of the proof of Theorem 5 for manifolds, the manifold struc-

ture of M was used only to show that a smooth map from a neighbourhood of zero

in R
m to M with one-to-one derivative at zero is locally a smooth immersion. An ex-

tension of this result to subcartesian spaces was proved in [3]. However, for the sake

of completeness, we give here an independent proof of the covering of O by smooth

manifolds.

Lemma 7 Let S be a subcartesian space, ξ = (X1, . . . , Xm) vector fields on S, and q

a point in S such that X1(q), . . . , Xm(q) are linearly independent. Let ρξ,q be a smooth

map from a neighbourhood of 0 ∈ R
m to S given by

(27) ρξ,q(t1, . . . , tm) = exp(tmXm) ◦ · · · ◦ exp(t1X1)(q).

Then there exists an open neighbourhood W of 0 ∈ R
m such that ρξ,q(W ) is a smooth

manifold, the restriction ρξ,q|W of ρξ,q to W is a diffeomorphism onto the image ρξ,q(W ),

and the inclusion map ρξ,q(W ) →֒ S is smooth.

Proof There exists a neighbourhood V0 of q = ρξ,q(0) in S and a smooth map

φ0 : V0 → R
n that induces a diffeomorphism of V onto its image φ0(V0). By [7,

Proposition 2], for each i = 1, . . . , m, there exists a neighbourhood Vi of q in S

contained in V0, a neighbourhood Ui of φ0(q) in R
n and a vector field X̃i on Ui such

that φ0(Vi) = Ui ∩ φ0(V0) and

(28) Tφ0(Xi(p)) = X̃i(φ0(p)).

for all p ∈ Vi .

Take V =

⋂m
i=1 Vi and U =

⋂m
i=1 Ui . For i = 1, . . . , m, let Yi be the restriction

of X̃i to U , and let φ = φ0|V be the restriction of φ0 to V . It is a diffeomorphism

of V onto its image φ(V ) contained in U . Equation (28) implies that for every i =

1, . . . , m,

(29) Tφ ◦ Xi = Yi ◦ φ.

For every i = 1, . . . , m and (t1, . . . , tm) in the neighbourhood of 0 ∈ R
m, we have

(30) φ ◦ exp tiXi = (exp tiYi) ◦ φ.

Consider a map σ = φ ◦ ρξ,q from a neighbourhood of 0 ∈ R
m to R

n. Equation

(30) implies

σ = φ ◦ ρξ,q

= φ ◦ exp(tmXm) ◦ · · · ◦ exp(t1X1)(q)

= exp(tmYm) ◦ · · · ◦ exp(t1X1)(φ(q)).

(31)
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Hence, taking into account equation (4), we get

Tσ|(t1,...,tm)(u1, . . . , um)

= u1T exp(tmYm) ◦ · · · ◦ T exp(t2Y2)(Y1(exp(t1Y1)(q))) + · · ·

+ umYm(exp(tmYm) ◦ · · · ◦ exp(t1Y1)(q))

and

Tσ|(0)(u1, . . . , um) = u1Y1(φ(q)) + · · · + umYm(φ(q))

= u1Tφ(X1(q)) + · · · + umTφ(Xm(q)).

Since the vectors X1(q), . . . , Xm(q) are linearly independent, the vectors

Tφ(X1(q)), . . . , Tφ(Xm(q))

are also linearly independent. Hence, by the inverse function theorem, there exists a

neighbourhood W of 0 in R
m such that σ(W ) is an immersed submanifold of R

n and

the restriction σ|W of σ to W is a diffeomorphism of W onto σ(W ).

Equation (31) implies that

(32) ρξ,q(W ) = φ−1(σ(W )).

Since σ(W ) is a submanifold of R
n and φ is a diffeomorphism, it follows that ρξ,q(W )

is a manifold. Moreover, ρξ,q|W = φ−1 ◦ σ is a diffeomorphism of W onto ρξ,q(W )̇

It remains to prove that the inclusion map ρξ.q(W ) →֒ S is smooth. This will be

accomplished if we show that for every f ∈ C∞(S), the restriction f|ρξ,q(W ) of f to

ρξ,q(W ) is a smooth function on ρξ,q(W ). Since f ∈ C∞(S), it follows that for every

q ∈ ρξ,q(W ) there are a neighbourhood Vq of q in S and a function F ∈ C∞(R
n) such

that f|Vq
= F ◦ φ|Vq

. Restricting the above equality to ρξ,q(W ), we get

f|Vq∩ρξ,q(W ) = (F ◦ φ)|ρξ,q(W )∩Vq
= (F|σ(W ) ◦ φ|ρξ,q(W ))|ρξ,q(W )∩Vq

.

