16

The spaces M (A) and H(A)

In this chapter, we introduce the notion of complementary space, which gener-
alizes the classic geometric notion of orthogonal complement. This notion of
complementary space is central in the theory of 7 (b) spaces. In Section 16.1,
we study the bounded (contractively or isometrically) embeddings. This leads
to the definition of M (A) spaces. Then, in Section 16.2, we characterize the
relations between two M (A) spaces. In Section 16.3, we describe the linear
functional on M(A). In Section 16.4, we give our first definition of comple-
mentary space based on an operatorial point of view. As we will see in the
next chapter, this operatorial point of view seems particularly interesting in the
context of H(b) spaces and Toeplitz operators. In Section 16.5, we describe
the relation between #H(A) and H(A*). This relation, though very simple,
is probably one of the most useful results in the theory of #(b) spaces. The
overlapping spaceisintroduced and described in Section 16.6. In Sections 16.7
and 16.8, we give useful results concerning some decomposition of M (A) and
H(A) spaces. In Section 16.9, we introduce our second definition of comple-
mentary space and show that it coincides with the first one. Finally, in the last
section, we show how the Julia operator can be used to connect this notion of
complementary spaces to the more familiar geometric structure of orthogonal
complements.

16.1 The space M(A)

Suppose that H; and H- are Hilbert spaces and H; C Hs. We do not nec-
essarily assume that #; inherits the Hilbert structure of #,. They can have
different Hilbert space structures. The assumption #; C Hs ensures that the
inclusion mapping
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iswell defined. If this mapping isbounded, i.e. if thereisaconstant ¢ > 0 such
that

[zl < cllzlln, (2 €Ha), (16.1)

we say that #H; is boundedly contained in Ho and write H; € H.. If the
mapping i isacontraction, i.e. ¢ < 1, we say that H; is contractively included
inHo and write H, — Ho. Finaly, if

[2ll3, = llzllz, (2 € Ha),

we say that H; is isometrically contained in #,. If it happens that the set
identity H,; = H» holds and, moreover, #, and H, have the same Hilbert
space structure, i.e. ||x||3, = ||z||%, for al possible z, then we write H; =
Ho. It is important to distinguish between the set identity H; = #, and the
Hilbert spaceidentity H; = Ho.

A very specia case of the above phenomenon is when #; is a closed sub-
space of Ho and inheritsits Hilbert space structure. Inthis case, #, isisometri-
cally embedded inside H-. In the next section, wewill look at this phenomenon
from adlightly different angle.

Theinequality (16.1) reveal s some facts about the topologies of H; and H..
If £ isaclosed (or open) subset of 4, then £ N H; isclosed (or open) in H,
with respect to the topology of #,. However, the topology of #; is usualy
richer. In other words, the topology of 7, isfiner than the topology it inherits
from H,. That iswhy, if A isa continuous function on H., then its restriction
to H1 remains continuous. We will treat thisfact in more detail in Section 16.3.
As aspecia case, if £ C Hy C Hs isclosed in H,, then £ isaso closed in
H1. However, if £ is closed in H1, we cannot conclude that it is also closed
in H5. Thefollowing result reveals the relation between different closures of a
setinH;.

Lemma 16.1 Let H; and H, be two Hilbert spaces, assume that H; is
boundedly embedded into #,, and let £ C H;. Then

Closyy, (Closy, £) = Closy,E.
Proof For simplicity, put 7 = Closy, £. Since £ C F, we have
Closy, £ C Closy, F.

To prove the converse, let = € Closy, F and fix any ¢ > 0. Then there exists
y € Fsuchthat || — yllu, < /2. But, sincey € F and F = Closy, &,
there exists z € £ such that ||y — z||», < €/2C, where C' is the constant of
embedding of H; into Ho, i.e.

[2ll3, < Cllzlla, (2 € Ha).
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Therefore, we have ||y — z|[#, < €/2 and then

[ = 2l <Nz = ylla, +[ly — 2lln, <e
Therefore, z € Closy, £. O

Suppose that #; isaHilbert space, Hs isasetand A : Hy — Ho isaset
bijection between H; and #,. Then the map A can be served to transfer the
Hilbert space structure of #; to Hs. It isenough to define

<AJJ, Ay>7‘£2 = <$, y>7‘ll (162)

foral z,y € H;. The agebraic operations on - are defined similarly. If -
isalinear space and A is an algebraic isomorphism between H; and H., the
latter requirement is already fulfilled. In this case, (16.2) puts an inner product,
maybe a new one, on Hs.

The above construction sounds very elementary. Nevertheless, it has pro-
found consequences. In fact, it isthe main ingredient in the definition of #(b)
spaces. To move in this direction, suppose that 7, and - are Hilbert spaces
and that A € L(H1,H2). By the first homomorphism theorem, the operator
A induces an isomorphism between the quotient space #; /ker A and R(A).
Hence, by (16.2), the identity

(Az, Ay)r(a) = (x + ker A, y + ker A)gy, /ker 4 (x,y € H1) (16.3)

gives a Hilbert space structure on R(A). We denote this Hilbert space by
M(A). Thenorm of = + ker A in H; /ker A isoriginally defined by

H‘T + kerA”'Hl/kerA = zEIEefrA HCC + ’Z”H1

But, for each z € ker A,

lz+ 2013, = [ Per )2 + (2 + Prer az) 3,

= | Pier ayr i3y, + 12 + Peer azll3y,
and thus we easily see that
|z + ker Ay, jxer 4 = [[Pier a)- % |l24, (x € Hy).
Hence, by the polarization identity (1.16), we have
(z+ker A, y+ker A)y, jier 4 = (Plker 4)2 5 Plier 4)LY)H, (z,y € H).
Moreover, by (1.27),
(Per A)1 Ty Preer 2)2Y) 4y = (T Plier )1 Y01y = (Plicer AL 75 Y) 2, -
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Therefore, the definition (16.3) reduces to
(Az, Ay) pm(a) = (Per A)1 75 Plier A) 1Y),
= <1.7 P(kcrA)ly>7-[1
= <P(ker A)L T, Y)H, (16.4)
for each x:,y € H1. In particular, for each z € H,
[ Az[| am(a) = | Pcer a)+ |2, - (16.5)
Moreover, if at least one of = or y is orthogonal to ker A, then, by (16.4),
<A.’1?7 Ay)M(A) = <$7 y>H1 . (166)
Therather trivial inequality
[Az][pea) < Ml (2 € Ha), (16.7)

which is a direct consequence of (16.5), will aso be frequently used. The
preceding formulas should be kept in mind throughout the text.

On R(A) we now have two inner products. One is inherited from Ho and
the new one imposed by A. In the following, when we write M(A) we mean
that R(A) is endowed with the latter structure. If thisis not the case, we will
explicitly mention which structure is considered on R(A). Let us explore the
relation between these two structures. Since A is abounded operator, we have
Az, = APyer )2 ®l130s < (Al 100) [ Pcer ay2@ll2, - (2 € Ha).

Therefore, by (16.5),
[Az|[3, < [[Allze 1) AT My (x € Ha). (16.8)
Thisinequality means that the inclusion map

i: M(A) — Ho
w o w

is continuous and its norm is at most || AJ|. In fact, by (16.7),
[Az]l3¢, < [lill [ Azl acay < lill Izl (z € A).

Thus, considering (16.8), we deduce that

il cmea),ma) = 1Al e 1) (16.9)
Moreover,
= AA". (16.10)
Indeed, let y € Hy and Az € M(A), withx € Hy and z L ker A. Then we
have

<A$7Z*y>M(A) = <Axay>7'[2 = <55,A*y>7-11 = <ACC’AA*?J>M(A)7
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which proves that i*y = AA*y. We will see in Section 16.8 that, in a sense,
the operator i* plays the role of an orthogonal projection of H» onto M (A).
If Aisinvertible, then the relations (16.7), (16.8) and

2ll7¢, = IIA™" Azllar, < A7 || Azl

imply that the normsin H1, Hs and M(A) (which asaset isequal to #H,) are
equivalent, i.e.

[@llae, = [[Az|l3e, < [|A|| p(a)- (16.11)

If A isabounded operator, the above construction puts M (A) boundedly
inside H. If A isa contraction, i.e. ||A|| < 1, then M(A) is contractively
contained in Hy; and if [|[wl|apay = Jwllw,, w € M(A), then M(A) is
isometrically contained in . Based on the conventions made in Section 16.1,
we emphasize that, for A,B € L(H1,H2), the notation M(A) = M(B)
means not only that the algebraic equality M(A4) = M(B) holds, but also
that the Hilbert space structures coincide, i.e.

(w1, w2) pm(ay = (W1, wa) pm(B)
for al possible elements w; and ws. Clearly, in the light of the polarization
identity, the latter is equivalent to
lwlameay = llwllmes)

for all possible elements w.

The relation (16.5) contains al the information regarding the definition of
the structure of M (A). In short, the structure of M(A) isthe same as that of
H1/ker A. Thisfact is explained in another language in the following result.

Theorem 16.2 Let A € L(H;,H>) and define

A Hy — M(A)
r — Ax.

Then A is a bounded operator, i.e. A € £(#H;, M(A)), and, moreover, A* is
an isometry on M(A).

Proof Theinequality (16.7) can be rewritten as
[Az( ameay = Azl meay < [zl (z € Ha).

