SOLUTIONS

 $\underline{P~86}$. Let π be a projectivity on a line in the real projective plane. Show that if a single point P has period n>1 under π , then π is periodic of period n, and every non-invariant point has period n.

John Wilker, University of Toronto

Solution by P.J. Ryan, University of Toronto

We first prove the following result: Let π be a projectivity. If π^n (n > 1) has n invariant points then it is the identity. For n > 2 the result follows directly from the fundamental theorem of projective geometry. If n = 2 suppose P and Q are invariant points for π^2 . Then P and $\pi(P)$ are interchanged by π . Hence π is either an involution or the identity, and π^2 is the identity (by the fundamental theorem and the exchange theorem, ABCD π BADC).

Now let $P = P_1$ and consider the n distinct points P_i with $P_{i+1} = \pi(P_i)$. Now $P_{n+1} = P_1$, π^n has n distinct points and hence is the identity. Thus every point on the line has period $\leq n$. Suppose now there is a point Q_1 with period $m < n(m \neq 1)$. Form as above the sequence Q_1, Q_2, \ldots, Q_m . By the same argument every point has period $\leq m$ which is absurd.

Also solved jointly by J. E. Turner and the proposer.

 $\underline{P88}$. Let G be a graph with n vertices and more than $k(n-k) + \binom{2}{2}$ edges. Prove that G has a subgraph G_1 each vertex of which has valence > k.

P. Erdős, McMaster University