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Abstract. As compressible convection has inherent up/down asymmetry, overshooting above
and below a convection zone behave differently. In downward overshooting, the narrow down-
flow columns dynamically play an important role. It is customary, and reasonable, to use the
downward flux of kinetic energy as a proxy for overshooting. In the upward situation, the flux of
kinetic energy can take on different signs near the upper boundary of the convection zone, and its
magnitude is generally small. It cannot make a good proxy for overshooting. This paper discusses
the results of a set of numerical experiments that investigate the problem of overshooting above
a convection zone. Particle tracing and color advection are used to follow the mixing process.
The overshoot region above a convection zone is found to contain multiple counter cell layers.
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1. Introduction
Convective overshooting is an important process in stars. Its main effect is to mix

materials across a convection zone and a neighboring stable zone. Due to the up-down
(with respect to the direction of gravity) asymmetry associated with stratification, over-
shooting above and overshooting below have different behaviors. The attention of the
current paper is on overshooting above a convection zone.

Overshooting is a topic that Juri (Toomre) has worked on for a long time and made
seminal contributions. Before I came to this meeting, I tried to count his papers on this
subject. Table 1 gives a list which is only part of the full set. In this list, the 1986, 1994,
and 2002 papers discuss configurations closest to the one of the present paper. These
three articles, however, only discuss overshooting below convection zones (let us call it
‘under-shooting’ here). Most other studies (e.g. Singh et al. 1998, Pal et al. 2007) also
focus on under-shooting, and the penetration of the downward flux of kinetic energy into
the stable zone is ubiquitous used as the proxy of mixing. In this paper, we will show
that this flux is not a good indicator of overshooting above a convection zone (or simply
‘overshooting’).

2. Model
We perform three-dimensional simulation of turbulent compressible motions of an ideal

gas (ratio of specific heat = 5/3) in a rectangular box containing a convection zone in
the lower part (6.3 pressure scale heights, 60% of the domain depth) and a stable zone
in the upper part (4 pressure scale heights, 40% depth). The two layers are initially
polytropic. The polytropic index of the convection zone is 1.5 (the adiabatic gradient is
0.4), while that of the stable zone is 5.67 (corresponding to a radiative gradient of 0.15).
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Table 1. Juri’s overshooting-related papers.

Year Authors Title Journal

1976 Toomre, Zahn, Stellar convection theoy. II. Single-mode stydy of the ApJ, 207, 545
Latour, & Spiegel second convection zone in an A-type star

1981 Latour, Toomre, Stellar convection theoy. III. Dynamical coupling of the two ApJ, 248, 1081
& Zahn convection zones in A-type stars by penetrative motions

1983 Latour, Toomre, Nonlinear anelastic modal theory for solar convection Solar Phys.,
& Zahn 82, 387

1984 Massaguer, Latour, Penetrative cellular convection in a stratified atmoshere A&A, 140, 1
Toomre, & Zahn

1986 Hurlburt, Toomre, Nonlinear compressible convection penetating into stable ApJ, 311, 563
& Massaguer layers producing internal gravity waves

1994 Hurlburt, Toomre, Penetration below a convective zone ApJ, 421, 245
Massaguer,& Zahn

1998 Tobias, Brummell, Pumping of magnetic fields by turbulent penetrative ApJ, 502, L177
Ckune, & Toomre convection

2000 Miesch, Elliott, Three-dimensional spherical simulations of solar convection: ApJ, 532, 593
Toomre, Clune, Differential toation and pattern evolution achieved
Glatzmaier, & Gilman with laminar and turbulent states

2001 Tobias, Brummell, Transport and storage of magnetic field by overshooting ApJ, 549, 1183
Ckune, & Toomre turbulent compressible convection

2002 Brummell, Clune Penetration and overshooting in turbulent compressible ApJ, 570, 825
& Toomre convection

2004 Browning, Brun, Simulation of core convection in rotating A-type stars: ApJ, 601, 512
& Toomre Differential rotation and overshooting

2007 Browning, Brun, Dynamo action in simulations of penetrative solar AN, 328, 1100
Miesch, & Toomre convection with an imposed tachocline

The domain is periodic in the two horizontal directions. The top and bottom boundaries
are stress-free and impenetrable. The temperature at the top and the energy flux at the
bottom are uniform and fixed.

The numerical method, the code, and the setup are similar to those used in Singh et al.
(1994). The main differences are the larger aspect ratio and the enhanced resolution.
Table 2 lists these parameters for the computed cases. Cases A - C have sequentially
doubled input energy fluxes (F ). The aspect ratio of Cases D and E is two times that of
Cases A and B. Case F has doubled horizontal resolution of Case B. The variables are
in units which make the initial temperature, density, pressure, and total depth all equal
to 1.