This meansthat A is abounded operator. In order to show that A* is an isom-
etry on M(A), by Corollary 7.23, it is enough to show that A is a surjective
partial isometry. That A is surjective is atrivial consequence of the definition
of M(A). Moreover, ker A = ker A. Hence, by (16.5),

1Az pmca) = 1AZ]| amca)y = [Pker a)2 Zl13: = | Picer a)2 ] 3,
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for each x € H,. Thus, A is a partial isometry (see the original definition
(7.14)). O

The definition of spaces M (A) is closely related to the notion of bounded
embeddings introduced at the beginning of this section. Indeed, if M is a
Hilbert space that is boundedly contained in another Hilbert space #, then
theinclusion map

it M — H
r > X

is bounded from M into 7. Now, since for any = € M = M(i), we have

2] aaciy = [lE(2) | meiy = 1@l ag
the space M coincides with M (i), that is
M = M(i).
Conversely, if M = M(A), where A : H; — H is bounded, then M is
boundedly contained in 7. Thus, we get the following result.

Theorem 16.3 Let M and H be two Hilbert spaces. Then the following
assertions are equivalent.

(i) The space M is boundedly contained in # (respectively contractively;
respectively isometrically).

(ii) There exists a bounded operator A € L£(Hy,H) (respectively a contrac-
tion; respectively an isometry) such that

M = M(A). (16.12)

In the next section, we examine the problem of uniqueness in the represen-
tation of M given by (16.12). See also Exercise 16.2.2.

The following result shows that, if A € £(H) is an orthogonal projection,
then in fact we do not obtain a new structure on M (A). The Hilbert space
structure of M(A) is precisely the one it has in the first place as a closed
subspace of H.

Lemma16.4 Let M be a closed subspace of 7, and let Py, € £L(H) denote
the orthogonal projection on M. Then

M(PM') B M,
i.e. M(Py) = M and [|w|| p(py) = ||w||o forall w € M.

Proof Theidentity M(P,;) = M isan immediate consequence of the defi-
nition of an orthogonal projection. Remember that ker Py; = M=, and since
M isclosed, (M+)* = M. Hence, by (16.5),

[Pyl mcpagy = [ Per Papy 2 @l = [Pyl (€M) O
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Lemma16.5 LetA e L(Hq,H)and B € L(H). Then

|Bwlsmsay < lwllaay — (we M(A)).

Proof Itisclear that B M(A) C M(BA). Putw = Az, x € H;. Hence, by
(16.5),

[Bw|lamzay = [Paer Bayr®lla,  and  |lw|lacay = | Pcer a4y ]34 -
But, sinceker BA D ker A, we have
| Pier BAYL T3, < ([ Pcer Ay |94, -

Therefore, we deduce that || Bw|| y(a) < [|w]|at(a)- O

Exercises

Exercise 16.1.1  Let H be a set endowed with two inner products whose
corresponding norms are complete and equivalent, i.e.

cllzlh <llzlle < Cllzfy  (x € H),

where ¢ and C' are positive constants. Show that (#, (-, -)1) is boundedly
contained in (H, (-, - )2), and vice versa

Exercise 16.1.2  Let (X, .A) beameasurable space, and let 1 and v be two
positive measures on the o-algebra .A. Suppose that

W(E) < v(E) (16.13)
for al E € A. Show that L?(v) is contractively contained in L?(p).

Hint: The assumption (16.13) can be rewritten as

/XEd,US/XEdVa
X X

where x g is the characteristic function of E. Take linear combinations with
positive coefficients, and then apply the monotone convergence theorem to

obtain
/wduﬁ/ pdv
X X

for all positive measurable functions . Hence, deduce || f || 2¢,) < || f]|z2()-
Exercise16.1.3  Let p € L°°(T), and consider the multiplication operator

M,: L*T) — L*(T)
[ — ef,
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which was studied in Section 7.2. Show that

1 ' 1/2
lefllmony = (55 [ i) e )
and that
(oh by = 5 [ G dt  (f.g€ L(T)),

JT\E

where E = {( € T : ¢(¢) = 0}. Thefirst identity reveals that M (M) =
©L?(T) iscontractively contained in L2(T). Under what conditionis M (M,
isometrically contained in L2(T)?

Exercise16.1.4  Let © be an inner function for the open unit disk, and let

Me: H?*D) — H?*(D)
f — Of.

Show that

10 flmente) = Ifllzr2) = 1€fl2my  (f € H(D)).
Thus M(Meg) = ©H? isisometrically contained in H2 (D).
Hint: Mg isinjective and |©| = 1 amost everywhereon T.

Exercise16.1.5 Let A € L(H;,Hy)and« € C, a # 0. Show that

_ Hw”M(A)
|ov|

Wl Mman) (w € M(A)).

16.2 A characterization of M(A) C M(B)

If the operators A € L(H1,H) and B € L(H2,H) are such that M(A) €
M(B), then we surely have M(A) C M(B). Conversely, if the set inclusion
M(A) € M(B) holds, then the inclusion mapping

it M(A) — M(B)
w o w

iswell defined. But, in fact, more istrue. The way that the structures of M(A)
and M(B) are defined forces i to be a bounded operator and thus M (A) is
boundedly contained in M(B).

Lemma16.6 Let A € L(H;,H)and B € L(Hz,H) be such that M(A) C
M(B). Then M(A) € M(B).
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Proof We need to show that theinclusioni : M(A) — M|(B) isabounded
operator. The justification is based on the closed graph theorem. Let (wy,)n>1
be asequencein R (A) that convergesto w in M(A) andtow’ in M(B). Note
that tw,, = w,,. Since M(A) and M(B) are both boundedly embedded into
H, the sequence (wy,),>1 also tendsto w and to w’ in the norm of H. Then,
by uniqueness of the limit, we must have w = w’. Hence, the closed graph
theorem implies that  is continuous. O

Lemma 16.6 shows that the new notation € is not needed in the study of
M(A) spaces. However, we emphasize that M (A) = M(B) isnot equivalent
to M(A) = M(B). Theidentity M(A) = M(B) impliesthat

cllwlmee) < [wllma) < Cllwlms),
while in the definition of M(A) = M(B) we assumed that

[wllrmcay = lwll mcs)-

To use Lemma 16.6, we naturally ask under what conditions the set inclusion
M(A) € M(B) holds. Let ustreat asufficient condition. Supposethat thereis
abounded operator C' € L(H1,H2), with||C || < ¢, suchthat A = BC' Since,
for each z € H,, Az = B(Cx), we have the set inclusion M(A) C M(B).
Thus, by Lemma 16.6, M(A) € M(B). Moreover, by (16.7) and the fact that
IIC'|| < ¢, wehave

[Az|| sy = 1BCz| pmep) < 1Clln, < cllzln,-
By (16.5), replacing x by Py 4y givesus
Az mp) < cllAzmay (@ € Ha).

Hence, the norm of i is less than or equal to c¢. This means that M(A) is
boundedly contained in M(B) and, in particular, if ¢ = 1, M(A) is contrac-
tively contained in M (B). What is surprising is that the existence of C'isalso
necessary for the bounded inclusion of M(A) in M(B).

Theorem 16.7 Let A € L(H1,H)and B € L(Hz,H), and let ¢ > 0. Then
the following are equivalent.

(i) AA* < *BB*.
(i) Thereisanoperator C' € L(H1,Hz), with ||C'|| < ¢, suchthat A = BC.
(iii) We have M(A) C M(B) with
[wllms) < cllwllmay (w0 e M(A)),

i.e. the inclusion ¢ : M(A) — M(B) is a bounded operator of norm
less than or equal to c.

In particular, M(A) — M(B) if and only if AA* < BB*.

https://doi.org/10.1017/CBO9781139226769.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.003

10 The spaces M(A) and H(A)

Proof (i) <= (ii) Thisisthe content of Theorem 7.11.
(if) = (iii) Thiswas discussed above.
(iii) = (ii) Takean element w = Az € M(A), withsomex € H;. Hence,
for each x € H4, thereisay € H, such that
Az = By. (16.14)

The element y is not necessarily unique. However, if By = By, withy, 1y’ €
Ho, then B(y —y') = 0 and thusy — 3’ € ker B. In other words, we have
Pxer BY1Y = Pier )1y’ Therefore, the mapping

C: Hl — HQ
T P(kerB)iya

with y € H given by (16.14), iswell defined and
BCx = BPye, pyry = By = Az (x € Hy).

This means that the definition of C is adjusted such that the identity A = BC
holds. Moreover, by (16.5) and (16.7) and our assumption,

1C 13, = [ Per 3yl

= [|Byllm(m)
= [|Az[| m(B)
< c||Az|| m(a)
< ¢z, (z € Ha).
Hence, C isabounded operator of norm less than or equal to c. O

We gather some important corollaries below. The first one follows immedi-
ately from Theorem 16.7.

Corollary 16.8 Let A € L(H1,H) and B € L(Hz,H). Then the following
statements hold.

(i) M(A) = M(B) ifandonly if AA* = BB*.
(ii) M(A) = M(|A]), where |A| = (AA*)'/2,
If thelinear manifold R(A) isclosed in H, then it inherits the Hilbert space
structure of H. One may wonder if this Hilbert space structure coincides with

the one we put on R(A) and called it M (A). The following corollary answers
this question.

