
16

The spacesM(A) andH(A)

In this chapter, we introduce the notion of complementary space, which gener-
alizes the classic geometric notion of orthogonal complement. This notion of
complementary space is central in the theory of H(b) spaces. In Section 16.1,
we study the bounded (contractively or isometrically) embeddings. This leads
to the definition ofM(A) spaces. Then, in Section 16.2, we characterize the
relations between twoM(A) spaces. In Section 16.3, we describe the linear
functional onM(A). In Section 16.4, we give our first definition of comple-
mentary space based on an operatorial point of view. As we will see in the
next chapter, this operatorial point of view seems particularly interesting in the
context of H(b) spaces and Toeplitz operators. In Section 16.5, we describe
the relation between H(A) and H(A∗). This relation, though very simple,
is probably one of the most useful results in the theory of H(b) spaces. The
overlapping space is introduced and described in Section 16.6. In Sections 16.7
and 16.8, we give useful results concerning some decomposition ofM(A) and
H(A) spaces. In Section 16.9, we introduce our second definition of comple-
mentary space and show that it coincides with the first one. Finally, in the last
section, we show how the Julia operator can be used to connect this notion of
complementary spaces to the more familiar geometric structure of orthogonal
complements.

16.1 The space M(A)

Suppose that H1 and H2 are Hilbert spaces and H1 ⊂ H2. We do not nec-
essarily assume that H1 inherits the Hilbert structure of H2. They can have
different Hilbert space structures. The assumption H1 ⊂ H2 ensures that the
inclusion mapping

i : H1 −→ H2

x �−→ x

1

https://doi.org/10.1017/CBO9781139226769.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.003


2 The spacesM(A) andH(A)

is well defined. If this mapping is bounded, i.e. if there is a constant c > 0 such
that

‖x‖H2
≤ c ‖x‖H1

(x ∈ H1), (16.1)

we say that H1 is boundedly contained in H2 and write H1 � H2. If the
mapping i is a contraction, i.e. c ≤ 1, we say thatH1 is contractively included
inH2 and writeH1 ↪→ H2. Finally, if

‖x‖H2
= ‖x‖H1

(x ∈ H1),

we say that H1 is isometrically contained in H2. If it happens that the set
identity H1 = H2 holds and, moreover, H1 and H2 have the same Hilbert
space structure, i.e. ‖x‖H2

= ‖x‖H1
for all possible x, then we write H1 �

H2. It is important to distinguish between the set identity H1 = H2 and the
Hilbert space identityH1 � H2.

A very special case of the above phenomenon is when H1 is a closed sub-
space ofH2 and inherits its Hilbert space structure. In this case,H1 is isometri-
cally embedded insideH2. In the next section, we will look at this phenomenon
from a slightly different angle.

The inequality (16.1) reveals some facts about the topologies ofH1 andH2.
If E is a closed (or open) subset of H2, then E ∩ H1 is closed (or open) in H1

with respect to the topology of H1. However, the topology of H1 is usually
richer. In other words, the topology of H1 is finer than the topology it inherits
from H2. That is why, if Λ is a continuous function on H2, then its restriction
toH1 remains continuous. We will treat this fact in more detail in Section 16.3.
As a special case, if E ⊂ H1 ⊂ H2 is closed in H2, then E is also closed in
H1. However, if E is closed in H1, we cannot conclude that it is also closed
inH2. The following result reveals the relation between different closures of a
set inH1.

Lemma 16.1 Let H1 and H2 be two Hilbert spaces, assume that H1 is
boundedly embedded intoH2, and let E ⊂ H1. Then

ClosH2
(ClosH1

E) = ClosH2
E .

Proof For simplicity, put F = ClosH1
E . Since E ⊂ F , we have

ClosH2
E ⊂ ClosH2

F .

To prove the converse, let x ∈ ClosH2
F and fix any ε > 0. Then there exists

y ∈ F such that ‖x − y‖H2
≤ ε/2. But, since y ∈ F and F = ClosH1

E ,
there exists z ∈ E such that ‖y − z‖H1

≤ ε/2C, where C is the constant of
embedding ofH1 intoH2, i.e.

‖x‖H2
≤ C ‖x‖H1

(x ∈ H1).
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16.1 The spaceM(A) 3

Therefore, we have ‖y − z‖H2
≤ ε/2 and then

‖x− z‖H2
≤ ‖x− y‖H2

+ ‖y − z‖H2
≤ ε.

Therefore, x ∈ ClosH2
E .

Suppose that H1 is a Hilbert space, H2 is a set and A : H1 −→ H2 is a set
bijection between H1 and H2. Then the map A can be served to transfer the
Hilbert space structure ofH1 toH2. It is enough to define

〈Ax,Ay〉H2
= 〈x, y〉H1

(16.2)

for all x, y ∈ H1. The algebraic operations on H2 are defined similarly. If H2

is a linear space and A is an algebraic isomorphism between H1 and H2, the
latter requirement is already fulfilled. In this case, (16.2) puts an inner product,
maybe a new one, onH2.

The above construction sounds very elementary. Nevertheless, it has pro-
found consequences. In fact, it is the main ingredient in the definition of H(b)
spaces. To move in this direction, suppose that H1 and H2 are Hilbert spaces
and that A ∈ L(H1,H2). By the first homomorphism theorem, the operator
A induces an isomorphism between the quotient space H1/kerA and R(A).
Hence, by (16.2), the identity

〈Ax,Ay〉R(A) = 〈x+ kerA, y + kerA〉H1/kerA (x, y ∈ H1) (16.3)

gives a Hilbert space structure on R(A). We denote this Hilbert space by
M(A). The norm of x+ kerA inH1/kerA is originally defined by

‖x+ kerA‖H1/kerA = inf
z ∈ kerA

‖x+ z‖H1
.

But, for each z ∈ kerA,

‖x+ z‖2H1
= ‖P(kerA)⊥x+ (z + PkerAx)‖2H1

= ‖P(kerA)⊥x‖2H1
+ ‖z + PkerAx‖2H1

,

and thus we easily see that

‖x+ kerA‖H1/kerA = ‖P(kerA)⊥x‖H1
(x ∈ H1).

Hence, by the polarization identity (1.16), we have

〈x+kerA, y+kerA〉H1/kerA = 〈P(kerA)⊥x, P(kerA)⊥y〉H1
(x, y ∈ H1).

Moreover, by (1.27),

〈P(kerA)⊥x, P(kerA)⊥y〉H1
= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
.
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4 The spacesM(A) andH(A)

Therefore, the definition (16.3) reduces to

〈Ax,Ay〉M(A) = 〈P(kerA)⊥x, P(kerA)⊥y〉H1

= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
(16.4)

for each x, y ∈ H1. In particular, for each x ∈ H1,

‖Ax‖M(A) = ‖P(kerA)⊥x‖H1
. (16.5)

Moreover, if at least one of x or y is orthogonal to kerA, then, by (16.4),

〈Ax,Ay〉M(A) = 〈x, y〉H1
. (16.6)

The rather trivial inequality

‖Ax‖M(A) ≤ ‖x‖H1
(x ∈ H1), (16.7)

which is a direct consequence of (16.5), will also be frequently used. The
preceding formulas should be kept in mind throughout the text.

On R(A) we now have two inner products. One is inherited from H2 and
the new one imposed by A. In the following, when we writeM(A) we mean
that R(A) is endowed with the latter structure. If this is not the case, we will
explicitly mention which structure is considered on R(A). Let us explore the
relation between these two structures. Since A is a bounded operator, we have

‖Ax‖H2
= ‖AP(kerA)⊥x‖H2

≤ ‖A‖L(H1,H2) ‖P(kerA)⊥x‖H1
(x ∈ H1).

Therefore, by (16.5),

‖Ax‖H2
≤ ‖A‖L(H1,H2) ‖Ax‖M(A) (x ∈ H1). (16.8)

This inequality means that the inclusion map

i : M(A) −→ H2

w �−→ w

is continuous and its norm is at most ‖A‖. In fact, by (16.7),

‖Ax‖H2
≤ ‖i‖ ‖Ax‖M(A) ≤ ‖i‖ ‖x‖H1

(x ∈ A).

Thus, considering (16.8), we deduce that

‖i‖L(M(A),H2) = ‖A‖L(H1,H2). (16.9)

Moreover,

i∗ = AA∗. (16.10)

Indeed, let y ∈ H2 and Ax ∈ M(A), with x ∈ H1 and x ⊥ kerA. Then we
have

〈Ax, i∗y〉M(A) = 〈Ax, y〉H2
= 〈x,A∗y〉H1

= 〈Ax,AA∗y〉M(A),
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16.1 The spaceM(A) 5

which proves that i∗y = AA∗y. We will see in Section 16.8 that, in a sense,
the operator i∗ plays the role of an orthogonal projection ofH2 ontoM(A).

If A is invertible, then the relations (16.7), (16.8) and

‖x‖H1
= ‖A−1Ax‖H1

≤ ‖A−1‖ ‖Ax‖H2

imply that the norms inH1,H2 andM(A) (which as a set is equal toH2) are
equivalent, i.e.

‖x‖H1
� ‖Ax‖H2

� ‖Ax‖M(A). (16.11)

If A is a bounded operator, the above construction puts M(A) boundedly
inside H2. If A is a contraction, i.e. ‖A‖ ≤ 1, then M(A) is contractively
contained in H2; and if ‖w‖M(A) = ‖w‖H2

, w ∈ M(A), then M(A) is
isometrically contained inH2. Based on the conventions made in Section 16.1,
we emphasize that, for A,B ∈ L(H1,H2), the notation M(A) � M(B)

means not only that the algebraic equality M(A) = M(B) holds, but also
that the Hilbert space structures coincide, i.e.

〈w1, w2〉M(A) = 〈w1, w2〉M(B)

for all possible elements w1 and w2. Clearly, in the light of the polarization
identity, the latter is equivalent to

‖w‖M(A) = ‖w‖M(B)

for all possible elements w.
The relation (16.5) contains all the information regarding the definition of

the structure ofM(A). In short, the structure ofM(A) is the same as that of
H1/kerA. This fact is explained in another language in the following result.

Theorem 16.2 Let A ∈ L(H1,H2) and define

A : H1 −→ M(A)

x �−→ Ax.

Then A is a bounded operator, i.e. A ∈ L(H1,M(A)), and, moreover, A∗ is
an isometry onM(A).

Proof The inequality (16.7) can be rewritten as

‖Ax‖M(A) = ‖Ax‖M(A) ≤ ‖x‖H1
(x ∈ H1).

This means that A is a bounded operator. In order to show that A∗ is an isom-
etry onM(A), by Corollary 7.23, it is enough to show that A is a surjective
partial isometry. That A is surjective is a trivial consequence of the definition
ofM(A). Moreover, kerA = kerA. Hence, by (16.5),

‖Ax‖M(A) = ‖Ax‖M(A) = ‖P(kerA)⊥x‖H1
= ‖P(kerA)⊥x‖H1
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6 The spacesM(A) andH(A)

for each x ∈ H1. Thus, A is a partial isometry (see the original definition
(7.14)).