But, φ|ρξ,q(W ) : ρξ,q(W ) → σ(W ) ⊆ R
n is a diffeomorphism, and F ∈ C∞(R

n) implies

that F|σ(W ) is smooth. Hence, F|σ(W )◦φ|ρξ,q(W ) ∈ C∞(ρξ,q(W )), and f|ρξ,q(W ) coincides

on ρξ,q(W ) ∩ Vq with a smooth function F|σ(W ) ◦ φ|ρξ,q(W ). This holds for every q ∈
ρξ,q(W ). Hence, f|ρξ,q(W ) is smooth.

It follows from Lemma 7 that we have a covering of the orbit O by manifolds

ρξ,q(Wξ,q). Hence, we may continue with topological arguments in Section 2.2, and

topologize the orbit O with the topology T generated by a basis of open sets consisting

of sets ρξ,q(Wξ,q) and all their open subsets.

In the arguments of Section 2.3 the manifold structure of M is used in an essential

way. In order to extend results of Section 2.3 to subcartesian spaces, we use Theo-

rem 5 to show that for each point p of O there is a neighbourhood V of p in S such

that connected components of V ∩ O are integral manifolds of D|V .
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In the proof of Lemma 7, we have shown that for every point p ∈ O, there ex-

ists a neighbourhood V of p ∈ S, a diffeomorphism φ of V onto the image φ(V ),

contained in an open subset U of R
n, and m vector fields Y1, . . . ,Ym on U that are

φ-related to vector fields X1, . . . , Xn that span the restriction of D to V , equation (29).

Consider now the family

(33) Fφ = (Y1, . . . ,Ym)

of vector fields on the open set U of R
n. Let Dφ be the distribution on U spanned by

family Fφ and Oφ be the orbit of Fφ through φ(p). In other words,

Oφ =

{

exp(tkYik
) ◦ · · · ◦ exp(t1Yi1

)(φ(p))
∣

∣ k ∈ N, (t1, . . . , tk) ∈ R
k,

Yi1
, . . . ,Yik

∈ Fφ

}

.

Equation (30) implies that

(34) exp(tkYik
) ◦ · · · ◦ exp(t1Yi1

)(φ(q)) = φ ◦ exp(tkXik
) ◦ · · · ◦ exp(t1Xi1

)(p),

whenever the left-hand side is defined. Hence,

(35) Oφ ⊆ φ(O ∩V ).

By assumption, the distribution D spanned by F is involutive on the orbit O.

Hence, for every q ∈ O and i, j = 1, . . . , m,

(36) [Xi , X j](q) =

m
∑

k=1

ck
i j(q)Xk(q),

for some coefficients ck
i j(q). Since the vector fields Xi and Yi are φ-related, equation

(29), taking into account equations (35) and (36) we obtain

(37) [Yi,Y j](x) =

m
∑

k=1

c̄k
i j(x)Yk(x),

for every x ∈ Oφ and some coefficients c̄k
i j(x). This means that the distribution Dφ on

U is involutive on the orbit Oφ. By hypothesis, rank D|O = m, and the vector fields

X1, . . . , Xm are linearly independent on O∩V . Hence, the vector fields Y1, . . . ,Ym are

linearly independent on φ(V ∩ O) ⊇ Oφ. Thus, the distribution Dφ is involutive on

the orbit Oφ and has constant rank on Oφ. By Theorem 5, the orbit Oφ is an integral

manifold of Dφ.

Since Oφ ⊆ φ(V ), and φ is a diffeomorphism of V onto φ(V ), equation (29) im-

plies that φ−1(Oφ) is an integral manifold through p of the family (X1|V , . . . , Xm|V )

of vector fields on V obtained by restricting to V vector fields X1, . . . , Xm on S. By

assumption, X1, . . . , Xm span D restricted to V . Hence, φ−1(Oφ) is an integral man-

ifold of D through p. This implies that φ−1(Oφ) is a neighbourhood of p in O. In
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particular, we can choose a sufficiently small neighbourhood W of 0 ∈ R
m so that

φ−1(Oφ) = ρξ,p(W ), where ξ = (X1, . . . , Xm) and ρξ,p is defined by equation (27).

We have shown that for every p ∈ O, there exists a neighbourhood W of 0 in

R
m and ξ = (X1, . . . , Xm) ∈ Fm such that ρξ,p(W ) is an integral manifold of D.

This completes the differential space analogue of the argument given in Section 2.

The arguments of Section 2.4, leading to a smooth atlas on the orbit, do not use the

assumption that M is a manifold. Hence, they apply also to a differential space S.

This completes the proof of Theorem 6.
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