Corollary 169 Let A € L£L(H1,H). Then R(A) is a closed subspace of H
and ||w||peay = [Jw|5, for each w € M(A), if and only if A is a partial
isometry. In this case, we have

M(A) = M(AA").
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Proof If A is a partial isometry, then, by Theorem 7.22, P=AA* is
an orthogonal projection and thus |A|= P. Hence, by Corollary 16.8(ii),
M(A) = M(P). Thismeansthat R(A) = R(P) and ||w|| p(a) = |0l pmcpys
for esch w € M(A). But, by Lemma 16.4, R(P) is a closed subspace of H
and [|wl| pq(py = ||wl|# for each w € M(P).

Now, suppose that M = R(A) isaclosed subspace of H. Then theidentity
M(A) = M(Py) istrivial. Then, by Lemma 16.4 and our assumptions, we
have [|w|| pea) = |wllz = [|[w||amcpy,), for eachw € M(A). In other words,
we have the stronger relation M(A) = M(P)). Hence, by Corollary 16.8(i),

AA* = Py P}, = Pur.

Therefore, again by Theorem 7.22, A is a partial isometry. In this case, the
relations

M(A) = M(Pyr) = M(AA")
were implicitly established above. O

In Theorem 16.7, the condition AA* < ¢2 BB* was studied. The following
result is a slightly more generalized version of one part of this theorem. It
answers the following natural question. If M(A) and M(B) are boundedly
contained in H, and if C : H — H is a bounded operator, under what
conditions does C' map continuously M(B) into M(A)?

Corollary 16.10 Let A, B € L(H1,H), and let C' € L(H). Then:
(i) M(B) c CM(A) if and only if there exists ¢ > 0 such that
BB* < PCAA*C*;
(i) CM(A) C M(B) if and only if there exists ¢ > 0 such that
CAA*C* < *BB*. (16.15)
Moreover, if the inequality (16.15) is satisfied, then the mapping

C: MA) — M(B)
w +— Cuw

is a well-defined operator in L(M(A), M(B)) and

I1Cllzmeay,mB)) < e

Proof (i) By Theorem 16.7 and Lemma 16.6, the operator inequality BB* <
2CAA*C* is equivalent to the fact that M(B) C M(CA). But M(CA) =
CM(A), which gives the first assertion.

(ii) The proof has the same flavor. Using once more Theorem 16.7 and
Lemma 16.6, we see that the operator inequality (16.15) is equivalent to the
set inclusion M(CA) ¢ M(B) and, since M(CA) = CM(A), that gives
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the desired equivalence. It remains to check that C is a bounded operator of
norm less than or equal to ¢. Using Theorem 16.7 once more, we see that the
condition (16.15) implies that

[wllams) < cllwlmea  (we M(CA)).
Now put w = Cx, z € M(A), and then apply Lemma 16.5 to get
[Czllms) < cllCxllpmcay < cllzllmeay (@ eM(A). O

Without any serious difficulty, we will denote the operator C aso by C. In
particular, the relation

CAA*C* < BB*
ensuresthat C' is a contraction from M(A) into M(B).
Corollary 16.11 Let A, B € L(#H1,#), and let C' € L(H) be such that

CAA*C* = BB™. (16.16)
Assume further that C'is injective. Then, the mapping C' is a unitary operator
from M(A) onto M(B).
Proof According to Corollary 16.8, equation (16.16) impliesthat M(C' A) =
M(B), thatisCM(A) = M(B) and

lwlmcay = llwllms)

for any w € M(CA). Hence, C' maps M(A) onto M(B) and for any w €
M(A) we have

[Cwl| pmcay = [|Cw|| a(B)- (16.17)

If wewritew = Az, withz € H; © ker A, then

|Cwl| pmcay = [ICAZ|| pmca)y = [[Pixer cayr |13, -

But we aways have ker A C ker CA and, since C' is assumed to be injec-
tive, the reverse inclusion is also true. Hence ker A = ker CA and thus
Pker c.ayr @ = x. Then we get

[Cwlmsy = 1zl = [[Az[[amca) = lwllrca)-
Hence C' is unitary operator from M(A) onto M(B). O

If B € L(H2,H) isinjective, then B puts an isometric isomorphic copy of
‘Hs in H, which we denote by M(B). Thisfact is an immediate consequence
of the definition of M(B). Thisresult is mentioned below in further detail.

Corollary 16.12 Let A € £L(H1,H) and B € L(Hz2,H). Then the following
are equivalent.
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(i) AA* = BB* and B is injective.
(ii) M(A) = M(B) and B is injective.
(iii) B is an isometry from #5 onto M (A).

Proof The equivalence (i) < (ii) follows from Corollary 16.8.
(if) < (iii) By hypothesis, M(A) = M(B) and
Bz may = 1Bzl ms)y (€ Ha).

But, since B isinjective, we have

Bzl msy = |zl (2 € Ha).
Thus,
[Bzllpmay = lzllr.  (x € Ha).
Thisidentity showsthat B isan isometry from H, onto M(A).
(iii) = (ii) By assumption, we have R(A) = R(B) and
Bzl pmeay = @2,  (x € Ha).

That B isan isometry impliesker B = {0}. Hence,

| Bz|| sy = || |32,

for every = € (ker B)*+ = H,. Thus,

|Bz||pmay = [1Bxllmsy (¢ € Ha).
Thismeansthat M(A) = M(B). O

Exercises

Exercise 16.21 Let A € L(H,,H) and B € L(H2,H). Show that
M(|A]) = M(|B)) if and only if |A| = |B.
Hint: Use Corollary 16.8(i).

Exercise 16.2.2 Let M and H be two Hilbert spaces and assume that M
is boundedly contained in #. Show that there is a unique positive operator
T € L(H) suchthat M = M(T).

Hint: For the existence, consider i = iy : M — H, the inclusion mapping
from M into H. Then, use Corollary 16.8(ii) to show that M = M(]i|), where
|i| = (ii*)"/2. For the uniqueness, assume that there exist two positive opera-
tors Ty, T> € L(H) such that M = M(Ty) = M(T»). Use Corollary 16.8(i)
to deduce that

T\T; = ToT}
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14 The spaces M(A) and H(A)

and conclude using the positivity of 7 and 7> and the uniqueness of the
positive square root.

Exercise16.2.3  Let &, H and H, be Hilbert spaces such that £ C H.., and
let T": H — H. be abounded operator. Show that the following assertions
are equivalent:

(i) €= M(T);
@ity TT* = it*, wherei : £ — H, isthe embedding operator.

Hint: Use the fact that £ = M () and apply Corollary 16.8.

16.3 Linear functionalson M(A)

Let A € L(H1,H2). Suppose that
A Ho —> C

is a bounded linear functional on #,. Then, by Riesz's theorem (Theo-
rem 1.24), thereisaunique w € H, such that

Az = (z,w)y, (z € Ha).
According to (16.8), the inclusion map
i: M(A) — Ha
is continuous. Hence,
Aoi: M(A) — C

isabounded linear functional on M (A). Thus, again by Riesz’'stheorem, there
isauniquew’ € M(A) such that

(Aoi)(z) = (z,w')ma)y  (z€ M(A)).

We naturally proceed to find the relation between w and w’. Note that A o 4
is precisely the restriction of A to M(A), which, according to our general
convention, we also denote by A.

Theorem 16.13 Let A € L(H1, Hz). Let w € Ho, and let
Az = (z,w)p, (z € Ha)
be the corresponding bounded linear functional on Hs. Then its restriction
A:M(A) —C
is a bounded linear functional on M(A) and

A(ACL') = <A$7AA*U)>M(A) (CL' S 7‘[1)

https://doi.org/10.1017/CBO9781139226769.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.003

16.4 The complementary space H(A) 15

Moreover,
[ Al meay = | A" w]ln, -
Remark: We recall that, by Riesz's theorem,
[Ala5 = [lw]2,-
Proof By the definition of the adjoint operator, we have
A(Az) = (Az, w)y, = (x, ATw)y, (x € Hy).

But, by Theorem 1.30,

A*w € R(A*) C (ker A)*.
Hence, by (16.6),

(x, A"w)p, = (Az, AA™ W) pq(a) (x € Hq).
Therefore, we can write
A(Az) = (Az, AA™ W) pmq(a) (x € Hq).

This representation shows that

[All My = [[AA™ W] pmca)-
However, by (16.5) and the fact that A*w € (ker A)*, we have

[AA W] amca) = A" w]l3, - O

16.4 The complementary space #(A)

If AisaHilbert space contraction, then AA* < I andthus (I—AA*)'/?iswell
defined (see Exercise 2.4.5). Therefore, we can consider the linear manifold
R((I — AA*)'/2) and put a Hilbert space structure on it, as explained in the
previous section and denoted by M ((I — AA*)1/2). We call

H(A) = M((I — AA™)Y/?)

the complementary space of M(A), and the intersection M(A) N H(A) is
called the overlapping space. In the rest of this chapter we study #(A) and its
relation to M (A).

Lemma16.14 Let A € L£(H1,7H) be a contraction. Then H(A) is a closed
subspace of H and ||w||3,a) = ||w]#, for each w € H(A), ifand only if A is
a partial isometry. In this case, the set identity

H(A) =R — AAY)
holds.
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16 The spaces M(A) and H(A)

Proof By Corollary 16.9, H(A) is a closed subspace of H and ||w/|y,4) =
|w]|+, for eachw € H(A), if and only if (I — AA*)'/? isapartia isometry.
But, by Theorem 7.22, this happens if and only if I — AA* is an orthogonal
projection. Clearly, I— A A* isan orthogonal projectionif and only if AA* isan
orthogonal projection. Finally, again by Theorem 7.22, AA* is an orthogonal
projection if and only if A isapartial isometry.

