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ON SOME "STABILITY" PROPERTIES OF THE FULL
C-ALGEBRA ASSOCIATED TO THE FREE GROUP F,oo

by ASMA HARCHARRAS
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Let CCFoo) be the full C-algebra associated to the free group of countably many generators and S,C(Fal)
be the class of all n-dimensional operator subspaces of C'(FX). In this paper, we study some stability
properties of S,C(F0Q). More precisely, we will prove that for any £0, Et in S^^F^), the Haagerup tensor
product Eo ®4 £, and the operator space obtained by complex interpolation Ee are (1 + ((-contained in
C*(FOO) for arbitrary e > 0. On the other hand, we will show an extension property for WEP C*-algebras.

1991 Mathematics subject classification: 46L50, 46M05, 46M35.

0. Introduction and background

This paper is devoted to various questions about "operator spaces". By an operator
space, we mean a closed subspace of B(H) where B(H) denotes the set of all bounded
operators on the Hilbert space H. The theory of operator spaces (in particular, the
duality theory) was developed recently, cf. [4] and [12, 13]. The morphisms suitable for
this category are the completely bounded maps for which [19] is a general reference.

Let E and F be two operator spaces. We denote

where the infimum runs over all possible isomorphisms u: E -*• F, when E and F are
isomorphic. Otherwise, we let d^E, F) = oo.

As was shown recently in [16], the class of all n-dimensional operator spaces, denoted
by OSK, is not separable for dcb(.,.). However, it turns out that there exists a separable
subclass which includes all the classical spaces of OSn, namely the class SnC*(F0O) of
all n-dimensional subspaces of C*(F00). So, it is natural to introduce for E in OSn the
following parameter which compares its operator space structure with all those it can
inherit from some embedding into

d,(E) = inf{<UE, F))

where the infimum runs over all F in SnC*(F00). When E is not finite dimensional
(f.d. in short), we let
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94 ASMA HARCHARRAS

df(E) = sup{df(F)}

where the supremum runs over all f.d. subspaces F c E.
If H is a Hilbert space, K(H) denotes the set of all compact operators on H.
Let E c B(H), F C B(K) be two concrete realizations of E and F on the Hilbert

spaces H and X respectively. Then by definition, E ®rain F is the completion of E ® F
via the embedding £ ® F c B(tf ®2 *0- Moreover, if E and F are C*-algebras, E ®^n F
is again a C*-algebra.

We say that an operator u : E -*• F is completely bounded (c.b. in short) if the map

^> K(l2) ® F
i-f T ® u(x)

where idX(,2) is the identity map of K(l2), can be extended to a bounded operator from
*%) ®min ^ m t o ^('2) ®min ?• The c.b. norm of u is defined as

B«IU = II
We say that u is completely contractive (resp. completely isometric) if the operator
J^K(/2) ® " is contractive (resp. isometric). By [8], we still have the same definitions if we
replace K(l2) by B(l2).

Recall that in the Banach space category, a contractive map u : E -> F is said to be
a metric surjection, if it maps the open unit ball of E onto the open unit ball of F. It is
very elementary to show that a contractive map u is a metric surjection if and only if
the closure of the image of the unit ball of E contains the unit ball of F. In the
operator space category, we say that u is a complete metric surjection if
idK(h) ® " : ̂ ('2) ®min E ~* K(l2) ®min F, is a metric surjection and we say that it is a
B(l2)-metric surjection if idB(tl) <8> u : B(l2) ®rain E -* B(l2) <8>min F, is a metric surjection. It
is clear that the jB(/2)-metric surjectivity implies the complete metric surjectivity. But
the converse turns to be false in general, see Remark 2.6 below.

If E and F are C*-algebras or merely operator systems, we say that u : E -*• F is
completely positive if the map idK(h) <8> u : K(l2) ®min E -*• K(l2) ®min F is positive. And
we say that u is unital if it is unit preserving.

In Section 1, we will study the stability of the parameter df(.) under the Haagerup
tensor product denoted by ®4. More precisely, we will prove: For any operator spaces
E and F, we have

df(E^hF)<df(E)df(F).

Let us recall the definition of the Haagerup tensor product. Given x = (x,;) in
Mnr(E), y = (yUj) in Mrm(F), we define x Oy in Mnm{E ® F) as follows
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ON SOME "STABILITY" PROPERTIES OF THE FULL C-ALGEBRA 95

And set for « in Mn(£ ® F),

where the infimum runs over all x in Mnr(£), y in Mrn{F), r > 1 such that u = xQy.
£ ®j, F denotes the completion of £ ® F with respect to this norm. It is well known that
the Haagerup tensor product is injective, self-dual, associative but not commutative
(cf. [4, 13]).

Let A and B be two C*-algebras, u = ^xk®ykeA®B and denote by
*=o

= SUP ij^TU
[ l *=o

<xk)o(yk)

where the supremum runs over all commuting C*-representations n : A -*• B(H),
a : B -*• B(H) and all Hilbert spaces H. This defines a C*-norm on A ® B. Actually, this
is the greatest C*-norm on A ® B. The maximal tensor product of A and B denoted
by A ®max B, is the completion of A ® B with respect to this C*-norm (cf. [14], [19,
Chapter 10]).

The next result is well known, see e.g. [26, p. 11].

