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1. Introduction. A semigroup is a set of elements which is closed under an 
associative operation, usually called multiplication. When can a semigroup 
be embedded in a group, i.e., under what condition is it isomorphic to a subset 
of a group? A necessary condition for immersibility is clearly the so-called 
cancellation law: 

(C) If ax = ay or xb = yb, then x = y. 

It is well known that a finite semigroup with cancellation law is a group, also 
that an Abelian semigroup (one in which multiplication is commutative) can 
be embedded in a group if and only if the cancellation law holds. In general 
however the cancellation law is not sufficient for immersibility, as was shown 
by A. Malcev in 1936. 

In a second paper of 1939, Malcev stated necessary and sufficient conditions. 
They assert that certain chains of equations imply further equations. The 
number of these conditions is infinite, and the chains are of unbounded length. 
He proved in a third paper of 1940 that no finite part of these conditions will 
suffice. 

Malcev offers a rather complicated construction for obtaining such chains of 
equations. In the present paper I have tried to give a simpler construction, 
by the device of using parts of polyhedra, rather than natural numbers, for 
labelling the equations and variables contained in these conditions. Acquaint­
ance with Malcev's work will not be expected from the reader. In defining 
the term "polyhedron", I shall roughly follow the book on topology by Seifert 
and Threlfall. 

A face (abstract polygon) is a division of a topological circle into two or 
more arcs, called sides, by an equal number of points, which we will term angles. 
An abstract polyhedron is a system of F faces, containing together 2E sides, 
such that every side is mapped topologically on exactly one other. A pair of 
sides thus mapped into each other is called an edge. Hence every edge has 
two sides. We may speak about the midpoint (some interior point) of an edge, 
which divides the edge into two half-edges. A set of angles which correspond 
to one another under the mapping is called a vertex. Every edge has two 
vertices. To every edge there belong four angles, which may be classified by 
pairs in two different ways: angles at the same vertex of the edge, and angles 
on the same side of the edge. Every half-edge has one vertex, two sides, 
and two angles. The polyhedron is called Eulerian if the total number of 
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IMMERSIBILITY OF A SEMIGROUP 35 

vertices is V such that V + F — E = 2. This is also a necessary and suffici­
ent condition for the surface defined by the polyhedron to be homeomorphic 
(i.e. topologically equivalent) to the sphere. Throughout the present paper we 
shall always mean "abstract Eulerian polyhedron" when we say "polyhedron." 

Given a semigroup § , we shall understand by polyhedral condition the fol­
lowing statement: 

(P) If the elements of $ are assigned to all sides and angles of any Eulerian 
polyhedron, such that to each half-edge there corresponds an equation xa — yb, 
where x and y have been assigned to the sides, a and b to the corresponding angles 
of the half-edge y then these 2E equations are interdependent, i.e. any one of them 
can be derived from the totality of all others. (See Figure 1.) 

The application of this condition to two polyhedra which are topologically 
equivalent will of course give the same result. We shall prove that (P) is a 
necessary and sufficient condition for immersibility of a semigroup § with 
cancellation law into a group. This will establish the following 

THEOREM : A semigroup can be embedded in a group if and only if the cancel­
lation law (C) and the polyhedral condition (P) are satisfied. 

_X_ / 

y " \ 

fig. / 

2. Necessity of polyhedral condition. Let the semigroup § be contained 
in a group ®, so that the elements of § possess inverses in ®. Assign elements 
of § to the sides and angles of a given polyhedron. Assume that the equations 
belonging to all but one half-edge are true, the remaining equation is to be 
deduced. 

An oriented triangulation of the polyhedron is obtained as follows: Directed 
radii are drawn from the centre (some interior point) of each face to the angles 
of the face. (It will be remembered that faces are circles, and that by angles 
we understand points on the circumference.) Directed radii are drawn from 
the midpoints of all sides to the centre of the face. Each half-edge of the 
original polyhedron is given a direction from the midpoint of the edge towards 
the vertex. The half-edges thus oriented as well as the directed radii will be 
the oriented edges of the triangulation. 