In this case, since I — AA* is an orthogona projection, we have (I —
AA*)? = [— AA*, and thusthe setidentity 7 (A) = R(I—AA*) holds. [

For an operator A € L£(H1,H2), we clearly have the set inclusions
R(AA™) C R(A) C Hs.

Therefore, R(AA*) is alinear submanifold of M(A). We show that, with
respect to the topology of M(A), inasense R(AA*) isalarge set.

Lemma 16.15 Let A € L(H1,Hz). Then the linear manifold R(AA*) is
dense in M(A).

Proof To show that R(AA*) is dense in M(A), we use a standard Hilbert
space technique. If Oisthe only vector in M (A) that isorthogonal to R(AA*),
then this linear manifold isdensein M (A). Thuslet w € M(A) be such that

(w, 2) pm(ay =0

forall z € R(AA*). We proceed to show that w = 0. By definition, w = Az,
for some x € H;, and z = AA*y, where y runs through H,. Remember that
A*y 1 ker A. Hence, by (16.6),

foral y € Hs. Therefore, w = 0. O

We now write Lemma 16.15 for #H(A) spaces. This is the version that we
mostly need.

Corollary 16.16 Let A € L(H1,H2) be a Hilbert space contraction. Then
the linear manifold R (I — AA*) is dense in H (A). Moreover, for each z € Hs
and w € H(A),

17— AA)2 ]300y = 1T = AA)225,, = |1213,, — A"2113,,
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and
<w7 (I - AA*)Z>H(A) = <w72>7'l2'

Proof For thefirst part, it is enough to apply Lemma 16.15 to the self-adjoint
operator (I — AA*)'/2 € L£(H,) and seethat R(I — AA*) isdensein H(A).

To prove the first identity, note that (I — AA*)'/2z L ker(I — AA*)'/2,
Thus, by (16.5),

11 = AA")2 By = (T — AA*) 223,
(1= AAY22, (1= AAT) 22y,
= (I - AA")z, 2,

= ll2llz, — 1472113, -

For the second relation, we write w = (I — AA*)Y/?w’, where w’ L ker
(I — AA*)Y/2, Hence, by (16.6),

This completes the proof. O

Givenanelement y € H, we sometimes need to know if it belongsto agiven
complementary space H(A) or not. The following result is a characterization
of thistype.

Theorem 16.17 Let A be a contraction on a Hilbert space H and let y € H.
Theny € H(A) if and only if

sup ||(I — rzAA*)_l/QyHH < 4o00.
0<r<1

Moreover, if y = (I — AA*)Y/ 2z with 2 | ker(I — AA*)'/2, then
lin [[(1 = r2AA") /2y — 2l =0,
and if y1,y2 € H(A), then
<yl,y2>H(A) = Th_}rrﬁ(([— TQAA*)fl/lea (I - 7”2AA*)71/2Z/2>H~ (16.18)
In particular, for each y € H(A),

Iyll3ecay = lim [[( = 2 AA) 2y 5.
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Proof Put B, = I —124A4*, 0 < r < 1,and B = I — AA*. Then the
conditions of Theorem 7.10 are clearly satisfied and thus we deduce that y
belongs to the range of B/, whichis#(A), if and only if

sup. 1By 2ylla = sup [[(1 = r?AA*) " 2y[ly < +oo.
0<r< 0<r<1

The first equality was also established in Theorem 7.10. Now, if y; € H(A),
i=1,2,theny; = (I — AA*)"/2x;, withz; | ker(I — AA*)'/2, and, by the
first equality, (I — r2AA*)~1/2y,; convergesto z; in H, asr — 1. Hence,

<Z/17y2>H(A) (1, 22)3 = hm<(I 7'21414*) 1/291, (I—TQAA*)71/2Z/2>H-
L]

Exercises
Exercise16.4.1 Let A € £L(H1,H2). Show that

[wllamay < NAllce ) lwlmaasy  (w € M(AAY)).

Hint: Writew = AA*x, wherexz 1 ker AA*.
Remark: This means that M (AA*) is boundedly contained in M(A). This
fact also follows from Lemma 16.6.

Exercise16.4.2 Let A € L£(H.1,H2) be aHilbert space contraction. Show
that

lwllaay < llwllpma-—aax (we M(I—AAY)).

Hint: Apply Exercise 16.4.1 to the operator (I — AA*)/2,
Remark: This meansthat M (I — AA*) is contractively contained in 7 (A).

16.5 Therelation between H(A) and H(A*)

In this section we explore the relation between #H (A) and H(A*). In particular,
we obtain afrequently used identity that exhibits the bridge between the inner
productsin H(A) and H(A*).

Theorem 16.18 Let A € £(H1,H2) be a contraction, and let w € Hs. Then
w € H(A) ifand only if A*w € H(A*). Moreover, if wy, wy € H(A), then

(w1, w2)p(a) = (A"wi, A"wa) 3 ax) + (W1, W2)3,.

In particular, for each w € H(A),

lwllya) = 14" w3500 + 03,
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Proof Werecall theintertwining relation (7.12):
A1 — AAY2 = (I — A* A2 4%,

Hence, the set inclusion A*H(A) C H(A*) follows immediately. This is
equivalent to saying that

weHA) = A"weH(AY).

To prove the inverse, let w € H, be such that A*w € H(A*). Thus, by
definition, thereis x € H; such that

A*w = (I — A*A)?z.
By the intertwining relation, the trivial identity
w= (I — AAYw+ AA w = (I — AAYw + A(I — A*A)Y %z
can be rewritten as
w= (I —AA)YV?[(I — AA*)Y?w + Ax]. (16.19)
Hence, w € H(A). In other words, we also have
A*w e H(AY) = weH(A).

To prove the identity for the inner products, let wy,w, € H(A). Hence,
thereare y,, y2 € Ho such that

wy, = (I — AA)Y Py, (k=1,2).

Without loss of generality, we assume that y;, L ker(I — AA*). This assump-
tion has two consequences: first,

<w17 w2>7—[(A) = <y13 y?)'qu

and second, A*y;, L ker(I — A*A) (see Exercise 1.8.3). But, by the intertwin-
ing relation, we have

Awy = (I — A A2 Ay, (k=1,2).
Therefore, we also have
(A% wy, A wa)paxy = (A"y1, A"yo)w, -
Now, adirect calculation shows that
<’LU1,U)2>H2 = <([ - AA*)1/2y17 (I* AA*)1/2y2>’H2
= <y17y2>7'l2 - <A*y17A*92>H1
= (w1, wa)p(a) — (A"wi, A wa)p (4%

This completes the proof. O
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Applying Theorem 16.18 to the operator A* gives the following result.

Corollary 16.19 Let A € £(H1,H2) be acontraction. Then a vector x € H;
belongs to H(A*) if and only if Az € H(A). Moreover, if z1,z2 € H(A"),
then

<951,902>7-L(A*) = <A9317Ax2>H(A) + (1, 02) %, -

In particular, for each z € H(A*),

2 l13gasy = IAzl30a) + 13, -

16.6 The overlapping space M(A) N H(A)

As we mentioned in Section 16.4, the intersection M(A) N H(A) is caled
the overlapping space. We first show that the overlapping space is precisely
the image of H (A*) under the operator A. Then we exploit this observation to
characterize the trivial overlapping space.

Lemma 16.20 Let A € L(H1,H2) be a Hilbert space contraction. Then we
have the set identity

M(A)NH(A) = AH(AY).
Moreover, the operator A acts as a contraction from H(A*) into H(A).

Proof By Corollary 16.19, AH(A*) C H(A). Moreover, by definition, we
have AH(A*) € M(A). Hence, AH(A*) C M(A) N H(A). To prove the
other inclusion, let w € M(A) N H(A). Therefore, w = Az, for some z €
Hi, and Ax € H(A). Thus, again by Corollary 16.19, we necessarily have
x € H(A*), and thismeansw = Az € AH(A*). If we apply Theorem 16.18
to A*, then, for each w € H(A*), we have

HwH?—L(A*) = ||Aw||%-¢(,4) + ||w||3-t1 = ||Aw||§_[(A),
which exactly meansthat A acts as a contraction from H(A*) into H(A). O

We naturally wonder when the overlapping space is trivia, i.e. M(A) N
H(A) = {0}. Weare now able to fully characterize this situation.

Theorem 16.21 Let A € L(H1,H2) be a Hilbert space contraction. Then
the following are equivalent:

(i
(i

(iii

A is a partial isometry;

M(A) is aclosed subspace of H and inherits its Hilbert space structure;
H(A) is a closed subspace of #H and inherits its Hilbert space structure;
M(A) and H(A) are orthogonal complements of each other;

—_

(iv
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(v) M(A)NH(A) = {0};
(vi) H(A*) C ker A.

Moreover, under the preceding equivalent conditions, we have the orthogonal
decomposition

H = M(A) + H(A).

Proof The equivalence (i) <= (ii) was proved in Corollary 16.9.

The equivalence (i) < (iii) was proved in Lemma 16.14.

(i) = (iv) If Aisapartial isometry, then M (A) and H(A) are the range of
complementary orthogonal projections AA* and I — AA*. Hence M(A) and
‘H(A) are orthogonal complements of each other.

(iv) = (v) Thisistrivial.

(v) = (vi) Thisisan immediate consequence of Lemma 16.20.