Proposition 0.1. If A,, B, are C-algebras, u, : A, -*• B, (i = 0,1) are completely
positive maps, then UQ ® u, extends to a completely positive map «o ® «i : AQ ®mM Ax

Bo ®m« B, wi7A | K ®m M u, ||ct =

The max tensor product is associative, commutative but not injective in general.
This means that if Ax C B,, A2 c B2 are isometric C-embeddings, the inclusion map
A\ ®mu A2 C B, ®mM B2 which is clearly contractive, is not necessarily isometric.

A C*-algebra A is said to be nuclear if on A ® B, there is a unique C*-norm for
any C*-algebra B. In other words, we have A ®min B = A ®mtt, B for any C*-algebra B.

Recently, Junge and Pisier introduced in [16] a new tensor product in both of the
categories of C*-algebras and operator spaces, namely the M-tensor product as follows:
Let E and F be two operator spaces, say E c B{H) and F c B{K). E ®M F is the closure
of E ® F viewed as a subspace of B(H) ®mai B(K). This definition is independent of
the given concrete realizations of E and F, it depends only on the operator space
structures of E and F.

Proposition 0.2. ([16]) If £„ F, are operator spaces, u, :£,-»• F, (i = 0, 1) are c.b.
maps, then UQ®U{ extends to a c.b. map UQ ® M U, : £0 ®M £, ->• Fo ®M F, wif/j
ll«o®*f "illct < H«olUII«ilU- Moreover, if UQ a«rf u, are complete isometries, then so is

https://doi.org/10.1017/S0013091500019441 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019441


96 ASMA HARCHARRAS

This new tensor product is injective, commutative and the M-norm of a finite rank
tensor can be described as the norm of factorization of its associated operator through
a subspace of C^F^). More precisely, let u € E ® F and u : E* -*• F its associated
operator. Then we have

||u||M = inf {||<a||ci>||i»Uci,} (1)

where the infimum runs over all operators a, b such that a : E* -*• S is a weak-*
continuous operator, b : S -*• F is an arbitrary operator and where S is a f.d. subspace
of C*(FOO). Using (1), it is clear that we have for any f.d. operator space E

df(E)=\\iE

where iE is the tensor associated to the identity map of E. Hence by commutativity of
the M-tensor product, we get

, d,(E). (2)

And this implies by duality that for any subspace F of E, we have

df(E/F) < df{E). (2)'

In particular, this applies when E = S" (the dual of Mn). Note however that (2)' fails
in general for infinite dimensional operator spaces even when E/F is f.d.. For
instance, if E = S, (the dual of K(l2)), we have d/(S,) = 1 (Prop. 2.9) and since any
separable operator space is completely isometric to a quotient of S, (cf. [3,
Corollary 3.2]), (2)' would imply that all operator spaces have df(.) equal to 1. Of
course, this is false since by the results of [16], there exists a f.d. operator space
with dy(.) > 1 and more generally, with df(.) arbitrary big. Hence similarly, for any
fixed A > 0, the inequality: df(E/F) < Xdf(E) cannot be true for arbitrary F c E even
when E/F is f.d..

Recall the following important results.

Theorem 0.3.

®min B(H) = CiFJ ®ma, B{H). (3)

This is due to Kirchberg [17], see the recent paper [20] for a much simpler proof.
Moreover, it is proved in [16] that in some sense, C^F^) is the largest C*-algebra for
which the equality (3) holds. More precisely, we have

Proposition 0.4. For a C-algebra A, the following are equivalent.
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ON SOME "STABILITY" PROPERTIES OF THE FULL CT-ALGEBRA 97

(i) A to*** B(H) = A®M B(H) (isometrically).

(ii)d,(A) = l.

(iii) Any f.d. E C A is completely isometric to a subspace ofC{Fo^).

Remark. It can happen, for a C*-algebra A, that df(A) = 1 but A does not embed as a
C-subalgebra into CiF^). For instance, the Cuntz algebra O2 (cf. [7]). Indeed, O2 is
nuclear hence df(O2) = 1. But since CiF^) admits a faithful unital representation into an
infinite direct sum of matrix algebras (This is due to Choi, see [26, p. 39]), it does not contain
any element x such that x*x = 1, xx* ^ 1 hence cannot contain 02 as a C*-subalgebra.

Proposition 0.5. ([16]) Let c > 1 be a constant, E an operator space. The following
are equivalent.

(i) Vue£®B(/2)>||u||M<c||«||min.

(ii) Vue E®F, \\u\\M < c\\u\\miafor any operator space F.

(iii) d,(E) < c.

Note that the conditions in Proposition 0.5 imply automatically that, for any
operator space F, the identity map id: E ®min F - • E ®M F has c.b. norm less than or
equal to c.

In Section 2, we will prove that the complex interpolation method in the f.d. case,
preserves the parameter df{!). More precisely, we show the following result: V£o,
£i e OSn (assumed compatible) and V0 < 0 < 1, we have

df(EB) < d/(E0)
1-fld/(EI)''.