The definition of spacesM(A) is closely related to the notion of bounded
embeddings introduced at the beginning of this section. Indeed, if M is a
Hilbert space that is boundedly contained in another Hilbert space H, then
the inclusion map

i : M −→ H
x �−→ x

is bounded fromM intoH. Now, since for any x ∈M =M(i), we have

‖x‖M(i) = ‖i(x)‖M(i) = ‖x‖M,

the spaceM coincides withM(i), that is

M �M(i).

Conversely, if M � M(A), where A : H1 −→ H is bounded, then M is
boundedly contained inH. Thus, we get the following result.

Theorem 16.3 Let M and H be two Hilbert spaces. Then the following
assertions are equivalent.

(i) The space M is boundedly contained in H (respectively contractively;
respectively isometrically).

(ii) There exists a bounded operator A ∈ L(H1,H) (respectively a contrac-
tion; respectively an isometry) such that

M �M(A). (16.12)

In the next section, we examine the problem of uniqueness in the represen-
tation ofM given by (16.12). See also Exercise 16.2.2.

The following result shows that, if A ∈ L(H) is an orthogonal projection,
then in fact we do not obtain a new structure on M(A). The Hilbert space
structure of M(A) is precisely the one it has in the first place as a closed
subspace ofH.

Lemma 16.4 Let M be a closed subspace of H, and let PM ∈ L(H) denote
the orthogonal projection on M . Then

M(PM ) � M,

i.e.M(PM ) = M and ‖w‖M(PM ) = ‖w‖H for all w ∈M .

Proof The identityM(PM ) = M is an immediate consequence of the defi-
nition of an orthogonal projection. Remember that kerPM = M⊥, and since
M is closed, (M⊥)⊥ = M . Hence, by (16.5),

‖PMx‖M(PM ) = ‖P(kerPM )⊥x‖H = ‖PMx‖H (x ∈ H1).
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16.1 The spaceM(A) 7

Lemma 16.5 Let A ∈ L(H1,H) and B ∈ L(H). Then

‖Bw‖M(BA) ≤ ‖w‖M(A) (w ∈M(A)).

Proof It is clear that BM(A) ⊂M(BA). Put w = Ax, x ∈ H1. Hence, by
(16.5),

‖Bw‖M(BA) = ‖P(kerBA)⊥x‖H1
and ‖w‖M(A) = ‖P(kerA)⊥x‖H1

.

But, since kerBA ⊃ kerA, we have

‖P(kerBA)⊥x‖H1
≤ ‖P(kerA)⊥x‖H1

.

Therefore, we deduce that ‖Bw‖M(BA) ≤ ‖w‖M(A).

Exercises

Exercise 16.1.1 Let H be a set endowed with two inner products whose
corresponding norms are complete and equivalent, i.e.

c ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 (x ∈ H),

where c and C are positive constants. Show that (H, 〈 ·, · 〉1) is boundedly
contained in (H, 〈 ·, · 〉2), and vice versa.

Exercise 16.1.2 Let (X,A) be a measurable space, and let μ and ν be two
positive measures on the σ-algebra A. Suppose that

μ(E) ≤ ν(E) (16.13)

for all E ∈ A. Show that L2(ν) is contractively contained in L2(μ).

Hint: The assumption (16.13) can be rewritten as∫
X

χE dμ ≤
∫
X

χE dν,

where χE is the characteristic function of E. Take linear combinations with
positive coefficients, and then apply the monotone convergence theorem to
obtain ∫

X

ϕdμ ≤
∫
X

ϕdν

for all positive measurable functions ϕ. Hence, deduce ‖f‖L2(μ) ≤ ‖f‖L2(ν).

Exercise 16.1.3 Let ϕ ∈ L∞(T), and consider the multiplication operator

Mϕ : L2(T) −→ L2(T)
f �−→ ϕf,
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8 The spacesM(A) andH(A)

which was studied in Section 7.2. Show that

‖ϕf‖M(Mϕ) =

(
1

2π

∫
T\E
|f(eit)|2 dt

)1/2

(f ∈ L2(T))

and that

〈ϕf, ϕg〉M(Mϕ) =
1

2π

∫
T\E

f(eit) g(eit) dt (f, g ∈ L2(T)),

where E = {ζ ∈ T : ϕ(ζ) = 0}. The first identity reveals thatM(Mϕ) =

ϕL2(T) is contractively contained in L2(T). Under what condition isM(Mϕ)

isometrically contained in L2(T)?

Exercise 16.1.4 Let Θ be an inner function for the open unit disk, and let

MΘ : H2(D) −→ H2(D)
f �−→ Θf.

Show that

‖Θf‖M(MΘ) = ‖f‖H2(D) = ‖Θf‖H2(D) (f ∈ H2(D)).

ThusM(MΘ) = ΘH2 is isometrically contained in H2(D).
Hint: MΘ is injective and |Θ| = 1 almost everywhere on T.

Exercise 16.1.5 Let A ∈ L(H1, H2) and α ∈ C, α �= 0. Show that

‖w‖M(αA) =
‖w‖M(A)

|α| (w ∈M(A)).

16.2 A characterization of M(A) ⊂ M(B)

If the operators A ∈ L(H1,H) and B ∈ L(H2,H) are such that M(A) �
M(B), then we surely haveM(A) ⊂M(B). Conversely, if the set inclusion
M(A) ⊂M(B) holds, then the inclusion mapping

i : M(A) −→ M(B)

w �−→ w

is well defined. But, in fact, more is true. The way that the structures ofM(A)

and M(B) are defined forces i to be a bounded operator and thus M(A) is
boundedly contained inM(B).

Lemma 16.6 Let A ∈ L(H1,H) and B ∈ L(H2,H) be such thatM(A) ⊂
M(B). ThenM(A) �M(B).
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16.2 A characterization ofM(A) ⊂M(B) 9

Proof We need to show that the inclusion i :M(A) −→M(B) is a bounded
operator. The justification is based on the closed graph theorem. Let (wn)n≥1

be a sequence inR(A) that converges to w inM(A) and to w′ inM(B). Note
that iwn = wn. SinceM(A) andM(B) are both boundedly embedded into
H , the sequence (wn)n≥1 also tends to w and to w′ in the norm of H . Then,
by uniqueness of the limit, we must have w = w′. Hence, the closed graph
theorem implies that i is continuous.

Lemma 16.6 shows that the new notation � is not needed in the study of
M(A) spaces. However, we emphasize thatM(A) =M(B) is not equivalent
toM(A) �M(B). The identityM(A) =M(B) implies that

c ‖w‖M(B) ≤ ‖w‖M(A) ≤ C ‖w‖M(B),

while in the definition ofM(A) �M(B) we assumed that

‖w‖M(A) = ‖w‖M(B).

To use Lemma 16.6, we naturally ask under what conditions the set inclusion
M(A) ⊂M(B) holds. Let us treat a sufficient condition. Suppose that there is
a bounded operator C ∈ L(H1,H2), with ‖C ‖ ≤ c, such thatA = BC. Since,
for each x ∈ H1, Ax = B(Cx), we have the set inclusionM(A) ⊂ M(B).
Thus, by Lemma 16.6,M(A) �M(B). Moreover, by (16.7) and the fact that
‖C ‖ ≤ c, we have

‖Ax‖M(B) = ‖BCx‖M(B) ≤ ‖Cx‖H2
≤ c ‖x‖H1

.

By (16.5), replacing x by P(kerA)⊥x gives us

‖Ax‖M(B) ≤ c ‖Ax‖M(A) (x ∈ H1).

Hence, the norm of i is less than or equal to c. This means that M(A) is
boundedly contained inM(B) and, in particular, if c = 1,M(A) is contrac-
tively contained inM(B). What is surprising is that the existence of C is also
necessary for the bounded inclusion ofM(A) inM(B).

Theorem 16.7 Let A ∈ L(H1,H) and B ∈ L(H2,H), and let c > 0. Then
the following are equivalent.

(i) AA∗ ≤ c2BB∗.
(ii) There is an operator C ∈ L(H1,H2), with ‖C ‖ ≤ c, such that A = BC.
(iii) We haveM(A) ⊂M(B) with

‖w‖M(B) ≤ c ‖w‖M(A) (w ∈M(A)),

i.e. the inclusion i : M(A) −→ M(B) is a bounded operator of norm
less than or equal to c.

In particular,M(A) ↪→M(B) if and only if AA∗ ≤ BB∗.
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10 The spacesM(A) andH(A)

Proof (i)⇐⇒ (ii) This is the content of Theorem 7.11.
(ii) =⇒ (iii) This was discussed above.
(iii) =⇒ (ii) Take an element w = Ax ∈M(A), with some x ∈ H1. Hence,

for each x ∈ H1, there is a y ∈ H2 such that

Ax = By. (16.14)

The element y is not necessarily unique. However, if By = By′, with y, y′ ∈
H2, then B(y − y′) = 0 and thus y − y′ ∈ kerB. In other words, we have
P(kerB)⊥y = P(kerB)⊥y

′. Therefore, the mapping

C : H1 −→ H2

x �−→ P(kerB)⊥y,

with y ∈ H2 given by (16.14), is well defined and

BCx = BP(kerB)⊥y = By = Ax (x ∈ H1).

This means that the definition of C is adjusted such that the identity A = BC

holds. Moreover, by (16.5) and (16.7) and our assumption,

‖Cx‖H2
= ‖P(kerB)⊥y‖H2

= ‖By‖M(B)

= ‖Ax‖M(B)

≤ c ‖Ax‖M(A)

≤ c ‖x‖H1
(x ∈ H1).

Hence, C is a bounded operator of norm less than or equal to c.

We gather some important corollaries below. The first one follows immedi-
ately from Theorem 16.7.

Corollary 16.8 Let A ∈ L(H1,H) and B ∈ L(H2,H). Then the following
statements hold.

(i) M(A) �M(B) if and only if AA∗ = BB∗.
(ii) M(A) �M(|A|), where |A| = (AA∗)1/2.

If the linear manifoldR(A) is closed in H , then it inherits the Hilbert space
structure of H . One may wonder if this Hilbert space structure coincides with
the one we put onR(A) and called itM(A). The following corollary answers
this question.

Corollary 16.9 Let A ∈ L(H1,H). Then R(A) is a closed subspace of H
and ‖w‖M(A) = ‖w‖H, for each w ∈ M(A), if and only if A is a partial
isometry. In this case, we have

M(A) �M(AA∗).
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Proof If A is a partial isometry, then, by Theorem 7.22, P =AA∗ is
an orthogonal projection and thus |A|=P . Hence, by Corollary 16.8(ii),
M(A) �M(P ). This means thatR(A) = R(P ) and ‖w‖M(A) = ‖w‖M(P ),
for each w ∈ M(A). But, by Lemma 16.4, R(P ) is a closed subspace of H
and ‖w‖M(P ) = ‖w‖H for each w ∈M(P ).