(vi) = (i) By assumption A(I — A*A)'/2 = 0. If so, then certainly we
have A(I — A*A) = 0. Hence, A = AA* A, whichimplies (44%)? = AA*.
In other words, AA* isan orthogonal projection. Therefore, by Theorem 7.22,
Aisapartia isometry.

The orthogonal decomposition % =M (A) + H(A) is a consequence
of (iv). O

16.7 Thealgebraic sum of M(A;) and M(Az)

Given two operators A; € L(H1,H) and Ay € L(Ha,H), we can form
the Hilbert spaces M(A4;) and M(Az) inside H. Looking at them as linear
submanifolds of 7, we can form the algebraic sum

M(Ay) + M(Az) = {wr +ws : wy € M(A;) and ws € M(A)}.

We may naturally ask if this sum can be regarded as a new Hilbert space
M(A), for asuitable operator A. The affirmative answer is explained in more
detail in the following result.

Theorem 16.22 Let A; € L(Hi,H) and As € L(Hz,H), and let A =
[A1Ao] € L(H1 © Ha, H) be defined by

A(xl,l'z) :A1$1+A2(E2 (1'1 EHl, T2 EHQ).
Then the following hold.
(i) M(A) decomposes as

M(A) = M(A;) + M(As).
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(ii) For each representation

w = w; + we,
where w; € M(A;),1=1,2,and w € M(A), we have

wlZcay < lwnllRacar + llwallica,)-
(iii) For each w € M(A), there is a unique pair of points w, € M(A;) and
wy € M(Ay) such that w = wy + wy and
||wH3\A(A) = H’w1||3v1(Al) + HwQH.%\/I(Ag)'
Proof (i) By definition, for each z; € H; and x5 € Ho, we have
Az @ w2) = Ay + Azs.

Thisimmediately implies the set identity M(A) = M(A;) + M(Asz).

(i) If w = wy + wo wWith w; € M(A;), i = 1,2, then we can write w; =
A;x; withz; L ker A;. Notethat agiven w € H(A) isnot necessarily written
in aunique way in the form w = w; + wy, and in fact it may have infinitely
many such representations. Then we can write

w = w1 +wy = Aliﬂl + AQiCQ = A(xl D QCQ).
Therefore, by Corollary 16.8(ii) and (16.5),
||w\|3vl(A) = [|A(z1 @ 552)”3\/1(,4)
< w1 @ wal3, ams
= lle1ll3, + 22,
= wiliay) + llwzlliaca,)-
(iii) Among all possible representations
w=wy +ws = A(z1 ® x2),

if we choose x; and x5 suchthat xy @ xo | ker A, then, in thelight of (1.45),
we certainly have z; L ker A;. Hence, in the last paragraph of (ii) equality
holds everywhere. Thus, this choice of z:; and x> gives at least a suitable pair
wy and wy for which [[w]|3, 4y = llwill3ya,y + lw2ll34(a,) holds. But, to
have this equality, we need z; @ x5 L ker A and this choice of z; @ z5 is
unique. Hence, in return, wy and w, are aso unique. O

We now give an explicit example to reveal the contents of the above result.
Let A; € £(C?) be defined by

Al(laoao) = (O’Oa0)7 A1(07 1a0) = (07 170)a A1(07O7 1) = (0707 1)7
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andput Ay = —A;and A = A; @ Ay € L(C? & C3 — C3). Then

w=A((e, B,7) ® (o, 8,7) = (0,8 = 8",y = 7). (16.20)

There are infinitely many ways to write w = w; + wq With w; € M(4;). For
example, the above equality suggests that

= A1((a, 8,7)) = 41((0,8,7)) = (0,8,7) (16.21)
and
= Ax((/, 8,7)) = A2((0,8',7)) = (0, =B, —). (16.22)
But, we may equally take w; = 0 and
= A (0,8 =8 7v=7")=(0,8-8,7—7"). (16.23)

We naturally seek the unique representation that ispromised in Theorem 16.23.
To do so, first note that

ker A; = ker As = {(,0,0) : « € C},
and
ker A = {(e,8,7) & (¢, B,7) t v,/ B,y € C},
which imply that
(ker A)* = {(0,8,7) ® (0,—B,—7) : B,y € C}. (16.24)
Observe that
ker Ay @ ker Ay & ker A.

This proper inclusion has some important consequences.
According to (16.24), the good representation for w = (0,8 — ',y —4') is

B B-=B v—° B-=8  v=°
ea((05 55 o o515

Note that

B—p v—o B—-p ~—°
(0, 5 5 @ (0, 5 5 1 ker A.

For this unique choice, we have the unique decomposition w = w1 +w-, where

B B — B (s BB =
_A1<0 2 2 >_<O’ 2 2 )
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and

:A4@_Bgﬁx_7—V):(Qﬂ—ﬁxv—ﬁ)

Since, moreover,

2
and
— / —
(O,—/B 2/6 7—’-)/2) J_keI'AQ,
we deduce that
2
s B—=8 v—° B-=8" v—°
lwllieay = H <07 3 a2> ® <0,— 7 T3
_ B8P+l =P
2 7
|| ||2 o Oﬁ_ﬁ/ 7_7, 2_‘B_ﬁ/|2+|7_’7/|2
My = I\B T T - 4
and
|| ||2 _ 0 _B_ﬁ/ _’7_7/ 2_ |ﬁ_ﬂ/|2+|7_7/|2
C2lMa) = I\ T T T T - 1 '
Hence, it is no wonder that, for the good representation, we have the norm
identity

lwllZeay = llwrliacan + lwzllia,)-
For any other representation w = w; + we, withw; € M(A;), we would
certainly have
lwliRacay < ol + llwzlliaca,)-
For example, in the representation (16.21) and (16.22), we have
lwilRacayy = 100, BN = B + 7/?
and
lwalRacany = 100, 8407 = 187 + IV'I*.
In this case, the inequality

1B=BT+ Iy =~
2

1B+ >+ 1817+ |Y|? >
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isequivaent to
||w1||3v1(,41) + ||w2||3\/l(A2) > HwH?\A(A)'
Inasimilar manner, the representation (16.23) implies ||wz|| A4(4,) = 0 and
lwrRaany = 10,8 = 8"y =P =18 = B + v =1,
Hence, again, we are faced with the trivial inequality
lwiRcay) + lwzlRcag) = 18 =87 + v =2

1B=B"+ =~
> D) = ||wH3v1(A)-

A dlightly different version of the above algebraic decomposition will be stud-
ied in Theorem 16.23.

16.8 A decomposition of H(A)

If an operator decomposes as A = A, A1, we naturally ask about the relation
between 7{(A), on the one hand, and /(A1) and 7 (Az), on the other. In this
section we address this important question.

Theorem 16.23 Let Ay € L(Hs,H1) and Ay € L(H1,H2) be contractions,
and let A = A5 A;. Then the following hold.

(i) H(A) decomposes as
H(A) = AsH (A1) + H(As).
(ii) For any representation
w = Aswy + wo,

where w; € H(A;), i =1,2,and w € H(A), we have

lwllFgay < llwrlFycayy + lwell3 a,)-
(iii) For each w € H(A) there is a unique pair of points w; € #H(A;) and
we € H(Asz) such that w = Asw; + woy and
”ng-L(A) = ||w1||3-1(A1) + ||w2H3-L(A2)'

(iv) H(Az) is contractively contained in H(A).
(v) The operator A, acts as a contraction from #(A;) into H(A).

Proof The proof has the same spirit as the proof of Theorem 16.22. In fact,
we can even appeal to this result, and we give a shorter proof below. However,
here we provide a complete and independent proof.
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(i) Consider the operators B, = Ay (I — A1 A5)Y/? € L(H1,H2) and By =
(I — A A5)Y? € L(Hy):

Hg HQ
Ay A (I—AA*)Y/2
Ha I Ho (16.25)

(I—A; AT)1/2 (I-AzA5)"/?

By

Ha Ho
Then, by (1.43), we can write
I— AA* =1 — (AsA;1)(A2A1)*
= Ao(I — A1 AT)AS + (I — A3 A3)
= BB} + B2B;
= BB*, (16.26)
where B = [B; Bs] € L(H1®Ha, Ha). Therefore, by Corollary 16.8(ii), and
that by definition H(A) = M((I — AA*)'/2), we have
H(A) = M(B).
Hence, at least, we have the set identities
H(A) = M(B)
= M(By) + M(B>)
= AsM((I — A AY)'?) + M((I — A2 45)'/?)
= AsH(Ay) + H(As).
(i) If w = Aswy + we with w; € H(A4;), i = 1,2, then we can write
w; = (I — A;A)Y 22, with ;| ker(I — A; A%). Then we have
w = Aswi + wo
= Ao(I — A AD) Y22y + (I — A2 A3y
= Bix1 + Boxo
= B(x1 ® x2).
Therefore, by Corollary 16.8(ii) and (16.5),
||wH3¢(A) = ||1UH3\4(B)
= || B(z1 @ x2) |3
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2
< lz1 @ 225, e,
= lle1ll3, + llz2l3,
= wilBycay) + lwzl3ya,)-
(iii) Among all possible representations
w = Aywy +we = B(x1 & x2),

if we choose x; and x5 suchthat x1 @ x5 L ker B, then, in thelight of (1.45),
we certainly have z; L ker(I — A;Af). Hence, in the last paragraph of (ii)
equality holds everywhere. Thus, this choice of z; and x5 gives at least a
suitablepairw_l and w2 for which ||1UH§{(A) = ||w1||%¢(A1)4_‘||w2_||%¢(A2) holds.
But, to have thisequality, weneed 1 @ x5 L ker B, and thischoice of x1 ® zo
isunique. Hence, in return, w, and wo are unique too.