Let us recall the definition of Ee when Eo, £, are two compatible operator spaces, i.e.,
two operator spaces continuously injected into some larger one. Let

A = {x + iy e C/0 < x < 1, y e R}

for j — 0,1 and consider the following sets of functions

{
in

f : A -+ Eo + EJf = ^2fkxk,xkeEon E, where m > 1 and VI < fc < m,
k=\

fk: A -*• C continuous and bounded on A, analytic on the interior of

A and vanishing at oo. \

NB(E0, £,) = {/ e G(£o, £,)//(0) = 0}.
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98 ASMA HARCHARRAS

Equip G(£o, £,) with the norm ||/|| = max)=0, {supteR \\f(j + it)\\Ej}. Denote by F(£o, £,)
the completion of G(£o, £,) with respect to this norm and by S0(E0, £,) the closure of
Ne(E0, £,) in F(E0, £,)•

As a Banach space, Ee is the space F(E0, £,)/Sfl(£0, £,) equipped with the quotient
norm. Using Stafney's lemma [25, p. 335], this definition is the same as the classical
one given in [2]. It has the advantage to throw into relief these simple dense subspaces
we can always restrict ourselves to, which seems to be very convenient for the
identifications described in Section 2.

As an operator space, the structure on Eg is given by the following identification

K(l2) ®min Ee = (K(l2) ®min Eo, K(l2) ®rain £,)„.

All the known results for complex interpolation in the category of Banach spaces
extend to the category of operator spaces. In particular, we have for operator spaces
the analogue of the duality theorem in Banach spaces (cf. [21]).

The following result was proved in [1].

Proposition 0.6. The contractive inclusion Eo c E° is in fact an isometry, where E° is
the Banach space obtained by the second method of complex interpolation applied to the
couple (Eo> ̂ i) as defined in [2].

Remark. With the duality theorem, Proposition 0.6 implies the following. Let
Eo, £, be two compatible Banach spaces such that the intersection Eo n £, is dense in
both Eo and £,. If £J = £i as sets, then we have

(Eo, Et )'9 = (E*0, E\)g (isometrically).

In Section 3, we prove an extension property for the C*-algebras which have the
weak expectation property (WEP in short). Recall that a C-algebra has the WEP if
there exist completely positive and contractive maps a: A -*• B(H), b : B(H) -> A** such
that ba is the canonical embedding of A into A".

We will prove the following: Let £, be a f.d. operator space with df(Ex) = 1,
Eo c Ei an arbitrary subspace and A a WEP C*-algebra. Then, any operator
u : Eo -*• A, has for arbitrary e > 0, an extension u : £, -»• A with ||M||C6 < (1+ e)IMU.

1. "Stability" of C'iF^) for the Haagerup tensor product

Lemma 1.1. Let X, Y be two operator spaces. Assume X has a concrete realization
in a nuclear C-algebra. Then, df(X <8>min Y) = df(Y).

Proof. If A is a nuclear C*-algebra, we have by applying Kirchberg's result (3),
the associativity of the minimal and the maximal tensor products the following
identities.
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ON SOME "STABILITY" PROPERTIES OF THE FULL C* -ALGEBRA 99

(A ®min CCFJ) »„»„ B(H) = A <8>min (C^) »„»„ B(H))

= ^ ® m

= {A 9

This means (Proposition 0.4) that df (A ®miaC*(F„,))=!. Then, it is easy to check
the inequality df{X®^a Y) < df{Y). And, the equality follows since the converse is
trivial. •

More generally, we could not answer the following: Is it true that for any operator
spaces X, Y we have df(X ®Mn Y) < df(X)df(Y)l.

Proposition 1.2. For any operator spaces X and Y with finite df{.) we have

df(X®hY)<d,(X)d,(Y).

The key of the proof is a result of [6] which gives a nice realization of the Haagerup
tensor product using free products of C-algebras. First of all, recall the definition of
the free product and the unital free product of C*-algebras.

Free product of C-algebras: Given At and A2 two C-algebras, denote by C[j4i,i42]
their algebraic free product. This is by definition the non unital algebra generated by
the reduced words of letters belonging to Ax or A2. The product of two reduced words
in C[i4,,y42], say axa2...an and bxb2...bm is by definition the reduced word obtained
from a, . . . anbxb2... bm (after juxtaposition) and the adjoint of a,a2.. . on is by definition
a'n...a\a\.

If 7r, : A, -*• B(H) are (^'-representations for i = 1, 2 then, 7t, * n2 denotes the *-
representation

7t,*7i2 :C[Alt A2]-+ B(H)

ax... ak... an >-+ nh(a,)... njk(ak)... njit(an)

where a, e AJt for i = 1,2.... n and j , = 1 or 2. By definition, Ax *A2 is the completion
of C[i4,, A2] with respect to the norm

HUH, =SUP{||7C1*712(U)||}

where the supremum runs over all C-representations rc,: At -> B(H) for i = 1,2 and
all Hilbert spaces H.

Unital free product of unital C-algebras: Let C,[i4,,i42] be the unital algebraic free
product of the unital C-algebras Ax, A2. This is by definition the quotient algebra of
C[i4,, A2] by the relation {c, = e2] where e, denotes the unit of the algebra At for
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100 ASMA H ARCH ARRAS

If ue Ci[Ai,A2], we let

Hull. = sup {IITI.W")!!}

where the supremum runs over all (^'-representations n,: A, -*• B(H) such that
n,(e,) = idH for i = 1,2 and all Hilbert spaces H. The unital free product of Ax and A2

denoted by Ax * A2, is the unital C*-algebra obtained after completion with respect to
|| ||.. Note that in this case, Ax * A2 is a quotient of Ax *A2. See [9] for more on this
topic.