The equation xa = yb, corresponding to any half-edge of the polyhedron, 
can be replaced by the two equations xa — p and yb = p, corresponding to 

https://doi.org/10.4153/CJM-1951-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-005-8


36 J . LAMBEK 

two triangles of the triangulation. The variables occurring in these equations 
are assigned to the edges of the triangulation: namely x and y to the radii 
from the midpoint, a and b to the radii towards the vertex, and p to the half-
edge itself. (See Fig. 2.) 

If the equation xa = yb was to be inferred, we may now add yb = p to the 
given equations, and leave only xa = p to be deduced. Thus, corresponding 
to each oriented triangle, we have an equation; for instance xa = p and yb = p 
correspond to two of the four triangles on Fig. 2. Of these 4E equations all 
but one are given, and one is to be derived. 

Flg.2 
Consider any path made up entirely of edges of the triangulation. Corres­

ponding to such a path we form a product in the following way: If the element 
x of § has been assigned to the nth edge of the path, then the nth term of the 
product is x or af1, depending on whether this edge has been traversed in 
the right or in the wrong direction. For instance, there are six different 
closed paths by means of which the perimeter of the upper left triangle of 
Fig. 2 can be once described. Correspondingly we may obtain one of the six 
products: 

(f) xap~l, ap~lx, p~lxa; pa~1x~1
1 a~~1x~1pJ x~lpa~l. 

As long as xa = p, each of these products has the value 1: and conversely, 
if any one of the six products (f) is 1, then xa = p. 

Consider now a closed path consisting of edges of the triangulation, and 
surrounding only triangles for which the corresponding equations are given. 
We prove by induction that the product corresponding to this path will be 
unity. We have shown above that this is indeed so, if the path surrounds 
only one triangle. Otherwise we may decompose the closed path into two 
paths Q and R traversed in succession such that there will exist a path P , lying 
entirely inside the closed path, and joining the endpoint of Q to the endpoint 
of R. Let Pf be the path P traversed in opposite direction. If f(P) denotes 
the product associated with P , then /(P)jf(P') = 1. Hence f(Q) f(R) = 
f(Q)f{P)f(P')f(R) = l , s ince/ (G)/ (P) =f(P')f(R) = 1, by induction hypo­
thesis. 

Suppose now the upper left triangle of Fig. 2 is the one for which the corres­
ponding equation is to be derived. Since the surface defined by our poly-

https://doi.org/10.4153/CJM-1951-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-005-8


IMMERSIBILITY OF A SEMIGROUP 37 

hedron is homeomorphic to the sphere, the perimeter of this triangle divides 
the whole surface into two simply connected regions. Let us describe a closed 
path along this perimeter, and call the outside of the triangle the inside of the 
path. Corresponding to this path we obtain one of the six products (f), 
whose value will be unity, in virtue of the above. Hence xa = p> as was to 
be deduced. We have thus shown the necessity of the polyhedral condition. 

3. Ratios. In preparation for the sufficiency proof of the polyhedral con­
dition, we shall consider a semigroup § satisfying (C) and (P). It is our in­
tention to introduce ratios, in more or less the same way as is usually done 
when § is the set of natural numbers. 

Let a and b be any two elements of § . We shall designate by a/b the set 
of pairs of elements x,y such that xa = yb. If a/b is not the empty set we 
shall call it a ratio. Similarly we define / , (a), (a) - 1 as sets of pairs x,y such 
that x = y, xa = y, x = ya, respectively. With the help of the cancellation 
law, we can easily show that they are also ratios. In fact 

(1) / = ///, (a) = at/t, (a)"1 = t/atf 

where t is an arbitrary element of § . We also note that 

(2) (a) = (b) if and only if a — b. 