(iv) By (i), H(Az) C H(A). For each wy € H(As2), consider the represen-
tation w = A50 + wy. Hence, by (ii),

lwallacay = llwllray < lw2llaca,)-

Thismeansthat 7 (A) is contractively contained in H(A).
(v) By (i), AoH(A1) C H(A). For each wy; € H(A;), consider the repre-
sentation w = Asw; + 0. Hence, by (ii),

[A2wi [|#(a) = wllaecay < lwillaecay)-
Thismeans that A, acts as a contraction from 7 (A;) into H(A). O

In part (iii) of the preceding theorem, the existence of aunique pair of w; and
wo Was established. However, we did not offer a procedure or formulato find
them. We are able to do thisin the following special case. In Corollary 16.16,
we saw that M(I — AA*) is a dense submanifold of H(A). Let w € M
(I — AA*). Hence, thereisy € Hy such that

w=(I—AA")y. (16.27)
Let
ry =By and z9 = By,

where By and B, are as in the proof of Theorem 16.23. Then, by Theo-
rem 1.30,

x1 ® a9 = Bjy® Byy = B*y € R(B*) C (ker B)™*.
Moreover, by (1.43) and (16.26),
B(.Z‘l (&) 332) = Bix1 + Byxg = (BlBi< + BQB;)y
=BB'y= (I — AA")y = w.
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Therefore, the unique pair for an element of theformw = (I — AA*)y isgiven
by
wy = (I — Ay ANV 22 = (I — AL AD) Aby (16.28)

and
wy = (I — Ay A5)Y 2y = (I — AsAS)y. (16.29)

The decomposition H(A) = AsH (A1) + H(Az) isan agebraic direct sum
of AsH (A1) and H(As) provided that

AsH(A) N H(AQ) = {0}
However, the relations
H(A) = M(B), M(B;)=AsH(A1), M(Bs)=H(A2)

and (1.47) show that the decomposition H(A) = AsH (A1) + H(A2) isan
algebraic direct sum of AyH (A1) and H(As) if and only if

ker B = ker B; @ ker Bs.
Assuming the decomposition is an algebraic direct sum, if
w = Aswy + wy = Agw] + w)

then we must have A,w; = Asw) and we = w). Hence, the choice of ws
in the representation w = Aswq + ws IS unique. However, there is still some
freedom for w;.

Corollary 16.24 Let Ay € L(Hs,H1) and Ay € L(H;,H2) be contrac-
tions, and let A = A5 A;. Suppose that

AQH(Al) n H(AQ) = {0}
Then the following hold.

(i) H(As2) is contained isometrically in 7 (A).

(ii) The operator A, acts as a partial isometry from #(A4;) into H(A).

(iii) Relative to the Hilbert space structure of #(A), the subspaces A>H (A1)
and H(A,) are complementary orthogonal subspaces of #H(A). In other
words, the decomposition H(A) = AxH(A;1) + H(A») is in fact an
orthogonal direct sum.

Proof We use the notation in the proof of Theorem 16.23. The assumption
AsH (A1) N H(A2) = {0} means that the decomposition

H(A) = Ay H(Ar) + H(A2)

https://doi.org/10.1017/CBO9781139226769.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139226769.003

16.8 A decomposition of H(A) 29

is an algebraic direct sum. Based on this notation, this is equivalent to saying
that

R(B) = R(B1) + R(B2)
isan algebraic direct sum. Therefore, by (1.47),
P(ker B)L (1 ®x2) = P(kerBl)L T D P(ke,. By) L %2 (16.30)

foral 1 € H, and 2o € H,. Theidentity isthe main ingredient in our proof.
(I) Letwy € H(AQ) Hence wy, = Boxy = (I*AQA;)I/QJL‘Q with zo € Ho.
Therefore, by (16.30),

Hw2||H(A) = ||w2||M(B)
= || Baz2 | pm(B)
= [|B(0® z2)|| m(B)
= ”P(ker B)i(0 D x2)”’H1€B7‘l2
= (|0 ® Plrer By~ T2l 7 @20,
= ||P(kerBQ)MQHH2
= || Bazal| m(By)
= ||w2||7-t(Az)'
Hence, H(Az) is contained isometrically in H(A).
(i) Let ustemporarily use the notation
A, H(Al) — H(A)
w, A2w1
for the restriction of A, to H(A;). By Theorem 16.23(iv), this operator is
well defined and ker Ao = (ker As) N H(A;). To show that A, is a partia
isometry, we need to verify that, if w; € H(A41), with w; L ker A, with
respect to the inner product of H(A;), then || Aswi [|3(a) = [lwill3ca,)-

Fix wy € H(Ap) with wy L ker Ay in H(A;). Then there exists z; €
Hy, 1 L ker([ — AlAT), such that w; = (I — AlAT)l/zl’l. But, z; also
satisfies 1 L ker By. To verify this fact, let x € ker By, which means that
Ao(I—A; ANV 22 = 0. Thisidentity impliesthat (I — A; A})/%x € ker AyN
H(A1) = ker As. Hence, we have

(z1,2)90, = (w1, (I — A1 AD)Y22)300a,) = 0.

Sincethisistruefor every x € ker By, weobtainthat z; | ker B;. Therefore,
by (16.30),

[ Aswi |24y = [|A2(I — AL AT 2213 (a)

= [|Biz1 || mm)
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30 The spaces M(A) and H(A)

= || B(z1 ® 0)||m(m)
= || Ptker By) - 71|34,
= ||lz1ll#,

= [[will#a,)s

which certifiesthat A, isapartial isometry, or, equivalently, A, actsasapartial
isometry from #H (A1) into H(A).

(iii) By parts (i) and (ii), with respect to the structure of #H(A), the sets
H(Az) and AsH(A;) are closed subspaces of H(A). Now let w; € H(A;),
i=1,2. Hence, w; = (I — AA*)Y/%z; with z; € H,;. Therefore, by (16.30),

(Agwi, wa)pa) = (A2wi, wa) pm(By

By, Boxa) pm(B)

B(z1 ®0), B0 z2)) m()

Prer By- (21 © 0), Prer By (0 T2)) 31, 015
Prer B+ ™1 D0, 0@ Plyer By) L T2)H, @M.

(
=
=
=(
=
= (Per B1)- 71, 0)21; + (0, Plicer By) - T2)1, = 0.

Hence, A>H(A;) and #H(A;) are complementary orthogona subspaces
of H(A). O

To apply Corollary 16.24, we certainly need to verify the condition
AsH(A) NH(Az) = {0}.

Thisis not an easy task. However, in some specia cases, it clearly holds. For
example, by Lemma 16.20, we have

AsH(AL) NH(Az) C M(A) NH(Az) = AyH(AS).

Hence, whenever A, satisfies A5 A, = I, thenwehave H(A3) = {0} and thus
we conclude that

If M isaclosed subspace of the Hilbert space #, thenwe have H = M &
M. Welook at this identity from a different point of view. By Lemma 16.4,
we have M(Pp) = M and H(Py,) = M=+, and thus we can write

H = M(Pr) ® H(Ppnm).
In the following, we generalize this observation.
Theorem 16.25 Let A € £(H1,H) be a Hilbert space contraction. Then

H = M(A) + H(A).
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16.8 A decomposition of H(A) 31

For each decomposition w = wy 4+ wq, Withw € H, w; € M(A) and wy €
H(A), we have

lwllF < llwrlRcay + llwall3 a)-
Moreover,
lwll3 = lwilRacay + llwall3ya)
if and only if
wy = AA"w and we = (I — AA)w.
Proof Inthisproof wewriteT" instead of A. Thisisbecause we want to apply
Theorem 16.23 and use the notation there, but the operator A that appearsin

that theorem is not the same as the one introduced in the present theorem.
Consider the decomposition

0=To0,

where on the |eft-hand side we have 0 € £(#,, ) and on the right-hand side
0 represents the zero operator in £L(H;). Hence, we have the decomposition
A=A A withA=0¢€ L(H1,H), Ao =T and A; = 0 € L(H1). Hence,

Hi H

0 0 I

Hy ” H (16.32)
I (I—AA*)/2

Hi H

The diagram (16.32) isasimplified version of diagram (16.25).
Thus the decomposition H(A) = AxH (A1) + H(A2) obtained in Theo-
rem 16.23(i) can be written as

H=TH,+H(T)=M(T)+H(T),
andif z = Tz; + 2o with z; € H; and 2, € H(T), then, by Theorem 16.23(ii),
12013 < le1li3s, + llz2llyr)-
In particular, if wetake z; L ker T', we obtain
12153 < 1Tz luer) + 1221300 -
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32 The spaces M(A) and H(A)

Finaly, by (16.27), (16.28) and (16.29), the unique pair z; and z; for which

207 = llz1l3, + N2l
holdsis given by
z21=(1— A1 AN)AS 2 =T"z
and
29 = (I — A3A5)z= (I —TT")z.
But
21 € R(T*) C (ker T)*

impliesthat ||z, = ||Tz1|| p(r)- To be consistent with the notation of the
theorem, just take w = z, wy = T'z; and wo = 2. O

We are now able to better understand Theorem 16.21. Generally speaking,
an algebraic direct sum is not necessarily an orthogonal direct sum. However,
the decomposition H = M(A) +H(A) isaspecial case. If thisisan algebraic
direct sum, thenit meansthat M(A)NH (A) = {0}. Therefore, Theorem 16.21
ensuresthat it isin fact an orthogonal direct sum.