In [6], the authors proved that the natural inclusion map

Ax ®h A2 '-*• A X * A 2

> ab

is a complete isometry. Hence, the natural inclusion map Ax ®fc A2 «->• Ax • A2 is a
complete contraction. It can be derived from the proof of this result that

Lemma 1.3. In the particular case where At and A2 are the same unital C'-algebra,
the natural inclusion map Ax ®fc A2 *-*• At * A2 is a complete isometry.

Proof of Lemma 1.3. To check this, let <f>: At ®/, A2 -*• B(H) be a concrete
realization of the operator space Ax ®k A2 in some B(H). <f> defines a bilinear map

Ax x A2 -+ B(H)
(a, b) ^ <j)(a ® b)

which is complete contractive in the sense of Christensen-Sinclair. Hence using the
representation result of [6], we can find Hilbert spaces L,, unital (^'-representations
nt : A, -»• B(L,) for i = 1, 2 and "bridging" contractions R, S and T

such that

Va G Ax, Vb 6 42 </>(a ® fe) = /?7t,(a)S7t2(fc)T.

On 4̂ = ^4,= i42, we consider now the urnta/ C'-representation 7t = nx © 7t2

7 t : / i ^ - B(L,©L2)

av->n(d)=(nx{a) °
flKW V 0 7T2(fl

Then, we have
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ON SOME "STABILITY" PROPERTIES OF THE FULL C-ALGEBRA 101

tfa ®b) = (R, 0)n(a)Un(b)(

where U is the unitary operator

\ -s- jidLl-srs)

Hence,

where Rt = (R, 0)17, 7] = ( ° ) and (r(a) = U'n(a)U.

<f>(a ® b) = R,ff(a)7t(6)T,

and (r(a) = U'n(a)U.

Now we have for any a, e ^ and bit e A2, 1 < i < n

Recall that the natural inclusion map At <g>h A2 «-> Ax * /12 is a complete contraction.
To prove that it is in fact an isometry, it suffices to see that

II B(H)

^aAj

And with the same calculation, we prove that the inclusion map Ax

is a complete isometry.
At* A2

•

Remarks. As observed in [20], the assumption that Ax = A2 in Lemma 1.3 is not
important since we can replace Ax and A2 by (say) A = Ax &„,;„ A2 and embed unitally
At and A2 in A.
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102 ASMA HARCHARRAS

In the particular case of a group C*-algebra, say A = C*(G) for some group G, the
natural inclusion map

C{G) ®h C\G) - • C'(G) * C{G)

is a complete isometry. On the other hand, it is easy to see that for any groups G,
and G2, we have

where Gx * G2 is the group free product of G, and G2. Hence, the inclusion map

C\G) ®h C(G) ^ C*(G * G)

is now a complete isometry.

Proof of Proposition 1.2. By density of X®Y in X®kY, injectivity of the
Haagerup tensor product and Remark 2.8, it suffices to prove that for any f.d.
subspaces £ c i , f c y

df{E®kF)<df{E)df{F).

Given E, F as above and £ > 0, there exist St,S2Q CiF^) f.d. subspaces such that

dcb(F,S2)<df(F) + e.

df{E ®hF)< dcb{E ®h F, S, ®, SJd,^ ®t S2)

This implies

df{E ®k F) <

And of course dfiC^F^ * F ,̂)) = 1 since FM * F^ is isomorphic to Fx.

2. "Stability" of C*^) under complex interpolation

Let (£0. £,) be a compatible couple of operator spaces and let F(£o, £,) be equipped
with the operator space structure given by the embedding below
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ON SOME "STABILITY" PROPERTIES OF THE FULL C-ALGEBRA 103

f»fo+fi

where C0(A;, Ej) denotes the space of all £,-valued continuous functions on A7 which
tend to 0 at oo and fj denotes the restriction of / to A; for j = 0,1 and where
®J_oCo(A,, Ej) denotes the direct sum of C0(\,E0) and C0(A,,£,) in the sense of lx.
Recall that the natural operator space structure on C0(A;, Ej) is given by the usual
identification

For Section 2, we let K stand for K(l2) and B for B(l2).

Proposition 2.1. Let (£0, £,) be a compatible couple off.d. operator spaces with the
same dimension, then we have

d,(E0) <

The proof of this proposition is based on the following lemmas:

Lemma 2.2. For any compatible couple of operator spaces (£0, £,), the operator
spaces structures on Eo and F(£o, £,)/S(,(£0, £,) coincide. In other words, the map

q : F(£o, £,) -+ £„

is a complete metric surjection.

Lemma 2.3. Let (£0, £,) be a compatible couple off.d. operator spaces with the same
dimension. Then, the map

q : F(£o> £,) -+ Eo

is a B-metric surjection.

Lemma 2.4. Let X be an operator space such that df(X) < oo and S any subspace.
If the canonical surjection Q : X -*• X/S is a B-metric surjection, then we have

df{XIS) <
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104 ASM A H ARCH ARRAS

Lemma 2.5. For any compatible couple of operator spaces (£0, £,), we have

d,(F(E0,

Proof of Proposition 2.1. By the first lemma, we see that E0 and F(£o, £,)/S0(£o, ^i)
are completely isometric. By the second lemma, the map q is a B-metric surjection. Then,
we have by the third one

df{EB) < df(F(E0,

Using Lemma 2.5, we get

df{E0) <

In the particular case when df[E^) = df{El)=\, we have df(E0) — l. Whence, the
inequality of Proposition 2.1 is satisfied.