Now, suppose that M = R(A) is a closed subspace of H . Then the identity
M(A) = M(PM ) is trivial. Then, by Lemma 16.4 and our assumptions, we
have ‖w‖M(A) = ‖w‖H = ‖w‖M(PM ), for each w ∈ M(A). In other words,
we have the stronger relationM(A) �M(PM ). Hence, by Corollary 16.8(i),

AA∗ = PMP ∗
M = PM .

Therefore, again by Theorem 7.22, A is a partial isometry. In this case, the
relations

M(A) �M(PM ) �M(AA∗)

were implicitly established above.

In Theorem 16.7, the condition AA∗ ≤ c2BB∗ was studied. The following
result is a slightly more generalized version of one part of this theorem. It
answers the following natural question. If M(A) and M(B) are boundedly
contained in H , and if C : H −→ H is a bounded operator, under what
conditions does C map continuouslyM(B) intoM(A)?

Corollary 16.10 Let A,B ∈ L(H1,H), and let C ∈ L(H). Then:

(i) M(B) ⊂ CM(A) if and only if there exists c > 0 such that

BB∗ ≤ c2CAA∗C∗;

(ii) CM(A) ⊂M(B) if and only if there exists c > 0 such that

CAA∗C∗ ≤ c2BB∗. (16.15)

Moreover, if the inequality (16.15) is satisfied, then the mapping

C : M(A) −→ M(B)

w �−→ Cw

is a well-defined operator in L(M(A),M(B)) and

‖C‖L(M(A),M(B)) ≤ c.

Proof (i) By Theorem 16.7 and Lemma 16.6, the operator inequality BB∗ ≤
c2CAA∗C∗ is equivalent to the fact thatM(B) ⊂ M(CA). ButM(CA) =

CM(A), which gives the first assertion.
(ii) The proof has the same flavor. Using once more Theorem 16.7 and

Lemma 16.6, we see that the operator inequality (16.15) is equivalent to the
set inclusion M(CA) ⊂ M(B) and, since M(CA) = CM(A), that gives
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12 The spacesM(A) andH(A)

the desired equivalence. It remains to check that C is a bounded operator of
norm less than or equal to c. Using Theorem 16.7 once more, we see that the
condition (16.15) implies that

‖w‖M(B) ≤ c‖w‖M(CA) (w ∈M(CA)).

Now put w = Cx, x ∈M(A), and then apply Lemma 16.5 to get

‖Cx‖M(B) ≤ c ‖Cx‖M(CA) ≤ c ‖x‖M(A) (x ∈M(A)).

Without any serious difficulty, we will denote the operator C also by C. In
particular, the relation

CAA∗C∗ ≤ BB∗

ensures that C is a contraction fromM(A) intoM(B).

Corollary 16.11 Let A,B ∈ L(H1,H), and let C ∈ L(H) be such that

CAA∗C∗ = BB∗. (16.16)

Assume further that C is injective. Then, the mapping C is a unitary operator
fromM(A) ontoM(B).

Proof According to Corollary 16.8, equation (16.16) implies thatM(CA) �
M(B), that is CM(A) =M(B) and

‖w‖M(CA) = ‖w‖M(B)

for any w ∈ M(CA). Hence, C mapsM(A) ontoM(B) and for any w ∈
M(A) we have

‖Cw‖M(CA) = ‖Cw‖M(B). (16.17)

If we write w = Ax, with x ∈ H1 � kerA, then

‖Cw‖M(CA) = ‖CAx‖M(CA) = ‖P(kerCA)⊥x‖H1
.

But we always have kerA⊂ kerCA and, since C is assumed to be injec-
tive, the reverse inclusion is also true. Hence kerA = kerCA and thus
P(kerCA)⊥x = x. Then we get

‖Cw‖M(B) = ‖x‖H1
= ‖Ax‖M(A) = ‖w‖M(A).

Hence C is unitary operator fromM(A) ontoM(B).

If B ∈ L(H2,H) is injective, then B puts an isometric isomorphic copy of
H2 in H, which we denote byM(B). This fact is an immediate consequence
of the definition ofM(B). This result is mentioned below in further detail.

Corollary 16.12 Let A ∈ L(H1,H) and B ∈ L(H2,H). Then the following
are equivalent.
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(i) AA∗ = BB∗ and B is injective.
(ii) M(A) �M(B) and B is injective.
(iii) B is an isometry fromH2 ontoM(A).

Proof The equivalence (i)⇐⇒ (ii) follows from Corollary 16.8.
(ii)⇐⇒ (iii) By hypothesis,M(A) =M(B) and

‖Bx‖M(A) = ‖Bx‖M(B) (x ∈ H2).

But, since B is injective, we have

‖Bx‖M(B) = ‖x‖H2
(x ∈ H2).

Thus,

‖Bx‖M(A) = ‖x‖H2
(x ∈ H2).

This identity shows that B is an isometry from H2 ontoM(A).
(iii) =⇒ (ii) By assumption, we haveR(A) = R(B) and

‖Bx‖M(A) = ‖x‖H2
(x ∈ H2).

That B is an isometry implies kerB = {0}. Hence,

‖Bx‖M(B) = ‖x‖H2

for every x ∈ (kerB)⊥ = H2. Thus,

‖Bx‖M(A) = ‖Bx‖M(B) (x ∈ H2).

This means thatM(A) �M(B).

Exercises

Exercise 16.2.1 Let A ∈ L(H1,H) and B ∈ L(H2,H). Show that
M(|A|) �M(|B|) if and only if |A| = |B|.
Hint: Use Corollary 16.8(i).

Exercise 16.2.2 LetM and H be two Hilbert spaces and assume thatM
is boundedly contained in H. Show that there is a unique positive operator
T ∈ L(H) such thatM �M(T ).
Hint: For the existence, consider i = iM :M −→ H, the inclusion mapping
fromM intoH. Then, use Corollary 16.8(ii) to show thatM �M(|i|), where
|i| = (ii∗)1/2. For the uniqueness, assume that there exist two positive opera-
tors T1, T2 ∈ L(H) such thatM �M(T1) =M(T2). Use Corollary 16.8(i)
to deduce that

T1T
∗
1 = T2T

∗
2
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14 The spacesM(A) andH(A)

and conclude using the positivity of T1 and T2 and the uniqueness of the
positive square root.

Exercise 16.2.3 Let E ,H andH∗ be Hilbert spaces such that E ⊂ H∗, and
let T : H −→ H∗ be a bounded operator. Show that the following assertions
are equivalent:

(i) E �M(T );
(ii) TT ∗ = ii∗, where i : E −→ H∗ is the embedding operator.

Hint: Use the fact that E �M(i) and apply Corollary 16.8.

16.3 Linear functionals on M(A)

Let A ∈ L(H1,H2). Suppose that

Λ : H2 −→ C

is a bounded linear functional on H2. Then, by Riesz’s theorem (Theo-
rem 1.24), there is a unique w ∈ H2 such that

Λz = 〈z, w〉H2
(z ∈ H2).

According to (16.8), the inclusion map

i :M(A) −→ H2

is continuous. Hence,

Λ ◦ i :M(A) −→ C

is a bounded linear functional onM(A). Thus, again by Riesz’s theorem, there
is a unique w′ ∈M(A) such that

(Λ ◦ i)(z) = 〈z, w′〉M(A) (z ∈M(A)).

We naturally proceed to find the relation between w and w′. Note that Λ ◦ i
is precisely the restriction of Λ to M(A), which, according to our general
convention, we also denote by Λ.

Theorem 16.13 Let A ∈ L(H1,H2). Let w ∈ H2, and let

Λz = 〈z, w〉H2
(z ∈ H2)

be the corresponding bounded linear functional on H2. Then its restriction

Λ :M(A) −→ C

is a bounded linear functional onM(A) and

Λ(Ax) = 〈Ax,AA∗w〉M(A) (x ∈ H1).
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Moreover,

‖Λ‖M(A)∗ = ‖A∗w‖H1
.

Remark: We recall that, by Riesz’s theorem,

‖Λ‖H∗
2
= ‖w‖H2

.

Proof By the definition of the adjoint operator, we have

Λ(Ax) = 〈Ax,w〉H2
= 〈x,A∗w〉H1

(x ∈ H1).

But, by Theorem 1.30,

A∗w ∈ R(A∗) ⊂ (kerA)⊥.

Hence, by (16.6),

〈x,A∗w〉H1
= 〈Ax,AA∗w〉M(A) (x ∈ H1).

Therefore, we can write

Λ(Ax) = 〈Ax,AA∗w〉M(A) (x ∈ H1).

This representation shows that

‖Λ‖M(A)∗ = ‖AA∗w‖M(A).

However, by (16.5) and the fact that A∗w ∈ (kerA)⊥, we have

‖AA∗w‖M(A) = ‖A∗w‖H1
.

16.4 The complementary space H(A)

IfA is a Hilbert space contraction, then AA∗ ≤ I and thus (I−AA∗)1/2 is well
defined (see Exercise 2.4.5). Therefore, we can consider the linear manifold
R((I − AA∗)1/2) and put a Hilbert space structure on it, as explained in the
previous section and denoted byM((I −AA∗)1/2). We call

H(A) =M((I −AA∗)1/2)

the complementary space of M(A), and the intersection M(A) ∩ H(A) is
called the overlapping space. In the rest of this chapter we studyH(A) and its
relation toM(A).

Lemma 16.14 Let A ∈ L(H1,H) be a contraction. Then H(A) is a closed
subspace of H and ‖w‖H(A) = ‖w‖H, for each w ∈ H(A), if and only if A is
a partial isometry. In this case, the set identity

H(A) = R(I −AA∗)

holds.
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16 The spacesM(A) andH(A)

Proof By Corollary 16.9, H(A) is a closed subspace of H and ‖w‖H(A) =

‖w‖H, for each w ∈ H(A), if and only if (I − AA∗)1/2 is a partial isometry.
But, by Theorem 7.22, this happens if and only if I − AA∗ is an orthogonal
projection. Clearly, I−AA∗ is an orthogonal projection if and only ifAA∗ is an
orthogonal projection. Finally, again by Theorem 7.22, AA∗ is an orthogonal
projection if and only if A is a partial isometry.

In this case, since I − AA∗ is an orthogonal projection, we have (I −
AA∗)1/2 = I−AA∗, and thus the set identityH(A) = R(I−AA∗) holds.

For an operator A ∈ L(H1,H2), we clearly have the set inclusions

R(AA∗) ⊂ R(A) ⊂ H2.

Therefore, R(AA∗) is a linear submanifold of M(A). We show that, with
respect to the topology ofM(A), in a senseR(AA∗) is a large set.

Lemma 16.15 Let A ∈ L(H1,H2). Then the linear manifold R(AA∗) is
dense inM(A).

Proof To show that R(AA∗) is dense in M(A), we use a standard Hilbert
space technique. If 0 is the only vector inM(A) that is orthogonal toR(AA∗),
then this linear manifold is dense inM(A). Thus let w ∈M(A) be such that

〈w, z〉M(A) = 0

for all z ∈ R(AA∗). We proceed to show that w = 0. By definition, w = Ax,
for some x ∈ H1, and z = AA∗y, where y runs through H2. Remember that
A∗y ⊥ kerA. Hence, by (16.6),

0 = 〈w, z〉M(A)

= 〈Ax,AA∗y〉M(A)

= 〈x,A∗y〉H1

= 〈Ax, y〉H2

= 〈w, y〉H2

for all y ∈ H2. Therefore, w = 0.