16.9 The geometric definition of H(A)

De Branges and Rovnyak had a geometric point of view and gave a different
definition of the complementary space #(A). In this section we treat their
definition and show that it is equivalent to that given in Section 16.4. The
latter definition is due to Sarason and opened a new world for these spaces.
As the motivation for their definition, let us make an observation. According
to Theorem 16.25, for each z € M(A) and w € H(A), we have

[|w + Z||$¢2 < ||UJH§1(A) + HZ||.2/\/I(A)'
Writing thisinequality as

lw + 213, = 2y < llwlsa
immediately implies that

sup (|lw + z[13, — 121 34a)) < lwliFya)- (16.33)
ze€M(A)
Moreover, the supremum is attained.
Supposethat H isaHilbert space and let M be aHilbert space contractively
contained in H. As we explained at the end of Section 16.1, we have M =
M(i), whered istheinclusionmap i = i : M — H. Then de Branges and
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Rovnyak defined the complementary space of M asthe set of all w € H such
that
sup (|lw + 2[[3; = [|2[34) < oo (16.34)
zeM
By (16.33), surely each element of (i) satisfiesthis property. But, infact, this
is a characterization property.

Lemma 16.26 Let A € L(H;,H2) be a Hilbert space contraction, and let
w € Ho be such that

sup ([lw + 2[[3;, — 2l34a)) < oo (16.35)
zEM(A)

Then w € H(A) and

lwlifqay < sup (lw+ 2l = llzl3a)-
zEM(A)

Proof If wesucceed in showing that A*w € H(A*), then, by Theorem 16.18,
w would bein #H(A). Hence, we proceed to show that A*w € H(A*). Let

c= sup (|w+ Az|3, — lzl3,)- (16.36)
xEH1

Since [|Az|| peay < ||2]/%, and the equality holds whenever 2 L ker A, then

c= sup (Jw+ 23, —llzl34a) < oo
zeM(A)

Let v € T be such that (w, Ax)y, = v|(w, Az),|. Replace x by tvyz,
wheret € R, in (16.36). Hence,

lw + tyAz|F, — [tyelf, <c  (z € Ha).
Thisisequivalent to
(1 = A* )23y, — 2t|(w, Az)ye, | + ¢ — [[w]f3,, = 0.
Thus
[(w, Az)yi,| < O~ AA) Pallyy,  (x € Ha),
where C = (¢ — ||w||3,,)*/?. Since, by Corollary 16.16,
(I = A" A) P30, = (1 = A" Azl a0),
we can write
(Afw, x)3, | S C (T = A" A)z|lpgary (2 € Ha).

By the same corollary, R(I — A* A) isadense submanifold of (A*). Hence,
the last inequality says that the map

R(I—-A*A) — C

(I—-A"A)zx — (x,A%w)y,
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gives a bounded linear functional on R(I — A*A), whose norm is less than
or equal to C'. We can extend it by continuity to a bounded linear functional
on H(A*). Hence, by Riesz's theorem, there is an element y € H(A*),
[yll2(a) < C, suchthat

(@, A"w)y, = (I — A"A)z, Y)ya-)  (z € Ha).
Since, by Corollary 16.16, (1 — A*A)x, y)3(a+) = (2, y)#,, we thus have
(x, A*w)y, = (,y)n, (x € Hq).

Therefore, A*w = y € H(A*) and ||A*w||3 4~y < C. Theorem 16.18 now
impliesthat w € H(A) and

1wl = llwllF + A w5 aey

<|wl] +C*=c
= sup (fw+zl3, = l2l3a)-
zEM(A)
This completes the proof. O

Combining Lemma 16.26 and (16.33), we obtain the following result. It
shows that the definition of de Branges and Rovnyak is equivalent to the defi-
nition of Sarason.

Corollary 16.27 Let A € £(H1,H2) be a Hilbert space contraction and let
w € Ho. Then the following are equivalent:

(i) w e H(A);
(1) sup.epacay(lw + 2013, = 12134 a)) < +oo.

Moreover, for such an element, we have
lwll3;ay = sup (lw+ 23, = I2130ca))-
zeM(A)

Given a Hilbert space H and M, such that M is contractively contained in
‘H, we denote by M’ the complementary space of M defined by (16.34) and
we put

lwll3e = Sélja(llw el = lell) (we M), (16.37)

If ing : M — H istheinclusion map, then Corollary 16.27 says that
M = H(ipm).

In particular, we see that M’ is a Hilbert space that is also contractively
contained in . Remember also that, if M is a closed subspace of 7, then
Theorem 16.21 gives that M’ coincides with the orthogonal complement of
MinH.
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We state the decomposition H = M(A) + H(A) in a dlightly different
language below. This version will be needed in our discussion of #(b) spaces.

Corollary 16.28 Let H be a Hilbert space, let M be a Hilbert space that
is contractively contained in # and let A" be the complementary space of M
in H. Denote by i, (respectively i,r) the canonical injection of M (respec-
tively V) into . Then, for each x € H, we have
T =ipx + iy
and
213, = lijzli + vl

Moreover, if z = 21 + 2o, with z; € M and zo € NV, which satisfy

)3 = leallia + Nzl
then we necessarily have z; = i’ and zp = i} .

Proof We know that M = M (i) and N' = M (inr). Moreover, according
to Corollary 16.27, we have N' = H(ip) = M((I — ipik,)/?). Thus
Corollary 16.12 implies that

inviy =1 —ipmiy.
Therefore I = inijy, + iami, Which gives
T =T+ iy (x € H).
Furthermore, an application of Theorem 16.25t0 A = i, gives

(13, = liamii@ i + 10 = imih) 2 3y
= llielia + lirll-
The second point of Corollary 16.28 follows also immediately from Theo-
rem 16.25. O

This corollary explains why the notion of complementary space can be seen
as a generalization of the orthogonal complement, and the map i}, (respec-
tively i%,) can be seen as ageneralization of the orthogonal projection onto M
(respectively onto V). We end this section with a result about subspaces that
are invariant under the shift operators.

Let M be a Hilbert space contractively contained in another Hilbert
space H, and let in : M — H bethe inclusion map. Then, M = M (i)
and the complementary space of M is N = H(in). In particular, the space
N isitself contractively contained in H. It is natural to wonder what is the
complementary space of V. In other words, what is M”?
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Using therelation I — iqi%, = i and Corollary 16.8, we get that
N =H(im) = M((I = ipmig)"?) = M(iy).

Hence, the complementary space of N isH (ixr). Using once more therelation
I —ipih, = iniy and Corollary 16.8, we get that

H(in) = M(in) = M,

which givesthat the complementary space of A is M. In other words, we have
proved that, if we start with a space M, contractively contained in H, then

M" = M.

Theorem 16.29 Let M be a Hilbert space contained in 2. Then the follow-
ing assertions are equivalent.

(i) M is invariant under the backward shift S*, i.e. S*M C M, and
IS I3 < 1F IR = LSO (f € M). (16.39)

(ii) The following hold:

(a) M is contractively contained in H?;
(b) SM’' c M’ and

1Sgllae < llgllame (g€ M).

Proof (i) = (ii) Assume first that M isinvariant under the backward shift
S* and satisfies (16.38). Let us prove first that condition (a) holds. Write 7' =
S*| M. By induction, from (16.38) we get

17134 < I1F13 — ni T O (n>1, feM).
Hence, -
:i: FBE<Ifl} (21, feM). (16.39)
Note that 7% £ (0) = (S**£)(0) = f(k). But, for each f € H?, we have
1715 = i |f (k).
k=0

Therefore, letting n — oo in (16.39) gives

[fllz < W fllae - (f €M).

This inequality means precisely that M is contractively contained in H? and
thus its complementary space M’ iswell defined.
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Let us now prove that (b) holds. Let f € M, and let ¢ € H?. Then using
(16.38), we have

1Sg + flI5 = 1 £130 < 1S9+ f1I3 = 157F 1134 — 1£(0)]
= [1Sg + SS*Fl15 = 11S™ 5,
because
1S9 + flI5 = [ISg + SS*f — f(O)|5 = [|Sg + SS*f|15 + | £(0)[>.
Therefore, we have
1S9 + fII5 = 11134 < llg + S*fII5 = 1S3 (16.40)

for every g € H? and every f € M. If furthermore we assume that g € M/,
then we get

1Sg + fI3 = 134 < fsgﬁ(lngr SFIE = 15" F 30 < llgllie-

By definition, thismeansthat Sg € M’ and ||Sg||ar < || gl -
(ii) = (i) Assume that M is contractively contained in H? and the shift S
actsasacontractionon M’. Let f € M and g € M’. We have

1S*f +gll5 = llgll3e = 11SS*f + Sgli3 = llgll3e
and using the fact that SS*f + Sg L 1, we aso have
1SS*f + Sgll3 = 1S5™f + Sg+ f(O)|I5 = [£(0)]> = [If + Sgll5 — [£(0)[*.
Hence,
1S*f +gll5 = llgll 3 = IIf +Sgli3 = [£(O)]* = llgll3e
Since S acts as a contraction on M’, we deduce that
15°f + gll3 = llgll e < If + Sgllz — 1Sgl3 — 1£(0)]*.