In the general case, for any fixed e > 0, there exist F, c C(FCO), Tj : Ft -*• Es

isomorphisms such that HTJIU < df[Ej) + e and ||7J~'lU = 1 for j = 0,1. Consider now
the interpolation couple (Fo, F,) compatible via the injections To, T{. This means that
we will make the couple (Fo, F,) into a compatible couple in the sense of interpolation
by declaring that x = y if and only if T0(x) = Tx(y), for any x e Fo and y e F,. In this
viewpoint, To and T, (resp. Tfl, T,"1) become equal. By complex interpolation, we get
an operator T0:Fg-+ Eo with \\T0\\cb < IITJlfllTJI^ and || If1 \\cb < 1 and we have

< \\T0\\l;°\\TXb

since by the particular case df(FB) = 1. Now, letting e tend to 0, this yields the required
inequality. •

Proof of Lemma 2.2. Consider the following injection which is a complete
isometry

( ) 0 C0(A;, K ®min Ej)

T 0 (/.x 0 g.y) i-»/.(T ® x) e g.(T ® 3;)

where T e K, f e C0(A0), g e C0(A,), x e £0 and y e £ , . Of course, we use here the
usual identification
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ON SOME "STABILITY" PROPERTIES OF THE FULL C-ALGEBRA 105

C0(A,£) = C0(A)®min£

for any locally compact topological space A and any operator space £. The
restriction of the previous complete isometry to K. ®mio F(£0) £,) and the embedding of
F(/C®min£0, AC »„,„£,) into ®^C0(Aj, JC ®min £,) show that K. ®min F(£o, £,) and
F(K ®min £0, K. 0^,, £,) can be identified via the isometric isomorphism

K &„,„ F(£o, £,) -* F(/C ®rain £0, /C ®min £,)

)

where T e /C,/ : A -> C is as in the definition of G(£o, £,) and x e £0 n £,. Moreover,
it is easy to check that (extending the notation No to pairs of normed spaces),

N9((1C ® £0, II-LJ, (/C ® £„ ||.||rain)) = (K ® No(£Ol £,), ||.|Ln)

via (4). And a density argument yields

S0(K ®min £0, K®niBE,) = K ®min S(,(£o, £,).

Remark that the previous identifications remain valid with B instead of K.. Hence, we
have

£ ®min E<> = (K ®min Eo, K ®min £,)0

= F{K ®rain £0> K ®min E,)/Ss(/C ®rain £0,

(F(£o.

Proof of Lemma 2.3. First recall that for an operator space £, we have (cf. [11,
Proposition 4.1])

where St =/C, with the dual operator space structure and ® denotes the projective
tensor product of operator spaces in the sense of [4] and [12]. When £ is f.d., we get

(AC »„,„£)" = B »„,„£.

Now, apply successively the remark after Proposition 0.6 to the couples (/C ®min £0,
£|) and (S, ® £J, S, ® £J) to obtain
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B »„,„£„ = (/C®min £„)"

= VC&u*aE0,lCQBiaEX

s (s, ® E;, S, ® ED;

£,)/Sfl(B ®min £0, B ®min

F(E0, £,)

This implies that the canonical surjection q is a B-metric surjection. •

Proof of Lemma 2.4. By Proposition 0.5, it suffices to prove that the identity map
B 0min X/S -*• B <g>M X/S is bounded with norm less or equal to df(X). Let
u e B ®min X/S. Without loss of generality, we can assume u e B ® X/S. By assumption,
Q is a B-metric surjection. Hence, for arbitrary e > 0, we can find a lifting u of u in
B®minX such that ||u||mjn < (1 + e)||w||min. The identity map B ®rain X -+ B ®M X is
bounded with norm less or equal to df{X). Hence, ||ii||M < ^(A l̂lulln,;,,. By Proposition
0.2, we have ||w||M < ||GIUI|2||M. Finally, we get ||u||M < (1+ e)df(X)\\u\\mia. Then, letting
e tend to 0, we obtain the required inequality. •

Remark 2.6. By Lemma 2.4 and the comments after (2)', there exists a complete
metric surjection which is not a B-metric surjection. Equivalently, let A > 0 be fixed.
We say that u : E -> F is a (A, B)-metric surjection if idB ® u maps the open unit ball of
B ®min E onto a set containing the open ball of radius A"1 of B ®min F. The same proof
as for Lemma 2.4 shows that for any (A, B)-metric surjection Q : X -*• X/S where
S c X with df(X) < co, we have df(X/S) < kdf(X). Hence, again by the comments after
(2)', there exists a complete metric surjection which is not a (A, B)-metric surjection.

Proof of Lemma 2.5. C0(Ay) is a commutative C*-algebra hence a nuclear one.
Proposition 1.1 implies that df(C0(Aj) ®min £;)) = df(Ej) so df(C0(Aj, £,)) = df(Ej). Then,
to prove Lemma 2.5, it suffices to check that we have for arbitrary operator spaces Xo

and Xx

df{X0 © X,) = m*x{d,(X0), df(Xt)}. (5)

Indeed,

d,(F(E0, £,)) < ^(C0(A0, £0) © C0(A,, £,))

= max{^(Q(Ao, £0)), ̂ C0(A,. £,))}

= max{<i/(E0),d/(£1)}.