We now write Lemma 16.15 for H(A) spaces. This is the version that we
mostly need.

Corollary 16.16 Let A ∈ L(H1,H2) be a Hilbert space contraction. Then
the linear manifoldR(I−AA∗) is dense inH(A). Moreover, for each z ∈ H2

and w ∈ H(A),

‖(I −AA∗)z‖2H(A) = ‖(I −AA∗)1/2z‖2H2
= ‖z‖2H2

− ‖A∗z‖2H1
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and

〈w, (I −AA∗)z〉H(A) = 〈w, z〉H2
.

Proof For the first part, it is enough to apply Lemma 16.15 to the self-adjoint
operator (I −AA∗)1/2 ∈ L(H2) and see thatR(I −AA∗) is dense inH(A).

To prove the first identity, note that (I − AA∗)1/2z ⊥ ker(I − AA∗)1/2.
Thus, by (16.5),

‖(I −AA∗)z‖2H(A) = ‖(I −AA∗)1/2z‖2H2

= 〈(I −AA∗)1/2z, (I −AA∗)1/2z〉H2

= 〈(I −AA∗)z, z〉H2

= ‖z‖2H2
− ‖A∗z‖2H1

.

For the second relation, we write w = (I − AA∗)1/2w′, where w′ ⊥ ker

(I −AA∗)1/2. Hence, by (16.6),

〈w, (I −AA∗)z〉H(A) = 〈(I −AA∗)1/2w′, (I −AA∗)z〉H(A)

= 〈w′, (I −AA∗)1/2z〉H2

= 〈(I −AA∗)1/2w′, z〉H2

= 〈w, z〉H2
.

This completes the proof.

Given an element y ∈ H, we sometimes need to know if it belongs to a given
complementary space H(A) or not. The following result is a characterization
of this type.

Theorem 16.17 Let A be a contraction on a Hilbert space H and let y ∈ H.
Then y ∈ H(A) if and only if

sup
0≤r<1

‖(I − r2AA∗)−1/2y‖H < +∞.

Moreover, if y = (I −AA∗)1/2x with x ⊥ ker(I −AA∗)1/2, then

lim
r→1
‖(I − r2AA∗)−1/2y − x‖H = 0,

and if y1, y2 ∈ H(A), then

〈y1, y2〉H(A) = lim
r→1
〈(I − r2AA∗)−1/2y1, (I − r2AA∗)−1/2y2〉H. (16.18)

In particular, for each y ∈ H(A),

‖y‖H(A) = lim
r→1
‖(I − r2AA∗)−1/2y‖H.
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18 The spacesM(A) andH(A)

Proof Put Br = I − r2AA∗, 0 ≤ r < 1, and B = I − AA∗. Then the
conditions of Theorem 7.10 are clearly satisfied and thus we deduce that y
belongs to the range of B1/2, which isH(A), if and only if

sup
0≤r<1

‖B−1/2
r y‖H = sup

0≤r<1
‖(I − r2AA∗)−1/2y‖H < +∞.

The first equality was also established in Theorem 7.10. Now, if yi ∈ H(A),
i = 1, 2, then yi = (I − AA∗)1/2xi, with xi ⊥ ker(I −AA∗)1/2, and, by the
first equality, (I − r2AA∗)−1/2yi converges to xi in H , as r −→ 1. Hence,

〈y1, y2〉H(A) = 〈x1, x2〉H = lim
r→1
〈(I−r2AA∗)−1/2y1, (I−r2AA∗)−1/2y2〉H.

Exercises

Exercise 16.4.1 Let A ∈ L(H1,H2). Show that

‖w‖M(A) ≤ ‖A‖L(H1,H2)‖w‖M(AA∗) (w ∈M(AA∗)).

Hint: Write w = AA∗x, where x ⊥ kerAA∗.
Remark: This means that M(AA∗) is boundedly contained in M(A). This
fact also follows from Lemma 16.6.

Exercise 16.4.2 Let A ∈ L(H1,H2) be a Hilbert space contraction. Show
that

‖w‖H(A) ≤ ‖w‖M(I−AA∗) (w ∈M(I −AA∗)).

Hint: Apply Exercise 16.4.1 to the operator (I −AA∗)1/2.
Remark: This means thatM(I −AA∗) is contractively contained inH(A).

16.5 The relation between H(A) and H(A∗)

In this section we explore the relation betweenH(A) andH(A∗). In particular,
we obtain a frequently used identity that exhibits the bridge between the inner
products inH(A) andH(A∗).

Theorem 16.18 Let A ∈ L(H1,H2) be a contraction, and let w ∈ H2. Then
w ∈ H(A) if and only if A∗w ∈ H(A∗). Moreover, if w1, w2 ∈ H(A), then

〈w1, w2〉H(A) = 〈A∗w1, A
∗w2〉H(A∗) + 〈w1, w2〉H2

.

In particular, for each w ∈ H(A),

‖w‖2H(A) = ‖A∗w‖2H(A∗) + ‖w‖2H2
.
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Proof We recall the intertwining relation (7.12):

A∗(I −AA∗)1/2 = (I −A∗A)1/2A∗.

Hence, the set inclusion A∗H(A) ⊂ H(A∗) follows immediately. This is
equivalent to saying that

w ∈ H(A) =⇒ A∗w ∈ H(A∗).

To prove the inverse, let w ∈ H2 be such that A∗w ∈ H(A∗). Thus, by
definition, there is x ∈ H1 such that

A∗w = (I −A∗A)1/2x.

By the intertwining relation, the trivial identity

w = (I −AA∗)w +AA∗w = (I −AA∗)w +A(I −A∗A)1/2x

can be rewritten as

w = (I −AA∗)1/2[(I −AA∗)1/2w +Ax]. (16.19)

Hence, w ∈ H(A). In other words, we also have

A∗w ∈ H(A∗) =⇒ w ∈ H(A).

To prove the identity for the inner products, let w1, w2 ∈ H(A). Hence,
there are y1, y2 ∈ H2 such that

wk = (I −AA∗)1/2yk (k = 1, 2).

Without loss of generality, we assume that yk ⊥ ker(I −AA∗). This assump-
tion has two consequences: first,

〈w1, w2〉H(A) = 〈y1, y2〉H2
,

and second, A∗yk ⊥ ker(I−A∗A) (see Exercise 1.8.3). But, by the intertwin-
ing relation, we have

A∗wk = (I −A∗A)1/2A∗yk (k = 1, 2).

Therefore, we also have

〈A∗w1, A
∗w2〉H(A∗) = 〈A∗y1, A

∗y2〉H1
.

Now, a direct calculation shows that

〈w1, w2〉H2
= 〈(I −AA∗)1/2y1, (I −AA∗)1/2y2〉H2

= 〈(I −AA∗)y1, y2〉H2

= 〈y1, y2〉H2
− 〈A∗y1, A

∗y2〉H1

= 〈w1, w2〉H(A) − 〈A∗w1, A
∗w2〉H(A∗).

This completes the proof.
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Applying Theorem 16.18 to the operator A∗ gives the following result.

Corollary 16.19 Let A ∈ L(H1,H2) be a contraction. Then a vector x ∈ H1

belongs to H(A∗) if and only if Ax ∈ H(A). Moreover, if x1, x2 ∈ H(A∗),
then

〈x1, x2〉H(A∗) = 〈Ax1, Ax2〉H(A) + 〈x1, x2〉H1
.

In particular, for each x ∈ H(A∗),

‖x‖2H(A∗) = ‖Ax‖2H(A) + ‖x‖2H1
.

16.6 The overlapping space M(A) ∩ H(A)

As we mentioned in Section 16.4, the intersection M(A) ∩ H(A) is called
the overlapping space. We first show that the overlapping space is precisely
the image ofH(A∗) under the operator A. Then we exploit this observation to
characterize the trivial overlapping space.

Lemma 16.20 Let A ∈ L(H1,H2) be a Hilbert space contraction. Then we
have the set identity

M(A) ∩H(A) = AH(A∗).

Moreover, the operator A acts as a contraction fromH(A∗) intoH(A).

Proof By Corollary 16.19, AH(A∗) ⊂ H(A). Moreover, by definition, we
have AH(A∗) ⊂ M(A). Hence, AH(A∗) ⊂ M(A) ∩ H(A). To prove the
other inclusion, let w ∈ M(A) ∩ H(A). Therefore, w = Ax, for some x ∈
H1, and Ax ∈ H(A). Thus, again by Corollary 16.19, we necessarily have
x ∈ H(A∗), and this means w = Ax ∈ AH(A∗). If we apply Theorem 16.18
to A∗, then, for each w ∈ H(A∗), we have

‖w‖2H(A∗) = ‖Aw‖2H(A) + ‖w‖2H1
≥ ‖Aw‖2H(A),

which exactly means that A acts as a contraction fromH(A∗) intoH(A).

We naturally wonder when the overlapping space is trivial, i.e. M(A) ∩
H(A) = {0}. We are now able to fully characterize this situation.

Theorem 16.21 Let A ∈ L(H1,H2) be a Hilbert space contraction. Then
the following are equivalent:

(i) A is a partial isometry;
(ii) M(A) is a closed subspace of H and inherits its Hilbert space structure;
(iii) H(A) is a closed subspace of H and inherits its Hilbert space structure;
(iv) M(A) andH(A) are orthogonal complements of each other;
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(v) M(A) ∩H(A) = {0};
(vi) H(A∗) ⊂ kerA.

Moreover, under the preceding equivalent conditions, we have the orthogonal
decomposition

H =M(A) +H(A).

Proof The equivalence (i)⇐⇒ (ii) was proved in Corollary 16.9.
The equivalence (i)⇐⇒ (iii) was proved in Lemma 16.14.
(i) =⇒ (iv) If A is a partial isometry, thenM(A) andH(A) are the range of

complementary orthogonal projections AA∗ and I − AA∗. HenceM(A) and
H(A) are orthogonal complements of each other.

(iv) =⇒ (v) This is trivial.
(v) =⇒ (vi) This is an immediate consequence of Lemma 16.20.
(vi) =⇒ (i) By assumption A(I − A∗A)1/2 = 0. If so, then certainly we

have A(I − A∗A) = 0. Hence, A = AA∗A, which implies (AA∗)2 = AA∗.
In other words, AA∗ is an orthogonal projection. Therefore, by Theorem 7.22,
A is a partial isometry.

The orthogonal decomposition H=M(A) + H(A) is a consequence
of (iv).

16.7 The algebraic sum of M(A1) and M(A2)

Given two operators A1 ∈ L(H1,H) and A2 ∈ L(H2,H), we can form
the Hilbert spaces M(A1) and M(A2) inside H. Looking at them as linear
submanifolds ofH, we can form the algebraic sum

M(A1) +M(A2) = {w1 + w2 : w1 ∈M(A1) and w2 ∈M(A2)}.