Table 2. Computed cases.

Case Flux Grids Aspect Ratio

A 0.053 162 × 162 × 122 3

B 0.105 162 × 162 × 122 3

C 0.210 162 × 162 × 122 3

D 0.053 322 × 322 × 122 6

E 0.105 322 × 322 × 122 6

F 0.105 322 × 322 × 122 3
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Figure 1. Relative deviation of the mean total energy flux from the input flux (Ftot − F )/F .
The dotted, dashed, dot-dashed, triple-dot-dashed, long dashed, and solid curves represent Cases
A-F respectively.

3. Results
Thermal relaxation of a fluid layer containing a deep stable zone generally takes very

long time. It typically requires ten of millions of steps to complete a calculation. To ensure
accuracy of the statistical information, a high degree of thermal and dynamical relaxation
is needed. The calculations presented here all satisfy the condition that the relative
variations of the mean total energy flux Ftot (horizontally and temporally averaged) are
less than 0.1% (see Figure 1). After relaxation, flow statistics are computed, and cross-
zone mixing is studied with a particle tracing scheme and a color advection scheme.

The particle scheme uses third-order interpolation to obtain velocities of intergrid
particles and a fourth-order Runge-Kutta method to perform time marching. The ini-
tial particle density n is proportional to the mean density profile (a function of height
z) inside the convection zone, and is set to 0 in the stable layer. The horizontal loca-
tions of the particles are randomly distributed. The total number of particles is about
180,000. Figure 2 shows two side views of the particle distributions in the box (Case A). It

Figure 2. Side views of particle distributions (Case A) at two instances. Only 1% of the total
number of particles used in the computation are shown. The upper panel illustrates the initial
distribution. The lower panel illustrates the distribution at time = 1000.
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illustrates the vertical profiles of the particles at the initial instance (t = 0, upper panel)
and at a much later time (t = 1000, about 110 turnover times later, lower panel). At the
beginning, all particles were below the height zI = 0.6 (location of the interface between
the convection and stable zones); at the later instance, particles spreaded above z = 0.8.

The color scheme solves a continuity equation for the color density c: ∂c/∂t+ �∇·�vc = 0.
where �v is the fluid velocity. c is a passive scalar that does not affect the dynamics. The
initial distribution of c is everywhere proportional to the density ρ inside the convection
zone, and is 0 outside. The vertical profiles of the horizontally averaged specific particle
number density (= n/ρ) and the specific color (= c/ρ) are shown in Figure 3 by the
solid and dashed curves respectively. The upper panel shows the initial distributions
(almost coincide), and the lower panel shows the distributions at time 1000. While c/ρ
decreases almost monotonically (not exactly) outside the convection zone, n/ρ shows
some humps (the over-bar denotes horizontal averaging). The humps may be caused by
the over-representation of low density fluid (larger volume and upward moving) in the
initial particle distribution. The bias is maximal near the bottom of the convection zone;
the dashed curve in the lower panel shows a depletion on the left. The effect of particle
transport on n/ρ is amplified in the overshoot region as mass density is smaller there. At
any rate, the important features to note are the extends of advection and the appearance
of some dips/steps in the curves. The extends of overshooting and the locations of the
dips in the two wiggling curves agree very well. What causes these dips? Before answering
this question, we need to look at the behaviors of some more quantities.

Particle tracing is an expensive computation, and the interpretation of results is often
complicated by the mixed presence of true advection and numerical truncation errors. It
is customary that some easily computed quantities are used as proxies of mixing. In the
case of undershooting, the flux of kinetic energy Fk is most frequently used. In the case of
overshooting, however, this flux cannot be used. The problem is illustrated in Figure 4 in
which the relative values of the kinetic energy flux (Fk/F , dashed curve), the difference
between the radiative/diffusive flux and the total flux ((Fr − F )/F , dot-dashed curve),
and the enthalpy flux (Fe/F , solid curve) in the stable zone of Case A are shown. Fk/F
appears flat as its magnitude in this zone is everywhere less than 5× 10−5 . Furthermore,
Fr and Fe are not of much use as their extends are confined below z = 0.7 (remember
that the particle and color spreads are beyond z = 0.8). The triple-dot-dashed curve

Figure 3. Vertical profiles of n/ρ (dashed curves) and n/ρ (solid curves) at t = 0 (upper
panel) and t = 1000 (lower panel).
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Figure 4. Normalized fluxes, dissipation rate, and rms velocities. The dashed, dot-dashed, solid,
and triple-dot-dashed curves represent Fk /F , (Fr − F )/F , Fe/F , and E/EI , respectively. The
pluses and asterisks represent rms(vz )/rms(vz )I and rms(vh )/rms(vh )I .

shows the normalized kinetic energy dissipation rate E/EI . The subscript I denotes value
at the interface between the convection and stable zones (zI = 0.6). The extend of this
curve shows that dissipation of the overshooting motions reaches beyond z = 0.7.