Using the definition of the norm of the complementary space (see (16.37)), and
the fact that M”" = M, we get

1S*f + gll3 = llglie < 1F134 = 1)
Now taking the supremum over all g € M’, we deduce that S*f € M and
1% 13 < 11£134 = LFO)%. 0

Theorem 16.29 says that, if H is aHilbert space contractively contained in
H? and such that SH < H, then S*H’ — ', but the converse is not true.
Let us provide a simple example. Let M = Span(1, z) endowed with a new
scalar product such that

v =v2, [zlm=v3 and 1< (1,2)um < V2
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Then, we can easily check that S* M — M — H2 Putting f(z) = 1 — 2, we
seethat |S°f (3, = [[1]3 = 2 and
£ = 1FOF =1+ [z 34 — 2R(1, 2)pa — 1 =3 = 2R(L, 2) .
In particular,
£ = £ )1 < 1S*FIIas

and Theorem 16.29 impliesthat S’ cannot be contained contractively in M.
The inequality (16.38) might look abit strange. But note that

IS*F15 = IFI3 = [P (f € H?),

and if H is a Hilbert space that is isometrically contained in H?2, then the
inequality holds in the general case. In Section 18.8, we will show that the
space H (b) also satisfies (16.38), and in Sections 23.5 and 25.4, we will study
thisinequality more precisely depending on whether b is an extreme or nonex-
treme point of the closed unit ball of H°.

Exercise

Exercise 16.9.1 Let A € L(Hi,Hs2), B € L(Hs,H2), C € L(H3z,H1)
be contractions such that B = AC'. Show that, for any f € H(A), we have

1134y = sup (If + Agll3z) — l9l3ic))-
geM(C)

Hint: Apply Theorem 16.23 to get

sup (I[f + Agllfun) — 1915c)) < 1 150a)-
gEH(C)

For the other direction, let ¢ > 0. Apply Corollary 16.27 to show that there
exists h € H4 such that

I1f + A3y, — 1013, = 11 £13,0a) — &

Then, apply Theorem 16.25with h = Chy+hg, hy = C*h, hy = (I-CC*)h,
which gives that

1AlFe, = 1hall3e, + 12l 0y
Hence
I + Ahsl3y ) — lIh2llFe) = If + Ah = Bha|3y 5y — lhall3 o
> |\ f + Ahlla, = [1Pall3, = [1P2ll3c)
= || + AR5, — 1713,
> [ 134y — &
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16.10 TheJulia operator J(A) and H(A)

As we have seen in Theorem 16.25, the complementary space H(A) gener-
alizes in some sense the notion of orthogonality. There is a more direct way
in which complementarity is related to orthogonality. In Section 7.3, weintro-
duced the Julia operator .J(A) associated with a contraction A € L(H1,H).
Let usrecall that J(A) € L(H @ H,) isdefined by

o _DA* A
where D4, = (I — A*A)Y/? and Dy = (I — AA*)'/2. We dso recall
that D4 = Closy (DaH1) and Dy- = Closy, (Da+H). According to The-
orem 7.18, J(A) isaunitary operator on H & H.

We now define a related operator, which is also called the Julia operator.
The operator

JA) - Hi1dH —HDH,
is defined by

. [A Du

=, xl

There is a simple relation between these two operators. The connection isvia
the unitary operator U : H @ Hi — H1 @ H definedby U(x dy) = y @ x,
wherez ® y € ‘H @ H. If weidentify this operator with its matrix, then we
have

U= [g ﬂ HEH, — Hi B H.

Hence

[Ds AJ[0 I] [A Da-
O A L P §

which means that
J(A) = J(A)U.

In particular, we deduce from Theorem 7.18 that J(A) is a unitary operator
fromH, @ H onto H @ H;.

Theorem 16.30 Let A € L(H1,H) be a Hilbert space contraction and
assume that A is one-to-one. Write

A =J(A)(H1©{0}), A =J(A)({0} ©Da-),

and let P; be the orthogonal projection of H & D 4 onto its first coordinate .
Then the following hold.
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(i
(ii

(iii

) J(A)(H1 @ Dax) =HDDay.

) HE Dy =X & X,

) P1x, is unitary from X} onto M(A).
(iv) Pi|x, is unitary from X, onto H(A).

Proof ()Letz@®y e Hi B Da-. Then

- x|  |Azx 4+ Da-y
I(4) M B {DAx — A*y}

Itisclear that Az + Ds-y € H and Dax € Dy. Thefact that A*y € Dy for
y € D4~ followsfrom (7.12). Hence

J(A)(H1 @& Da<) CH®Da. (16.41)
Note that
~CAFY A* Da o~ *
s = P4 e (1642

and thus if we apply (16.41) to A*, we get
J(A)*(HDDa) C H1 ©Da-.
Since J(A)J(A)* = I, we obtain
H&Da CJ(A)(H1 @ Dar),

which gives (i).
(ii) This part follows immediately from the fact that J(A) is aunitary oper-
ator from H, @ D4~ onto H & D4 and that

H1 @ Da- = (H1®{0}) & ({0} & Da-).
(iii) We have
PXy =Pi({Ax @ Dax:x € Hi}) = {Ax:x € H1} = M(A).

Moreover, if 1 € X, thenzy = Ax @ D forsomex € Hq. Then, since A
is one-to-one, we have

[Prz1 [ miay = 1Azl acay = [1z]la,-
On the other hand, with (7.33), we also have
2103 e, = IAz]3, + 1Dazll;, = llz(l3, .
which gives the assertion (iii).
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(iv) We have
PiXy =P ({Day® (—A"y) :y € Dax}) ={Dasy:y € Dy} = H(A).

Now if x5 € Xy, thenzo = D g-y @ (—A*y) for somey € D4+, and we have

| Pra2lray = 1Dayllrcay = llyllx-

On the other hand, once more using (7.33), we aso have

2139, = 1Da-yll3 + 14"yl = Iyl

which gives the result. O

Theorem 16.30 says that the orthogonal decomposition of H & D4 as X &
X is mapped by projecting onto the first coordinate into the complementary
decomposition H = M(A) + H(A) (which is not in general, as we have
already seen, a direct sum). So the rather exotic definition of complementary
spacesisin fact the projection of a more familiar geometric structure.

Notes on Chapter 16

Themain part of thischapter istaken from [166]. The notion of complementary
space, which isthe heart of our study, was introduced in the context of square-
summable power series by de Branges and Rovnyak in their book [65] and
their paper [64].

Section 16.1

The notion of a Hilbert space boundedly contained into another is crucia in
the theory developed by de Branges and Rovnyak. Theorem 16.3 istaken from
[139]. Seealso [19].

Section 16.2

Theorem 16.7 is known as Douglas's criterion and can be found in [67]. This
theorem as well as Corollaries 16.8 and 16.9 can also be found in [166, chap.
I]. Exercise 16.2.2 is taken from [19, corollary 3.3], but the method presented
hereis dightly different. Exercise 16.2.3 comes from [139, lemma5.7].

Section 16.3
The description of linear functionals on M(A) istaken from [166, sec. 1.3].
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Section 16.4

The notions of contractive containment and complementary spaces were cru-
cial in de Branges's proof of the Bieberbach conjecture. See [63, 141, 142].

The terminology and notion of complementary space are due to de Branges.
In the context of square-summable power series, it was introduced by de
Branges and Rovnyak in [65]. Nevertheless, the definition of complementary
space H(A) used in this book is due to Sarason and appears in [160]. See
Section 16.9 for the original definition of de Branges and Rovnyak. In [64] de
Branges and Rovnyak used “ overlapping space” in adifferent way. In thistext,
we use this term in the sense introduced by Lotto and Sarason [123].

The presentation of this section is taken from [166, chap. 1]. A special
version of Theorem 16.17 appears in [160] without proof.

Section 16.5

Theorem 16.18 on the relation between #(A) and H(A*) is dueto Lotto and
Sarason [123, lemma 2.1].

Section 16.6

The description of the overlapping space H(A) N M(A) is due to Lotto and
Sarason [123, lemma 2.1].

Section 16.8

The decomposition of #(A) given by Theorem 16.23 is due to de Branges and
Rovnyak [65, problem 52]. See also [64, appdx, theorem 4]. Theorem 16.25
is also due to de Branges and Rovnyak [65, theorem 8 and problem 36]. The
presentation used in this text comes from [166].

Section 16.9

The geometric definition of the complementary space #(A) given in this sec-
tion is due to de Branges and Rovnyak. The definition we choose to introduce
the complementary space emphasizes the role of the contraction A and it will
be successful (as we will see later) in the context of the Toeplitz operator
on H?.

A vector-valued version of Theorem 16.29 appears in Nikolskii and
Vasyunin [139, theorem 7.4]. See also Ando [19, theorem 4.3]. The example
at the end of the section showing that (16.38) is important in Theorem 16.29
comes from [139, theorem 7.4]. Exercise 16.9.1 is due to de Branges and
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Rovnyak [65, theorem 11], who proved the formula in the context of square-
summable power series.

Section 16.10

The connection between the Julia operator J(A) and H(A) istaken from Tim-
otin [187]. Nevertheless, in the particular case where A = Ty, it isimplicitly
present in the paper of Nikolskii and Vasyunin [139] when they studied the
connection between the de Branges—Rovnyak and the Sz.-Nagy—Foias models.
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