Let us sketch (5). Assume Xt c B, = B(fl,) for i = 0,1. Since Bo © B, is injective, we
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have an isometric inclusion

B ®ma* (So © B.) C B <8>mal B(H0 © H,).

This implies,

B ®max (Bo ® B.) = B ®M (Bo © B,).

On the other hand, it is very easy to show that

(B ®max Bo) © (B ®max B.) = B ®mM (Bo © B,).

This is in fact true for arbitrary C*-algebras. Hence

B ®M (JT0 © AT,) = (B ®M Xo) © (B ®M * , )

and we have

d,(X0 © X.) = ||id : B ®min (Xo © X,) -+ B ®M (Xo © Xt)\\cb

L
max{ ||id : B ®rain A) -> B ®M

Whence (5). •

Proposition 2.7. Let X be an operator space, S C X and Q : X -*• X/S the canonical
surjection. Suppose that the kernel of idB ® Q : B ®min X -*• B ®^a X/S is exactly
B ®min S. Then the following are equivalent.

(i) Q is a B-metric surjection.

(ii) For any F C X/S f.d. and any e > 0, there exists E c X f.d. such that
QtE:E-*-Fisa(l+ e)-B-metric surjection.

Proof, (ii) =• (i) is trivial. We sketch only (i) =• (ii). Let F be as in (ii) and assume
F* c B completely isometrically. Let iF e F* (8^,, F be the tensor associated to idF.
Say iF = J21e'i ® ei where [eit 1 < i < n} is a basis of F and {e*, 1 < i < n} is the dual
basis. Assume c( = 2(xi) and let u = 53" e* ® x,. Then u is a lifting of iF for the operator
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«s®6- By (i), there exists «<, e ker(idB ® Q) such that \\u -ru0||min < 1 +e. Since
ker(idB ® g ) = B <&„,]„ S, we can assume UQ e B ® S, say UQ = £ " 7j ® s, where TteB,
s, € S. Let £ be the subspace of X spanned by the x,'s and the s,'s. Then E is as in (ii).
Indeed, Q]E : E -*• F and if v € B ®min F,v : F* -* B its associated operator, we can
write

v = (v ® JdF)(iF)

where V is an extension of v to £ with || V\\cb = \\v\\cb = \\v\\min. Hence, (V ® idE)(u
is a preimage of v with

nll«-Uol|min< l|f|Li

Note that if we go back to the proof of Lemma 2.3, we see that

q : F(E0, £,) -> Ee

is a S-metric surjection with ker(idB ® q) = B ®miB Sg(E0, Et). Hence, for any e > 0,
there exists a f.d. subspace E of F(£o, £,) such that 4.fc(£0, £ /£D So(£o, £,)) < 1 +£•
This implies that, in the f.d. case, all the "natural" operator spaces are (1+e)-
completely isomorphic to a quotient of f.d. subspaces of C0(A0, £0) ®x C0(A,, £,).

Now, we will consider df(E) for several examples of "natural" infinite dimensional
operator spaces. Let us first specify what we mean by "natural" operator spaces.

The space l2 can be provided with several natural operator space structures as
R = B(£, C) and C = B(C, Z2) which naturally form a couple of interpolation, we let
x = y for x e R, y e C if they correspond to the same vector in l2. OH denotes l2

equipped with the unique operator space structure for which OH* = Off, where Off is
the operator space complex conjugate of Off. Equivalently, we have Off = (R, C)\ (cf.
[21] for more details).

The space {«, has, as a C*-algebra, a natural structure given by any isometric
C*-embedding into some B(ff). This structure is unique up to a complete isometry. The
space /| is equipped with the structure given by the usual embedding f, t-^ £,, where
£, is the dual operator space. And the spaces lp are equipped with the complex
interpolated operator space structure: lp = (/„,, /|)0, 6 = -. More generally, we let for
any operator space E
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/,(£) = ( / M , *,(£))„.P = -Q.

Recall that the operator space Si denotes the standard dual of K. And let the Schatten
classes Sp be equipped with the operator space structure given by Sp = (JC, S,)o, 6 = -p.
More generally, we define for an operator space E

£(£) = K ®min E

S,(£) = S , ® £

Sp(£) = (^(£)1S1(£))0>p = ^.

Moreover, if (£0, £,) is a pair of compatible operator spaces, we have

And we still keep the same definitions for the n-dimensional versions of all these spaces
which were introduced and discussed in detail in [22].

Remark 2.8. Let E be an operator space. Let En be an increasing family (or more
generally a directed net) of subspaces of E such that [Jn En is dense in E. Then, we have
df{E) = supll{df(£„)}. Indeed, by a simple perturbation argument, for any f.d. subspace
F c E and any e > 0, there exist an integer n and a subspace F c En such that

Proposition 2.9. For |

(i) df((R, Qfl) = 1. In particular, df(OH) = 1.

(ii) ^(S,,) = l,<f/((p) = 1. More generally, for any compatible couple of f.d. operator
spaces Eo, £, with the same dimension, we have

d,(Sp(E0)) <

df(lp{E0)) <

Proof, (i) is a direct consequence of Proposition 2.1 in the f.d. case. For the
general case, recall that R and C are homogeneous (cf. [21]). Hence, the projections
on the n-first coordinates are completely contractive and any n-dimensional subspace
of R (resp. C) is canonically completely isometric to Rn (resp. Cn). Then, it is easy to
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see that \Jn(Rn, Cn)0 is dense in (R, Qo. Whence by Remark 2.8, df((R, QB) = 1. In
the particular case of 0 = \, this gives a second proof to the fact that df(OH) = l,
already proved in [16].