We may naturally ask if this sum can be regarded as a new Hilbert space
M(A), for a suitable operator A. The affirmative answer is explained in more
detail in the following result.

Theorem 16.22 Let A1 ∈ L(H1,H) and A2 ∈ L(H2,H), and let A =

[A1A2] ∈ L(H1 ⊕H2, H) be defined by

A(x1, x2) = A1x1 +A2x2 (x1 ∈ H1, x2 ∈ H2).

Then the following hold.

(i) M(A) decomposes as

M(A) =M(A1) +M(A2).
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(ii) For each representation

w = w1 + w2,

where wi ∈M(Ai), i = 1, 2, and w ∈M(A), we have

‖w‖2M(A) ≤ ‖w1‖2M(A1)
+ ‖w2‖2M(A2)

.

(iii) For each w ∈ M(A), there is a unique pair of points w1 ∈ M(A1) and
w2 ∈M(A2) such that w = w1 + w2 and

‖w‖2M(A) = ‖w1‖2M(A1)
+ ‖w2‖2M(A2)

.

Proof (i) By definition, for each x1 ∈ H1 and x2 ∈ H2, we have

A(x1 ⊕ x2) = A1x1 +A2x2.

This immediately implies the set identityM(A) =M(A1) +M(A2).
(ii) If w = w1 + w2 with wi ∈ M(Ai), i = 1, 2, then we can write wi =

Aixi with xi ⊥ kerAi. Note that a given w ∈ H(A) is not necessarily written
in a unique way in the form w = w1 + w2, and in fact it may have infinitely
many such representations. Then we can write

w = w1 + w2 = A1x1 +A2x2 = A(x1 ⊕ x2).

Therefore, by Corollary 16.8(ii) and (16.5),

‖w‖2M(A) = ‖A(x1 ⊕ x2)‖2M(A)

≤ ‖x1 ⊕ x2‖2H1⊕H2

= ‖x1‖2H1
+ ‖x2‖2H2

= ‖w1‖2M(A1)
+ ‖w2‖2M(A2)

.

(iii) Among all possible representations

w = w1 + w2 = A(x1 ⊕ x2),

if we choose x1 and x2 such that x1 ⊕ x2 ⊥ kerA, then, in the light of (1.45),
we certainly have xi ⊥ kerAi. Hence, in the last paragraph of (ii) equality
holds everywhere. Thus, this choice of x1 and x2 gives at least a suitable pair
w1 and w2 for which ‖w‖2M(A) = ‖w1‖2M(A1)

+ ‖w2‖2M(A2)
holds. But, to

have this equality, we need x1 ⊕ x2 ⊥ kerA and this choice of x1 ⊕ x2 is
unique. Hence, in return, w1 and w2 are also unique.

We now give an explicit example to reveal the contents of the above result.
Let A1 ∈ L(C3) be defined by

A1(1, 0, 0) = (0, 0, 0), A1(0, 1, 0) = (0, 1, 0), A1(0, 0, 1) = (0, 0, 1),
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16.7 The algebraic sum ofM(A1) andM(A2) 23

and put A2 = −A1 and A = A1 ⊕A2 ∈ L(C3 ⊕ C3 −→ C3). Then

w = A((α, β, γ)⊕ (α′, β′, γ′)) = (0, β − β′, γ − γ′). (16.20)

There are infinitely many ways to write w = w1 + w2 with wi ∈ M(Ai). For
example, the above equality suggests that

w1 = A1((α, β, γ)) = A1((0, β, γ)) = (0, β, γ) (16.21)

and

w2 = A2((α
′, β′, γ′)) = A2((0, β

′, γ′)) = (0,−β′,−γ′). (16.22)

But, we may equally take w2 = 0 and

w1 = A1((0, β − β′, γ − γ′)) = (0, β − β′, γ − γ′). (16.23)

We naturally seek the unique representation that is promised in Theorem 16.23.
To do so, first note that

kerA1 = kerA2 = {(α, 0, 0) : α ∈ C},

and

kerA = {(α, β, γ)⊕ (α′, β, γ) : α, α′, β, γ ∈ C},

which imply that

(kerA)⊥ = {(0, β, γ)⊕ (0,−β,−γ) : β, γ ∈ C}. (16.24)

Observe that

kerA1 ⊕ kerA2 � kerA.

This proper inclusion has some important consequences.
According to (16.24), the good representation for w = (0, β− β′, γ− γ′) is

w = A

((
0,

β − β′

2
,
γ − γ′

2

)
⊕

(
0,−β − β′

2
,−γ − γ′

2

))
.

Note that(
0,

β − β′

2
,
γ − γ′

2

)
⊕

(
0,−β − β′

2
,−γ − γ′

2

)
⊥ kerA.

For this unique choice, we have the unique decomposition w = w1+w2, where

w1 = A1

(
0,

β − β′

2
,
γ − γ′

2

)
=

(
0,

β − β′

2
,
γ − γ′

2

)
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and

w2 = A2

(
0,−β − β′

2
,−γ − γ′

2

)
=

(
0,

β − β′

2
,
γ − γ′

2

)
.

Since, moreover, (
0,

β − β′

2
,
γ − γ′

2

)
⊥ kerA1

and (
0,−β − β′

2
,−γ − γ′

2

)
⊥ kerA2,

we deduce that

‖w‖2M(A) =

∥∥∥∥(0, β − β′

2
,
γ − γ′

2

)
⊕

(
0,−β − β′

2
,−γ − γ′

2

)∥∥∥∥2

=
|β − β′|2 + |γ − γ′|2

2
,

‖w1‖2M(A1)
=

∥∥∥∥(0, β − β′

2
,
γ − γ′

2

)∥∥∥∥2

=
|β − β′|2 + |γ − γ′|2

4

and

‖w2‖2M(A2)
=

∥∥∥∥(0,−β − β′

2
,−γ − γ′

2

)∥∥∥∥2

=
|β − β′|2 + |γ − γ′|2

4
.

Hence, it is no wonder that, for the good representation, we have the norm
identity

‖w‖2M(A) = ‖w1‖2M(A1)
+ ‖w2‖2M(A2)

.

For any other representation w = w1 + w2, with wi ∈ M(Ai), we would
certainly have

‖w‖2M(A) < ‖w1‖2M(A1)
+ ‖w2‖2M(A2)

.

For example, in the representation (16.21) and (16.22), we have

‖w1‖2M(A1)
= ‖(0, β, γ)‖2 = |β|2 + |γ|2

and

‖w2‖2M(A2)
= ‖(0, β′, γ′)‖2 = |β′|2 + |γ′|2.

In this case, the inequality

|β|2 + |γ|2 + |β′|2 + |γ′|2 >
|β − β′|2 + |γ − γ′|2

2
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is equivalent to

‖w1‖2M(A1)
+ ‖w2‖2M(A2)

> ‖w‖2M(A).

In a similar manner, the representation (16.23) implies ‖w2‖M(A2) = 0 and

‖w1‖2M(A1)
= ‖(0, β − β′, γ − γ′)‖2 = |β − β′|2 + |γ − γ′|2.

Hence, again, we are faced with the trivial inequality

‖w1‖2M(A1)
+ ‖w2‖2M(A2)

= |β − β′|2 + |γ − γ′|2

>
|β − β′|2 + |γ − γ′|2

2
= ‖w‖2M(A).

A slightly different version of the above algebraic decomposition will be stud-
ied in Theorem 16.23.

16.8 A decomposition of H(A)

If an operator decomposes as A = A2A1, we naturally ask about the relation
between H(A), on the one hand, and H(A1) and H(A2), on the other. In this
section we address this important question.

Theorem 16.23 Let A1 ∈ L(H3,H1) and A2 ∈ L(H1,H2) be contractions,
and let A = A2A1. Then the following hold.

(i) H(A) decomposes as

H(A) = A2H(A1) +H(A2).

(ii) For any representation

w = A2w1 + w2,

where wi ∈ H(Ai), i = 1, 2, and w ∈ H(A), we have

‖w‖2H(A) ≤ ‖w1‖2H(A1)
+ ‖w2‖2H(A2)

.

(iii) For each w ∈ H(A) there is a unique pair of points w1 ∈ H(A1) and
w2 ∈ H(A2) such that w = A2w1 + w2 and

‖w‖2H(A) = ‖w1‖2H(A1)
+ ‖w2‖2H(A2)

.

(iv) H(A2) is contractively contained inH(A).
(v) The operator A2 acts as a contraction fromH(A1) intoH(A).

Proof The proof has the same spirit as the proof of Theorem 16.22. In fact,
we can even appeal to this result, and we give a shorter proof below. However,
here we provide a complete and independent proof.
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(i) Consider the operators B1 = A2(I −A1A
∗
1)

1/2 ∈ L(H1,H2) and B2 =

(I −A2A
∗
2)

1/2 ∈ L(H2):

H3

A1

��

A

���
��

��
��

��
��

��
��

H2

(I−AA∗)1/2

��
H1

A2

�� H2

H1

(I−A1A
∗
1)

1/2

��

B1

�����������������
H2

(I−A2A
∗
2)

1/2

�� (16.25)

Then, by (1.43), we can write

I −AA∗ = I − (A2A1)(A2A1)
∗

= A2(I −A1A
∗
1)A

∗
2 + (I −A2A

∗
2)

= B1B
∗
1 +B2B

∗
2

= BB∗, (16.26)

where B = [B1 B2] ∈ L(H1⊕H2, H2). Therefore, by Corollary 16.8(ii), and
that by definitionH(A) =M((I −AA∗)1/2), we have

H(A) �M(B).

Hence, at least, we have the set identities

H(A) =M(B)

=M(B1) +M(B2)

= A2M((I −A1A
∗
1)

1/2) +M((I −A2A
∗
2)

1/2)

= A2H(A1) +H(A2).

(ii) If w = A2w1 + w2 with wi ∈ H(Ai), i = 1, 2, then we can write
wi = (I −AiA

∗
i )

1/2xi with xi ⊥ ker(I −AiA
∗
i ). Then we have

w = A2w1 + w2

= A2(I −A1A
∗
1)

1/2x1 + (I −A2A
∗
2)

1/2x2

= B1x1 +B2x2

= B(x1 ⊕ x2).

Therefore, by Corollary 16.8(ii) and (16.5),

‖w‖2H(A) = ‖w‖2M(B)

= ‖B(x1 ⊕ x2)‖2M(B)
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≤ ‖x1 ⊕ x2‖2H1⊕H2

= ‖x1‖2H1
+ ‖x2‖2H2

= ‖w1‖2H(A1)
+ ‖w2‖2H(A2)

.

(iii) Among all possible representations

w = A2w1 + w2 = B(x1 ⊕ x2),

if we choose x1 and x2 such that x1 ⊕ x2 ⊥ kerB, then, in the light of (1.45),
we certainly have xi ⊥ ker(I − AiA

∗
i ). Hence, in the last paragraph of (ii)

equality holds everywhere. Thus, this choice of x1 and x2 gives at least a
suitable pair w1 and w2 for which ‖w‖2H(A) = ‖w1‖2H(A1)

+‖w2‖2H(A2)
holds.