In Figure 4, the normalized root-mean-square (rms) velocities rms(vz )/rms(vz )I and
rms(vh)/rms(vh)I are shown by the pluses and asterisks, respectively. vz and vh are
the vertical and horizontal velocities. The rms values are computed through averaging
horizontally and temporally. These quantities cannot be used as proxies as they do not
decay over long distances (this is connected to the generation of gravity waves). The
curve describing rms(vh) even indicates some growing trend at large distances (rms(vz )
is forced to 0 by the upper boundary condition). An eye-catching behavior of this curve
is the presence of wiggles. This is suggestive of a connection with the wiggles in the
particle/color advection curves. There are at least two ways to interpret these wiggles:
One is the occurrence of layers of counter cells; another is the nodes of standing gravity
waves.

Figure 5 plots the autocorrelation coefficients of vz (solid curve) and the temperature
deviation T ′(= T − T ) (dashed curve) for Case A. The autocorrelation is made between
two horizontal planes. One is fixed at the interface of the convection and stable zones,
and the other is at an arbitrary height. Near the zone interface, both autocorrelations are
positive, but the autocorrelation of vz stays positive for a longer distance. The positive
correlation means that an upward moving fluid parcel can maintain its upward motion
(statistically). The originally positive temperature correlation quickly turns negative as
an upward moving fluid parcel cools faster than the environment in the stable zone (and
the density deviation becomes positive). Here, buoyancy breaking plays a significant role
in decelerating the fluid parcel. As the Prandtl number in the stable zone is generally
small, the memory of temperature deviation does not last as long as that of velocity.
The temperature correlation damps out quicker than the velocity correlation. The pluses
show the autocorrelation coefficient of vz for Case D which is two times wider than Case
A in each horizontal direction. Apparently the width does not seem to affect the results
much.

The zeros of the velocity correlation can be interpreted as the boundaries of counter
cell layers or as nodes of gravity waves. It is important to note that the locations of
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Figure 5. Autocorrelation coefficients and distribution of specific color for Case A. The auto-
correlation coefficients of the vertical velocity and the temperature deviation are represented by
the solid and dashed curves, respectively. The autocorrelation coefficient of vertical velocity of
Case D is shown as pluses. The specific color distribution at t = 1000 is shown by the dot-dashed
curve.

the zeros of the autocorrelation of vertical velocity correspond to the drops/dips of the
color/particle distributions. To assist comparison, the color distribution at t = 1000 is
shown again in Figure 5, by the dot-dashed curve. The vertical dotted lines identify the
locations of the correlation zeros (z = 0.647, 0.738, 0.831; hereafter referred as z1 , z2 ,
z3 , respectively). The first zero is within the region where turbulent dissipation is still
significant. Turbulent motion quickly carries the color through the location of the first
zero. The reversal of the sign of velocity correlaiton has little effect on the spread of color.
The second zero, on the other hand, is associated with a barrier of the mixing process. It
takes a while for the color to cross it, but once through the mixing can propagate faster
until it hits another barrier near the location of the third zero of velocity correlation.

Independent of whether the zeros correspond to counter cell boundaries or wave nodes,
it is clear that color can cross them only through some small-scale dissipative process. If
the numerical results represent a realistic situation, there could be some mild ’turbulence’
generated (or remnant turbulence) at the zero locations to facilitate the color crossing.
On the other hand, both the color scheme and the particle advection scheme contain
numerical errors. The barrier crossing could just be a result of the artificial effects. Our
numerical tests indicate that the numerical diffusion of color is sufficiently small to make
the color profile trustworthy for t � 1000 (Case A). But the situation may not remain
so ideal when t becomes greater than a few thousand. In the present study, we pick the
second zero of the velocity correlation as the indicator for the extend of overshooting.
There are several reasons for this choice. First, the magnitude of the auto correlation
damps out at large distances and the number of detectable zeros are no more than a few.
The maximal distance of these zeros from the interface is no more than two or three times
the distance of the second zero. Second, the first zero is not a significant barrier. Remnant
turbulence remains substantial at heights below the second zero (see later discussion).
The second zero forms the first true barrier to mixing. There is a third reason, but it is
to be discussed later.