(ii) For Sp, this follows as in (i), from the fact that \JnS"p is dense in Sp and that
for each n, we have df(Mn) = 1, df(S") = df(Mn)= 1 by (2), hence df(S"f) = 1. More
generally, \JnS"p(E0) is dense in SP(EB) (cf. [22]) and for each n, we have completely
isometrically S"P(EO) = (Mn(£0), S"(£,))o. Hence,

df{Sp{E0)) < df(Mn[Ea)r
odf{S-{{Ex))

0

since

by Lemma 1.1 and

by applying successively (2). This gives df(Sp(EB)) < df{E^~°df{E{f (again by Remark
2.8). On the other hand, the spaces lp and lp(E0) can be viewed as the diagonals of Sp

and SP(EO) respectively (cf. [22]). Whence, df{lp) = 1 and df(lp(E0)) < df(E0)
l-°dtf

Let £, F be two operator spaces. As a Banach space, E ©„ F denotes as usual the
direct sum of E and F in the sense of lx. As an operator space, it is equipped with the
operator space structure corresponding to the identification between K. ®min (E © F)
and (K. ®mio E) ©„, (K. ®^a F). £ $ , F is the operator space, subspace of the standard
dual (£* ©«, F*)*. And for 1 < p < oo, the direct sum of E and F in the /,,-sense is by
definition

E®pF = (E®xF,E®tF)g,0 = -.

This definition was introduced in [22] more generally, for a family of operator spaces.

Proposition 2.10. For any operator spaces E, F we have

d,(E ®PF) = m&x{d,(E), df(F)}.
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Proof. Since the direct sum ©, is injective (cf. [22]), we can reduce to f.d. operator
spaces. In this case, the equality of Proposition 2.10 follows from Proposition 2.1, the
equality (5) and the stability of df(.) by duality. •

Remark. For 1 < p < co, Proposition 2.10 can be easily extended to a general
family of operator spaces (£,),€/. Namely, if lp{E,)^, denotes the direct sum of the spaces
£, in the /,,-sense as defined in [22], we have similarly

I E /

Note however that this generalization fails for p = oo. For instance, B has a completely
isometric embedding into the direct sum ©nMn (in the sense of /„,) where the Mn's are
the n x n matrices and df(Mn) = 1 for all n, but df(B) = oo.

3. Some remarks on the C*-algebras with WEP

Recall that a C*-algebra A is called WEP if the inclusion A -*• A'* factors completely
positively and contractively through B(H). Actually, by a recent result of Haagerup
[15], it suffices that the inclusion A -*• A" factors completely boundedly through B(H).
Equivalently, A is WEP if it has the extension property for the max tensor product,
meaning that for any C*-algebras B, C with C containing A as a C*-subalgebra, the
inclusion map A <g>m]U B c C ®max B is isometric. It is not hard to see that a C*-algebra
A is WEP if and only if the unitization of A is WEP.

A C*-algebra A is said to be approximately injective if for any pair So c St of f.d.
operator systems, any completely positive map UQ : So -*• A can be nearly extended to a
completely positive map u, : S, -*• A, meaning \\ul]So — uo|| < (•• In [10] where this
property was introduced, it is proved that a unital C*-algebra A is approximately
injective if and only if for any pair So C S{ of f.d. operator systems, any unital
completely positive map «<,: So -*• A and any e > 0, there exists a unital completely
positive map «, : S, -»• A with ||u,|So — uo|| < e. Moreover, a C*-algebra is approximately
injective if and only if its unitization is approximately injective.

As shown in [10], any approximately injective C*-algebra has the WEP. But the
converse is definitely not true. Indeed, by the equivalence of the conjectures
(A2) •#• (A4) of [17] and the results of [16], there exists a WEP C-algebra which is not
approximately injective. Actually, there exists a unital one, since the WEP and the
approximate injectivity are shared simultaneously between any C*-algebra and its
unitization.

Various extension properties of WEP C-algebras have been studied in [5] and [18].
In particular, in [5], an extension property for a WEP C*-algebra A is proved for
completely positive maps of the form u: S -*• A defined on a subspace S of Mn. The
goal of this section is to show that an extension property is valid more generally in the
completely bounded setting for maps defined on a subspace S C E of a f.d. operator
space E with df(E) = 1. We should point out however that this extension property
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cannot be true for arbitrary pairs S c E of f.d. operator spaces. Indeed, this would
imply by Lemma 3.1 that any unital WEP C*-algebra is approximately injective which
is not true.

Lemma 3.1. If a unital C-algebra A satisfies the following property: for any f.d.
operator spaces Eo c Eu any map u0 : £0 -*• A and any e > 0, there exists a map
u, : £, -» A extending u^ with ||u, \\cb < (1 + £)H"olU> then A is approximately injective.