But, to have this equality, we need x1⊕x2 ⊥ kerB, and this choice of x1⊕x2

is unique. Hence, in return, w1 and w2 are unique too.
(iv) By (i), H(A2) ⊂ H(A). For each w2 ∈ H(A2), consider the represen-

tation w = A20 + w2. Hence, by (ii),

‖w2‖H(A) = ‖w‖H(A) ≤ ‖w2‖H(A2).

This means thatH(A2) is contractively contained inH(A).
(v) By (i), A2H(A1) ⊂ H(A). For each w1 ∈ H(A1), consider the repre-

sentation w = A2w1 + 0. Hence, by (ii),

‖A2w1‖H(A) = ‖w‖H(A) ≤ ‖w1‖H(A1).

This means that A2 acts as a contraction fromH(A1) intoH(A).

In part (iii) of the preceding theorem, the existence of a unique pair ofw1 and
w2 was established. However, we did not offer a procedure or formula to find
them. We are able to do this in the following special case. In Corollary 16.16,
we saw that M(I − AA∗) is a dense submanifold of H(A). Let w ∈ M
(I −AA∗). Hence, there is y ∈ H2 such that

w = (I −AA∗)y. (16.27)

Let

x1 = B∗
1y and x2 = B∗

2y,

where B1 and B2 are as in the proof of Theorem 16.23. Then, by Theo-
rem 1.30,

x1 ⊕ x2 = B∗
1y ⊕B∗

2y = B∗y ∈ R(B∗) ⊂ (kerB)⊥.

Moreover, by (1.43) and (16.26),

B(x1 ⊕ x2) = B1x1 +B2x2 = (B1B
∗
1 +B2B

∗
2)y

= BB∗y = (I −AA∗)y = w.
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Therefore, the unique pair for an element of the form w = (I−AA∗)y is given
by

w1 = (I −A1A
∗
1)

1/2x1 = (I −A1A
∗
1)A

∗
2y (16.28)

and

w2 = (I −A2A
∗
2)

1/2x2 = (I −A2A
∗
2)y. (16.29)

The decompositionH(A) = A2H(A1) +H(A2) is an algebraic direct sum
of A2H(A1) andH(A2) provided that

A2H(A1) ∩H(A2) = {0}.

However, the relations

H(A) =M(B), M(B1) = A2H(A1), M(B2) = H(A2)

and (1.47) show that the decomposition H(A) = A2H(A1) + H(A2) is an
algebraic direct sum of A2H(A1) andH(A2) if and only if

kerB = kerB1 ⊕ kerB2.

Assuming the decomposition is an algebraic direct sum, if

w = A2w1 + w2 = A2w
′
1 + w′

2

then we must have A2w1 = A2w
′
1 and w2 = w′

2. Hence, the choice of w2

in the representation w = A2w1 + w2 is unique. However, there is still some
freedom for w1.

Corollary 16.24 Let A1 ∈ L(H3,H1) and A2 ∈ L(H1,H2) be contrac-
tions, and let A = A2A1. Suppose that

A2H(A1) ∩H(A2) = {0}.

Then the following hold.

(i) H(A2) is contained isometrically inH(A).

(ii) The operator A2 acts as a partial isometry fromH(A1) intoH(A).

(iii) Relative to the Hilbert space structure of H(A), the subspaces A2H(A1)

andH(A2) are complementary orthogonal subspaces of H(A). In other
words, the decomposition H(A) = A2H(A1) + H(A2) is in fact an
orthogonal direct sum.

Proof We use the notation in the proof of Theorem 16.23. The assumption
A2H(A1) ∩H(A2) = {0} means that the decomposition

H(A) = A2H(A1) +H(A2)
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is an algebraic direct sum. Based on this notation, this is equivalent to saying
that

R(B) = R(B1) +R(B2)

is an algebraic direct sum. Therefore, by (1.47),

P(kerB)⊥(x1 ⊕ x2) = P(kerB1)⊥x1 ⊕ P(kerB2)⊥x2 (16.30)

for all x1 ∈ H1 and x2 ∈ H2. The identity is the main ingredient in our proof.
(i) Let w2 ∈ H(A2). Hence w2 = B2x2 = (I−A2A

∗
2)

1/2x2 with x2 ∈ H2.
Therefore, by (16.30),

‖w2‖H(A) = ‖w2‖M(B)

= ‖B2x2‖M(B)

= ‖B(0⊕ x2)‖M(B)

= ‖P(kerB)⊥(0⊕ x2)‖H1⊕H2

= ‖0⊕ P(kerB2)⊥x2‖H1⊕H2

= ‖P(kerB2)⊥x2‖H2

= ‖B2x2‖M(B2)

= ‖w2‖H(A2).

Hence,H(A2) is contained isometrically inH(A).
(ii) Let us temporarily use the notation

A2 : H(A1) −→ H(A)

w1 �−→ A2w1

for the restriction of A2 to H(A1). By Theorem 16.23(iv), this operator is
well defined and kerA2 = (kerA2) ∩ H(A1). To show that A2 is a partial
isometry, we need to verify that, if w1 ∈ H(A1), with w1 ⊥ kerA2, with
respect to the inner product ofH(A1), then ‖A2w1‖H(A) = ‖w1‖H(A1).

Fix w1 ∈ H(A1) with w1 ⊥ kerA2 in H(A1). Then there exists x1 ∈
H1, x1 ⊥ ker(I − A1A

∗
1), such that w1 = (I − A1A

∗
1)

1/2x1. But, x1 also
satisfies x1 ⊥ kerB1. To verify this fact, let x ∈ kerB1, which means that
A2(I−A1A

∗
1)

1/2x = 0. This identity implies that (I−A1A
∗
1)

1/2x ∈ kerA2∩
H(A1) = kerA2. Hence, we have

〈x1, x〉H1
= 〈w1, (I −A1A

∗
1)

1/2x〉H(A1) = 0.

Since this is true for every x ∈ kerB1, we obtain that x1 ⊥ kerB1. Therefore,
by (16.30),

‖A2w1‖H(A) = ‖A2(I −A1A
∗
1)

1/2x1‖H(A)

= ‖B1x1‖M(B)
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= ‖B(x1 ⊕ 0)‖M(B)

= ‖P(kerB1)⊥x1‖H1

= ‖x1‖H1

= ‖w1‖H(A1),

which certifies that A2 is a partial isometry, or, equivalently, A2 acts as a partial
isometry fromH(A1) intoH(A).

(iii) By parts (i) and (ii), with respect to the structure of H(A), the sets
H(A2) and A2H(A1) are closed subspaces of H(A). Now let wi ∈ H(Ai),
i = 1, 2. Hence, wi = (I −AA∗)1/2xi with xi ∈ Hi. Therefore, by (16.30),

〈A2w1, w2〉H(A) = 〈A2w1, w2〉M(B)

= 〈B1x1, B2x2〉M(B)

= 〈B(x1 ⊕ 0), B(0⊕ x2)〉M(B)

= 〈P(kerB)⊥(x1 ⊕ 0), P(kerB)⊥(0⊕ x2)〉H1⊕H2

= 〈P(kerB1)⊥x1 ⊕ 0, 0⊕ P(kerB2)⊥x2〉H1⊕H2

= 〈P(kerB1)⊥x1, 0〉H1
+ 〈0, P(kerB2)⊥x2〉H2

= 0.

Hence, A2H(A1) and H(A2) are complementary orthogonal subspaces
ofH(A).

To apply Corollary 16.24, we certainly need to verify the condition

A2H(A1) ∩H(A2) = {0}.

This is not an easy task. However, in some special cases, it clearly holds. For
example, by Lemma 16.20, we have

A2H(A1) ∩H(A2) ⊂M(A2) ∩H(A2) = A2H(A∗
2).

Hence, whenever A2 satisfies A∗
2A2 = I , then we haveH(A∗

2) = {0} and thus
we conclude that

A∗
2A2 = I =⇒ A2H(A1) ∩H(A2) = {0}. (16.31)

IfM is a closed subspace of the Hilbert space H, then we have H =M⊕
M⊥. We look at this identity from a different point of view. By Lemma 16.4,
we haveM(PM) =M andH(PM) =M⊥, and thus we can write

H =M(PM)⊕H(PM).

In the following, we generalize this observation.

Theorem 16.25 Let A ∈ L(H1,H) be a Hilbert space contraction. Then

H =M(A) +H(A).
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For each decomposition w = w1 + w2, with w ∈ H, w1 ∈ M(A) and w2 ∈
H(A), we have

‖w‖2H ≤ ‖w1‖2M(A) + ‖w2‖2H(A).

Moreover,

‖w‖2H = ‖w1‖2M(A) + ‖w2‖2H(A)

if and only if

w1 = AA∗w and w2 = (I −AA∗)w.

Proof In this proof we write T instead of A. This is because we want to apply
Theorem 16.23 and use the notation there, but the operator A that appears in
that theorem is not the same as the one introduced in the present theorem.

Consider the decomposition

0 = T0,

where on the left-hand side we have 0 ∈ L(H1,H) and on the right-hand side
0 represents the zero operator in L(H1). Hence, we have the decomposition
A = A2A1 with A = 0 ∈ L(H1,H), A2 = T and A1 = 0 ∈ L(H1). Hence,
H(A) � H andH(A1) � H1:

H1

0

��

0

���
��

��
��

��
��

��
��

H

I

��
H1

A
�� H

H1

I

��

H

(I−AA∗)1/2

�� (16.32)

The diagram (16.32) is a simplified version of diagram (16.25).
Thus the decomposition H(A) = A2H(A1) + H(A2) obtained in Theo-

rem 16.23(i) can be written as

H = TH1 +H(T ) =M(T ) +H(T ),

and if z = Tz1+z2 with z1 ∈ H1 and z2 ∈ H(T ), then, by Theorem 16.23(ii),

‖z‖2H ≤ ‖z1‖2H1
+ ‖z2‖2H(T ).

In particular, if we take z1 ⊥ kerT , we obtain

‖z‖2H ≤ ‖Tz1‖2M(T ) + ‖z2‖2H(T ).
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Finally, by (16.27), (16.28) and (16.29), the unique pair z1 and z2 for which

‖z‖2H = ‖z1‖2H1
+ ‖z2‖2H(T )

holds is given by

z1 = (I −A1A
∗
1)A

∗
2z = T ∗z

and

z2 = (I −A2A
∗
2)z = (I − TT ∗)z.

But

z1 ∈ R(T ∗) ⊂ (kerT )⊥

implies that ‖z1‖H1
= ‖Tz1‖M(T ). To be consistent with the notation of the

theorem, just take w = z, w1 = Tz1 and w2 = z2.

We are now able to better understand Theorem 16.21. Generally speaking,
an algebraic direct sum is not necessarily an orthogonal direct sum. However,
the decompositionH =M(A)+H(A) is a special case. If this is an algebraic
direct sum, then it means thatM(A)∩H(A) = {0}. Therefore, Theorem 16.21
ensures that it is in fact an orthogonal direct sum.