In the stable zone, the velocity response to convective hammering can survive for quite
some distance from the zone interface (as shown by the profiles of rms(vh) and rms(vz )
in Figure 3). What are the natures of these motions at different heights? We analyze
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Figure 6. Frequency spectra of vz at different height levels. To assist comparison, the spectrum
at the mid-layer of the convection zone is shown by the solid curve. In the upper panel, the
dotted curves show spectra in the height range zI � z � z2 . In the lower panel, the dotted
curves show spectra in the height range z2 � z � 0.94.

this problem by computing the frequency spectra of the motions at different levels. On
each level a long time series of vz is recorded and Fourier transformed to obtain the
frequency spectrum. Figure 6 shows the changes of spectra over different characteristic
ranges of heights (Case A). In both the upper and lower panels, the uppermost spectrum
(solid curve) is at a level close to the middle of the convection zone. The dashed straight
line has a slope of -2 which is the slope of the frequency spectrum corresponding to a
Kolmogorov energy spectrum. Apparently, a short range of such exists (Chan & Sofia,
1996). The lower curves (dotted) in the upper panel show spectra at seven levels within
the range of heights 0.59 to 0.74. The dotted curves in the lower panel show spectra at
seven levels within the range of heights 0.74 to 0.94. The vertical lines show values of the
Brunt-Vaisala frequency (fBV ) at the different levels.

Recall that the second zero of the autocorrelation of vz is at z2 = 0.74. The upper and
lower panels of Figure 6 depict, respectively, the change of spectra below and above this
second zero. Below the z2 level, as z increases, there is a fast drop in spectral power, and
the high frequency extends of the spectra above fBV shrinks quickly. Above the z2 level,
most of the spectral powers (over 90%) are already stored in frequencies below fBV ,
and the change of spectra is much slower. This supports the interpretaion that most of
the motions above z2 are associated with gravity waves. Movies of the temperature field
show that the waves propagate in slant directions. Despite of the impenetrable boundary
imposed at the top of the domain, there is no evidence of significant standing waves.
We thus favor the interpretation that the zeros of vz correlation are associated with
horizontal boundaries of counter cells. Temperature and particle movies indicate that
the counter cells have large aspect ratios.
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Figure 7. Autocorrelation coefficients of vz for Cases A (dotted curve), B (dashed curve), C
(dot-dashed curve), and F (solid curve).

Since we have computed a few cases with different input energy fluxes, we can try to
look for a scaling relationship between the flux and the locations of the correlation zeros.
Figure 7 shows the autocorrelation curves of vz for Cases A (dotted), B (dashed), C (dot-
dashed), and F (solid). As the flux increases form A to C, the strength of turbulence in
the convection zone increases. As a result, the distances of the zeros from zI also increase.
Case F is a high-resolution version of Case B. The locations of its correlation zeros agree
well with those of Case B, but there are small drops in the amplitude of correlation. The
differences have little effect in the layer below z2 , but the impact at heights above z2
may not be so easily discarded. In numerical simulations, higher resolution usually means
lower viscosity. If the lower velocity correlation is associted with the lower viscosity, the
upper layer counter cells could vanish in the very low viscosity limit. This is the third
reason we use z2 as the proxy for estimating the extend of overshooting, not the farther
zeros. It is expected that the full extend of mixing should be within a factor of 2 of
z2 − zI .

Figure 8. log10 (z1 − zI ) (asterisks) and log10 (z2 − zI ) (pluses) versus log10 (F ) for all cases.
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The logarithmic values of z1 − zI and z2 − zI are plotted versus the logarithmic values
of the input fluxes for all the cases in Figure 8. Dashed straight lines with slope 1/3 pass
through the points of all cases rather well (the upper and lower lines are for z2 and z1
respectively). Based on this fitting, the dependence of the distance l = z2 − zI on F can
be written as

l/h∗ ≈ 11 × (F/F∗)1/3

where h∗ is the presure scale height at the interface of the convection and stable zones,
F∗ = p∗(p∗/ρ∗)1/2 , and p∗, ρ∗ are the pressure and density at the interface.

4. Summary
The process of overshooting above a convection zone is studied by numerical models.

Particle tracing and color advection schemes are used to study the effect of overshooting
on mixing, a matter of primary interest in application. For overshooting above a convec-
tion zone, the flux profiles, including the flux of kinetic energy profile, are inadequate for
estimating the extend of mixing. Through detailed analysis of the statistical quantities,
frequency spectra of the velocity field at different heights, and visual examination of the
particle and temperature movies, we conclude that the overshooting region contains some
layers of thin counter cells. The boundaries between cell layers appear as barriers of mix-
ing. These cell layer boundaries can be located by the zeros of the autocorrelation of the
vertical velocity (with one layer fixed at the interface between the convection and stable
zones). We argue that the distance of the second correlation zero to the zone interface
(l) makes a good proxy to estimate the extend of overshooting/mixing. At the very least,
l can be viewed as a lower bound of overshooting. A scaling relationship between this
distance and the total flux can be found.
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