Proof. Let Eo c £, be f.d. operator systems and «o : Eo ->• A a completely
positive map with UQ(1) = 1. Then HuolU = 1. Given e > 0, there exists u, :£,->• A
an extension of Mo such that ||w0IU < 1 +£ by our assumption on A. Such a map can
be assumed self-adjoint. If not, it can be replaced by ^(ut+u*) where
uj(x) = (u,(x*))*Vx e £,. Theorem 2.5 of [10] implies that u, is nearly completely
positive, meaning that there exists a completely positive map u :£,->• A such that
u(l) = 1 and \\u — u,|| </(e) where f(e) tends to 0 when e does. Finally, u is the
approximate extension needed for «„. •

Proposition 3.2. Let A be a WEP C-algebra, Eo c Ex a pair of f.d. operator spaces
and e > 0. Then, any operator u: Eo -*• A has an extension u : £, -*• A with

\\u\\cb<(\+e)df{E1)\\u\\cb.

Proof. A has the WEP. Hence, we can find contractive completely positive maps,
a : A -*• B(H), b : B(H) -*• A** such that jA = ba, where jA is the canonical injection of A
into A". Assume E\ is a subspace of C*(£„,). Let j : E\ -*• C*(FM) be the canonical
inclusion map. We want to prove that the map

CB(EUA)-+ CB(E0,A)

is a metric surjection. Equivalently, the closure of the image of the open unit ball of
CB{EU A) contains the open unit ball of CB(£0, A). We suppose given u : Eo -> A with
||u||cfc < 1. By the operator space version of the Hahn-Banach theorem (cf. [19]), we
may extend the operator au to an operator v: Ex-*• B(H) with \\v\\cb = \\au\\cb < 1.
Then the map bv is an "extension" of u with the same c.b. norm, but taking its values
in A".

The maps

and the inclusion

https://doi.org/10.1017/S0013091500019441 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019441


ON SOME "STABILITY" PROPERTIES OF THE FULL C-ALGEBRA 113

®mu A" c {<?&„) ®ma, A)"

are clearly completely contractive. Denote by v e E\ ® B(H), bv e E\ ® A** the tensors
corresponding to the operators v and bv respectively. Then,

And using (3), we get

= \\v\

= PL*
< 1.

Let E*0®A,E\® A be equipped, each with the norm induced by its embedding in
C ( ^ ) ® x A for the sequel. The previous inequalities give

Hence^ there exists a net (/,),€/ of elements of E!\®A such that 11/(11̂ 8,̂  < 1 and
ff^-bv for the topology a((E\ ® A)", (E[ ® A)*). Equivalently, for any x in £,,
/(x) ->• b«(x) for o(A**, A*), where the/J's are the operators associated to the / , ' s . When
x is in Eo, bv(x) = u(x) hence, /(x) -*• u(x) for a{A, A*). In terms of tensors, this means
since Eo is f.d., that q ® idA(ft) -*• u for the topology a((£J ® >1), (£J ® ^4)'), where
q : E\ -v £J is the restriction map. Then, using Mazur's theorem, we may find in the
convex set generated by {q ® idA(f)\ a net (q <8> id^)), converging to u for the norm
topology of El ® A. Equivalently, Wg,^ — u\\ -^ 0 where as expected, g, is the operator
corresponding to the tensor g,. Note that the g,'s are in the convex set generated by the
/, 's, hence writing each gt as a finite sum X!tai.tA where 0 < uik < 1 and £ k a a = 1,
we get
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< > ff.J f.
— / . i.lc || J k\\ E?QA

Note also that the finite dimension of £0 guarantees that the spaces EJ <£> A (the
injective tensor product in the Banach space category) and F.J <8>min A are isomorphic.
Hence, we have ||^,|£o - M||C6 ->• 0. And now, we are done when E\ lives in C*(FM). If it
is not the case, choose F, in C*(FM) f.d., T : F , - • EJ such that ||r||c4||T"'lU <
(1 + e)d/(El) and let Fo = T*(E0) c F\. Then, consider v = uT^~l : Fo -+ A. Now, v can
be extended to an operator v : FJ -+ A with \\v\\cb < (1 + c)||r||ct. Set u = DT*. This is an
extension of u with norm

iu <

<(\+efdf(E,)\\u\\cb. D

Corollary 3.3. ([17]) Let Eo c F-i 6e f.d. operator systems with df(Ei) = 1, A be a
WEP C -algebra. Then for any unital completely positive map u: Eo -> A and any e > 0,
there exists a unital completely positive map « : £ , - > A such that \\uIBtl — u\\ < e.

Proof. This is a direct consequence of Proposition 3.2 above and Theorem 2.5 of
[10]. Hence, Proposition 3.2 appears as a generalization of Lemma 2.5 in [17]. •

Corollary 3.4. Let X be an operator space with df{X) = 1, Eo c X a f.d. subspace
and A a WEP C'-algebra. Then, for any operator UQ : Eo -*• A and any e> 0, there exists
an operator u:X^ A extending UQ with \\u\\cb < (1 4-

Proof. Assume X separable for simplicity. Let Eo c £, C E2 C ... be an increasing
family of f.d. operator subspaces of X and let (en)B be a sequence of positive numbers
satisfying fIB(l + O < °°- By applying successively Proposition 3.2, there exists maps
Un+i-E^f+A extending un with \\un+l\\cb < (\ + en)\\un\\cb. Define u:\JnEn-* A by
setting u(x) = un[x) for x € En. Clearly, u is an extension of «o with
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and we are done by a suitable choice of the families (£„)„ and (£„)„ namely,
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