16.9 The geometric definition of H(A)

De Branges and Rovnyak had a geometric point of view and gave a different
definition of the complementary space H(A). In this section we treat their
definition and show that it is equivalent to that given in Section 16.4. The
latter definition is due to Sarason and opened a new world for these spaces.
As the motivation for their definition, let us make an observation. According
to Theorem 16.25, for each z ∈M(A) and w ∈ H(A), we have

‖w + z‖2H2
≤ ‖w‖2H(A) + ‖z‖2M(A).

Writing this inequality as

‖w + z‖2H2
− ‖z‖2M(A) ≤ ‖w‖2H(A)

immediately implies that

sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)) ≤ ‖w‖2H(A). (16.33)

Moreover, the supremum is attained.
Suppose thatH is a Hilbert space and letM be a Hilbert space contractively

contained in H. As we explained at the end of Section 16.1, we have M �
M(i), where i is the inclusion map i = iM :M−→ H. Then de Branges and
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Rovnyak defined the complementary space ofM as the set of all w ∈ H such
that

sup
z∈M

(‖w + z‖2H − ‖z‖2M) <∞. (16.34)

By (16.33), surely each element ofH(i) satisfies this property. But, in fact, this
is a characterization property.

Lemma 16.26 Let A ∈ L(H1,H2) be a Hilbert space contraction, and let
w ∈ H2 be such that

sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)) <∞. (16.35)

Then w ∈ H(A) and

‖w‖2H(A) ≤ sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)).

Proof If we succeed in showing that A∗w ∈ H(A∗), then, by Theorem 16.18,
w would be inH(A). Hence, we proceed to show that A∗w ∈ H(A∗). Let

c = sup
x∈H1

(‖w +Ax‖2H2
− ‖x‖2H1

). (16.36)

Since ‖Ax‖M(A) ≤ ‖x‖H1
and the equality holds whenever x ⊥ kerA, then

c = sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)) <∞.

Let γ ∈ T be such that 〈w,Ax〉H2
= γ|〈w,Ax〉H2

|. Replace x by tγx,
where t ∈ R, in (16.36). Hence,

‖w + tγAx‖2H2
− ‖tγx‖2H1

≤ c (x ∈ H1).

This is equivalent to

t2‖(I −A∗A)1/2x‖2H1
− 2t|〈w,Ax〉H2

|+ c− ‖w‖2H2
≥ 0.

Thus

|〈w,Ax〉H2
| ≤ C ‖(I −A∗A)1/2x‖H1

(x ∈ H1),

where C = (c− ‖w‖2H2
)1/2. Since, by Corollary 16.16,

‖(I −A∗A)1/2x‖H1
= ‖(I −A∗A)x‖H(A∗),

we can write

|〈A∗w, x〉H1
| ≤ C ‖(I −A∗A)x‖H(A∗) (x ∈ H1).

By the same corollary,R(I −A∗A) is a dense submanifold ofH(A∗). Hence,
the last inequality says that the map

R(I −A∗A) −→ C
(I −A∗A)x �−→ 〈x,A∗w〉H1
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gives a bounded linear functional on R(I − A∗A), whose norm is less than
or equal to C. We can extend it by continuity to a bounded linear functional
on H(A∗). Hence, by Riesz’s theorem, there is an element y ∈ H(A∗),
‖y‖H(A∗) ≤ C, such that

〈x,A∗w〉H1
= 〈(I −A∗A)x, y〉H(A∗) (x ∈ H1).

Since, by Corollary 16.16, 〈(I −A∗A)x, y〉H(A∗) = 〈x, y〉H1
, we thus have

〈x,A∗w〉H1
= 〈x, y〉H1

(x ∈ H1).

Therefore, A∗w = y ∈ H(A∗) and ‖A∗w‖H(A∗) ≤ C. Theorem 16.18 now
implies that w ∈ H(A) and

‖w‖2H(A) = ‖w‖2H + ‖A∗w‖2H(A∗)

≤ ‖w‖2H + C2 = c

= sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)).

This completes the proof.

Combining Lemma 16.26 and (16.33), we obtain the following result. It
shows that the definition of de Branges and Rovnyak is equivalent to the defi-
nition of Sarason.

Corollary 16.27 Let A ∈ L(H1,H2) be a Hilbert space contraction and let
w ∈ H2. Then the following are equivalent:

(i) w ∈ H(A);
(ii) supz∈M(A)(‖w + z‖2H2

− ‖z‖2M(A)) < +∞.

Moreover, for such an element, we have

‖w‖2H(A) = sup
z∈M(A)

(‖w + z‖2H2
− ‖z‖2M(A)).

Given a Hilbert space H andM, such thatM is contractively contained in
H, we denote byM′ the complementary space ofM defined by (16.34) and
we put

‖w‖2M′ = sup
z∈M

(‖w + z‖2H − ‖z‖2M) (w ∈M′). (16.37)

If iM :M−→ H is the inclusion map, then Corollary 16.27 says that

M′ � H(iM).

In particular, we see that M′ is a Hilbert space that is also contractively
contained in H. Remember also that, if M is a closed subspace of H, then
Theorem 16.21 gives that M′ coincides with the orthogonal complement of
M inH.

https://doi.org/10.1017/CBO9781139226769.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139226769.003


16.9 The geometric definition ofH(A) 35

We state the decomposition H = M(A) + H(A) in a slightly different
language below. This version will be needed in our discussion ofH(b) spaces.

Corollary 16.28 Let H be a Hilbert space, let M be a Hilbert space that
is contractively contained in H and let N be the complementary space ofM
in H. Denote by iM (respectively iN ) the canonical injection ofM (respec-
tively N ) intoH. Then, for each x ∈ H, we have

x = i∗Mx+ i∗Nx

and

‖x‖2H = ‖i∗Mx‖2M + ‖i∗Nx‖2N .

Moreover, if x = x1 + x2, with x1 ∈M and x2 ∈ N , which satisfy

‖x‖2H = ‖x1‖2M + ‖x2‖2N ,

then we necessarily have x1 = i∗Mx and x2 = i∗Nx.

Proof We know thatM �M(iM) and N �M(iN ). Moreover, according
to Corollary 16.27, we have N � H(iM) � M((I − iMi∗M)1/2). Thus
Corollary 16.12 implies that

iN i∗N = I − iMi∗M.

Therefore I = iN i∗N + iMi∗M, which gives

x = i∗Mx+ i∗Nx (x ∈ H).

Furthermore, an application of Theorem 16.25 to A = iM gives

‖x‖2H = ‖iMi∗Mx‖2M(iM) + ‖(I − iMi∗M)x‖2H(iM)

= ‖i∗Mx‖2M + ‖i∗Nx‖2N .

The second point of Corollary 16.28 follows also immediately from Theo-
rem 16.25.

This corollary explains why the notion of complementary space can be seen
as a generalization of the orthogonal complement, and the map i∗M (respec-
tively i∗N ) can be seen as a generalization of the orthogonal projection onto M

(respectively onto N ). We end this section with a result about subspaces that
are invariant under the shift operators.

Let M be a Hilbert space contractively contained in another Hilbert
space H, and let iM :M −→ H be the inclusion map. Then,M �M(iM)

and the complementary space ofM is N = H(iM). In particular, the space
N is itself contractively contained in H. It is natural to wonder what is the
complementary space of N . In other words, what isM′′?
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Using the relation I − iMi∗M = iN i∗N and Corollary 16.8, we get that

N � H(iM) �M((I − iMi∗M)1/2) �M(iN ).

Hence, the complementary space ofN isH(iN ). Using once more the relation
I − iMi∗M = iN i∗N and Corollary 16.8, we get that

H(iN ) �M(iN ) �M,

which gives that the complementary space ofN isM. In other words, we have
proved that, if we start with a spaceM, contractively contained inH, then

M′′ �M.

Theorem 16.29 LetM be a Hilbert space contained in H2. Then the follow-
ing assertions are equivalent.

(i) M is invariant under the backward shift S∗, i.e. S∗M⊂M, and

‖S∗f‖2M ≤ ‖f‖2M − |f(0)|2 (f ∈M). (16.38)

(ii) The following hold:

(a) M is contractively contained in H2;
(b) SM′ ⊂M′ and

‖Sg‖M′ ≤ ‖g‖M′ (g ∈M′).

Proof (i) =⇒ (ii) Assume first thatM is invariant under the backward shift
S∗ and satisfies (16.38). Let us prove first that condition (a) holds. Write T =

S∗|M. By induction, from (16.38) we get

‖Tnf‖2M ≤ ‖f‖2M −
n−1∑
k=0

|T kf(0)|2 (n ≥ 1, f ∈M).

Hence,
n−1∑
k=0

|f̂(k)|2 ≤ ‖f‖2M (n ≥ 1, f ∈M). (16.39)

Note that T kf(0) = (S∗kf)(0) = f̂(k). But, for each f ∈ H2, we have

‖f‖22 =
∞∑
k=0

|f̂(k)|2.

Therefore, letting n −→∞ in (16.39) gives

‖f‖2 ≤ ‖f‖M (f ∈M).

This inequality means precisely thatM is contractively contained in H2 and
thus its complementary spaceM′ is well defined.
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Let us now prove that (b) holds. Let f ∈ M, and let g ∈ H2. Then using
(16.38), we have

‖Sg + f‖22 − ‖f‖2M ≤ ‖Sg + f‖22 − ‖S∗f‖2M − |f(0)|2

= ‖Sg + SS∗f‖22 − ‖S∗f‖2M,

because

‖Sg + f‖22 = ‖Sg + SS∗f − f(0)‖22 = ‖Sg + SS∗f‖22 + |f(0)|2.

Therefore, we have

‖Sg + f‖22 − ‖f‖2M ≤ ‖g + S∗f‖22 − ‖S∗f‖2M, (16.40)

for every g ∈ H2 and every f ∈ M. If furthermore we assume that g ∈ M′,
then we get

‖Sg + f‖22 − ‖f‖2M ≤ sup
f∈M

(‖g + S∗f‖22 − ‖S∗f‖2M) ≤ ‖g‖2M′ .

By definition, this means that Sg ∈M′ and ‖Sg‖M′ ≤ ‖g‖M′ .
(ii) =⇒ (i) Assume thatM is contractively contained in H2 and the shift S

acts as a contraction onM′. Let f ∈M and g ∈M′. We have

‖S∗f + g‖22 − ‖g‖2M′ = ‖SS∗f + Sg‖22 − ‖g‖2M′ ,

and using the fact that SS∗f + Sg ⊥ 1, we also have

‖SS∗f + Sg‖22 = ‖SS∗f + Sg + f(0)‖22 − |f(0)|2 = ‖f + Sg‖22 − |f(0)|2.

Hence,

‖S∗f + g‖22 − ‖g‖2M′ = ‖f + Sg‖22 − |f(0)|2 − ‖g‖2M′ .

Since S acts as a contraction onM′, we deduce that

‖S∗f + g‖22 − ‖g‖2M′ ≤ ‖f + Sg‖22 − ‖Sg‖2M′ − |f(0)|2.

Using the definition of the norm of the complementary space (see (16.37)), and
the fact thatM′′ �M, we get

‖S∗f + g‖22 − ‖g‖2M′ ≤ ‖f‖2M − |f(0)|2.

Now taking the supremum over all g ∈M′, we deduce that S∗f ∈M and

‖S∗f‖2M ≤ ‖f‖2M − |f(0)|2.

Theorem 16.29 says that, if H is a Hilbert space contractively contained in
H2 and such that SH ↪→ H, then S∗H′ ↪→ H′, but the converse is not true.
Let us provide a simple example. LetM = Span(1, z) endowed with a new
scalar product such that

‖1‖M =
√
2, ‖z‖M =

√
3 and 1 < 〈1, z〉M <

√
2.
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Then, we can easily check that S∗M ↪→M ↪→ H2. Putting f(z) = 1− z, we
see that ‖S∗f‖2M = ‖1‖2M = 2 and

‖f‖2M − |f(0)|2 = 1 + ‖z‖2M − 2�〈1, z〉M − 1 = 3− 2�〈1, z〉M.

In particular,

‖f‖2M − |f(0)|2 < ‖S∗f‖2M,

and Theorem 16.29 implies that SM′ cannot be contained contractively inM′.
The inequality (16.38) might look a bit strange. But note that

‖S∗f‖22 = ‖f‖22 − |f(0)|2 (f ∈ H2),

and if H is a Hilbert space that is isometrically contained in H2, then the
inequality holds in the general case. In Section 18.8, we will show that the
space H(b) also satisfies (16.38), and in Sections 23.5 and 25.4, we will study
this inequality more precisely depending on whether b is an extreme or nonex-
treme point of the closed unit ball of H∞.

Exercise

Exercise 16.9.1 Let A ∈ L(H1,H2), B ∈ L(H3,H2), C ∈ L(H3,H1)

be contractions such that B = AC. Show that, for any f ∈ H(A), we have

‖f‖2H(A) = sup
g∈H(C)

(‖f +Ag‖2H(B) − ‖g‖2H(C)).

Hint: Apply Theorem 16.23 to get

sup
g∈H(C)

(‖f +Ag‖2H(B) − ‖g‖2H(C)) ≤ ‖f‖2H(A).

For the other direction, let ε > 0. Apply Corollary 16.27 to show that there
exists h ∈ H1 such that

‖f +Ah‖2H2
− ‖h‖2H1

≥ ‖f‖2H(A) − ε.

Then, apply Theorem 16.25 with h = Ch1+h2, h1 = C∗h, h2 = (I−CC∗)h,
which gives that

‖h‖2H1
= ‖h1‖2H3

+ ‖h2‖2H(C).

Hence

‖f +Ah2‖2H(B) − ‖h2‖2H(C) = ‖f +Ah−Bh1‖2H(B) − ‖h2‖2H(C)

≥ ‖f +Ah‖H2
− ‖h1‖2H3

− ‖h2‖2H(C)

= ‖f +Ah‖2H2
− ‖h‖2H1

≥ ‖f‖2H(A) − ε.
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16.10 The Julia operator J(A) and H(A)

As we have seen in Theorem 16.25, the complementary space H(A) gener-
alizes in some sense the notion of orthogonality. There is a more direct way
in which complementarity is related to orthogonality. In Section 7.3, we intro-
duced the Julia operator J(A) associated with a contraction A ∈ L(H1,H).
Let us recall that J(A) ∈ L(H⊕H1) is defined by

J(A) =

[
DA∗ A

−A∗ DA

]
,

where DA = (I − A∗A)1/2 and DA∗ = (I − AA∗)1/2. We also recall
that DA = ClosH(DAH1) and DA∗ = ClosH1

(DA∗H). According to The-
orem 7.18, J(A) is a unitary operator onH⊕H1.

We now define a related operator, which is also called the Julia operator.
The operator

J(A) : H1 ⊕H −→ H⊕H1

is defined by

J(A) =

[
A DA∗

DA −A∗

]
.

There is a simple relation between these two operators. The connection is via
the unitary operator U : H⊕H1 −→ H1 ⊕H defined by U(x⊕ y) = y ⊕ x,
where x ⊕ y ∈ H ⊕ H1. If we identify this operator with its matrix, then we
have

U =

[
0 I

I 0

]
: H⊕H1 −→ H1 ⊕H.

Hence

J(A)U =

[
DA∗ A

−A∗ DA

] [
0 I

I 0

]
=

[
A DA∗

DA −A∗

]
,

which means that

J(A) = J(A)U.

In particular, we deduce from Theorem 7.18 that J(A) is a unitary operator
fromH1 ⊕H ontoH⊕H1.

Theorem 16.30 Let A ∈ L(H1,H) be a Hilbert space contraction and
assume that A is one-to-one. Write

X1 = J(A)(H1 ⊕ {0}), X2 = J(A)({0} ⊕ DA∗),

and let P1 be the orthogonal projection of H⊕DA onto its first coordinateH.
Then the following hold.
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(i) J(A)(H1 ⊕DA∗) = H⊕DA.

(ii) H⊕DA = X1 ⊕X2.

(iii) P1|X1
is unitary from X1 ontoM(A).

(iv) P1|X2
is unitary from X2 ontoH(A).

Proof (i) Let x⊕ y ∈ H1 ⊕DA∗ . Then

J(A)

[
x

y

]
=

[
Ax+DA∗y

DAx−A∗y

]
.

It is clear that Ax+DA∗y ∈ H and DAx ∈ DA. The fact that A∗y ∈ DA for
y ∈ DA∗ follows from (7.12). Hence

J(A)(H1 ⊕DA∗) ⊂ H⊕DA. (16.41)

Note that

J(A∗) =

[
A∗ DA

DA∗ −A

]
= J(A)∗, (16.42)

and thus if we apply (16.41) to A∗, we get

J(A)∗(H⊕DA) ⊂ H1 ⊕DA∗ .

Since J(A)J(A)∗ = I , we obtain

H⊕DA ⊂ J(A)(H1 ⊕DA∗),

which gives (i).
(ii) This part follows immediately from the fact that J(A) is a unitary oper-

ator fromH1 ⊕DA∗ ontoH⊕DA and that

H1 ⊕DA∗ = (H1 ⊕ {0})⊕ ({0} ⊕ DA∗).

(iii) We have

P1X1 = P1({Ax⊕DAx : x ∈ H1}) = {Ax : x ∈ H1} =M(A).

Moreover, if x1 ∈ X1, then x1 = Ax⊕DAx for some x ∈ H1. Then, since A
is one-to-one, we have

‖P1x1‖M(A) = ‖Ax‖M(A) = ‖x‖H1
.

On the other hand, with (7.33), we also have

‖x1‖2H⊕H1
= ‖Ax‖2H + ‖DAx‖2H1

= ‖x‖2H1
,

which gives the assertion (iii).
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(iv) We have

P1X2 = P1({DA∗y ⊕ (−A∗y) : y ∈ DA∗}) = {DA∗y : y ∈ DA∗} = H(A).

Now if x2 ∈ X2, then x2 = DA∗y ⊕ (−A∗y) for some y ∈ DA∗ , and we have

‖P1x2‖H(A) = ‖DA∗y‖H(A) = ‖y‖H.

On the other hand, once more using (7.33), we also have

‖x‖2H⊕H1
= ‖DA∗y‖2H + ‖A∗y‖H1

= ‖y‖2H,

which gives the result.

Theorem 16.30 says that the orthogonal decomposition ofH⊕DA as X1 ⊕
X2 is mapped by projecting onto the first coordinate into the complementary
decomposition H = M(A) + H(A) (which is not in general, as we have
already seen, a direct sum). So the rather exotic definition of complementary
spaces is in fact the projection of a more familiar geometric structure.

Notes on Chapter 16

The main part of this chapter is taken from [166]. The notion of complementary
space, which is the heart of our study, was introduced in the context of square-
summable power series by de Branges and Rovnyak in their book [65] and
their paper [64].

Section 16.1

The notion of a Hilbert space boundedly contained into another is crucial in
the theory developed by de Branges and Rovnyak. Theorem 16.3 is taken from
[139]. See also [19].

Section 16.2

Theorem 16.7 is known as Douglas’s criterion and can be found in [67]. This
theorem as well as Corollaries 16.8 and 16.9 can also be found in [166, chap.
I]. Exercise 16.2.2 is taken from [19, corollary 3.3], but the method presented
here is slightly different. Exercise 16.2.3 comes from [139, lemma 5.7].

Section 16.3

The description of linear functionals onM(A) is taken from [166, sec. I.3].
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Section 16.4

The notions of contractive containment and complementary spaces were cru-
cial in de Branges’s proof of the Bieberbach conjecture. See [63, 141, 142].

The terminology and notion of complementary space are due to de Branges.
In the context of square-summable power series, it was introduced by de
Branges and Rovnyak in [65]. Nevertheless, the definition of complementary
space H(A) used in this book is due to Sarason and appears in [160]. See
Section 16.9 for the original definition of de Branges and Rovnyak. In [64] de
Branges and Rovnyak used “overlapping space” in a different way. In this text,
we use this term in the sense introduced by Lotto and Sarason [123].

The presentation of this section is taken from [166, chap. I]. A special
version of Theorem 16.17 appears in [160] without proof.

Section 16.5

Theorem 16.18 on the relation between H(A) and H(A∗) is due to Lotto and
Sarason [123, lemma 2.1].

Section 16.6

The description of the overlapping space H(A) ∩M(A) is due to Lotto and
Sarason [123, lemma 2.1].

Section 16.8

The decomposition ofH(A) given by Theorem 16.23 is due to de Branges and
Rovnyak [65, problem 52]. See also [64, appdx, theorem 4]. Theorem 16.25
is also due to de Branges and Rovnyak [65, theorem 8 and problem 36]. The
presentation used in this text comes from [166].

Section 16.9

The geometric definition of the complementary space H(A) given in this sec-
tion is due to de Branges and Rovnyak. The definition we choose to introduce
the complementary space emphasizes the role of the contraction A and it will
be successful (as we will see later) in the context of the Toeplitz operator
on H2.

A vector-valued version of Theorem 16.29 appears in Nikolskii and
Vasyunin [139, theorem 7.4]. See also Ando [19, theorem 4.3]. The example
at the end of the section showing that (16.38) is important in Theorem 16.29
comes from [139, theorem 7.4]. Exercise 16.9.1 is due to de Branges and
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Rovnyak [65, theorem 11], who proved the formula in the context of square-
summable power series.

Section 16.10

The connection between the Julia operator J(A) andH(A) is taken from Tim-
otin [187]. Nevertheless, in the particular case where A = Tb, it is implicitly
present in the paper of Nikolskii and Vasyunin [139] when they studied the
connection between the de Branges–Rovnyak and the Sz.-Nagy–Foiaş models.
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