When can we say that two ratios are equal? We will prove: 

(3) a/b = c/d if and only if there exist x and y belonging to $& such that xa — yb 
and xc = yd. (It is assumed here that a/b is in fact a ratio, and therefore not 
empty.) 

The necessity of this condition follows directly from the definition of ratios. 
To prove its sufficiency, let us assume that the condition of the theorem holds, 
and also that ua = vb. Let us now apply the polyhedral condition to a simple 
polyhedron consisting of two edges, two faces, and two vertices (Fig. 3). The 
equations corresponding to three of the half-edges of this polyhedron are true 
by assumption, consequently the fourth must hold, viz. uc — vd. This argu-
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ment works both ways, hence ua — vb if and only if uc = vd, and therefore 
a/b = c/d, by definition. 

We define multiplication of ratios as follows: 

(4) (a/d) (d/b) = a/b. 

Thus two ratios may be multiplied to give another ratio, provided they can 
be written in the form a/d and d/b respectively such that a/b is a ratio. Is 
the product of the two ratios unique, if it exists? To answer this in the 
affirmative we must show: 

(5) If a/d = a'/d1 and d/b = d'/b', then a/b = a'/V. 

We may assume that xa—yd, xa'=yd', zd = wb, zd'=wb', ua'' =vb'', and wish to 
prove that ua = vb. The result follows immediately if we consider the poly­
hedron consisting of two vertices, three faces, and three edges. (See Fig. 4.) 

a' 
Fiq.4 

I is the unit element under multiplication. For 

(a/b) I = (a/b)(b/b) = a/b 

by (1) and (4). The same applies to multiplication by / on the left. We 
note the existence of inverses; thus by (1) and (4), 

(a/b)(b/a) = a/a = / . 

In particular we see from (1) that ( a ) - 1 is the inverse of (a), as was anticipated 
by our notation. We find that 

(a)(b) = {abt/bt)(bt/t) = abt/t = (ab). 

Hence, in view of (2), the correspondence a —> (a) maps § isomorphically on 
a subset of the set of ratios. 

We have embedded § in the set of ratios. The latter has all properties of 
a group, except that it is not closed under multiplication, and associativity 
has not yet been shown to hold. We shall embed it in a larger set, in which 
multiplication is always defined and associative. It may be worth noting that, 
if § is an Abelian semigroup, the ratios do form a group already. 
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4. Associativity. The set of ratios almost form a group, except that it is 
not closed under multiplication, so that the associative law, as usually stated, 
has no meaning. With some care however it is possible to enunciate an associ­
ative law even here. If we can bracket a sequence of ratios in such a way that 
they can be multiplied out to give a single ratio, then this "product" will be 
unique. To be more precise: we shall say that a finite sequence of ratios 
(. . . , a/b, b/Cj . . .) contracts into the sequence (. . . , a/c, . . .). If a sequence 
of ratios reduces to a single ratio by iterated contraction, we shall call this 
ratio its product. The associative law then states: 

(6) If a sequence of ratios has a product, then this is unique. 

To prove (6), consider a sequence 5(0) of n + 1 ratios. This contracts to 
5 ( ± 1), consisting of n ratios, which in turn contracts to 5 ( ± 2), and so on, 
until we obtain a single ratio 5 ( ± n). The choice of the plus sign refers to 
one method of iterated contraction, the minus to another. We must show 
that S{+n) = 5 ( - n). 

Fiq. 5 

If k is an integer between 0 and w, we write i = ± k, and note that S(i) 
has w + l T J places or terms. Represent the jth place of S(i) by the point 
(i,j) in the Cartesian plane. If k ^ 0, all but two terms of 5 ( ± k T 1) re­
appear in 5(db k); join the corresponding points by straight lines. But two 
consecutive terms, say ai/ci and Ci/bi are contracted into ai/bi. Join the 
two former points by straight lines to the latter, which will be called a vertex. 
Also join the two points (or vertices) ( ± n, 1) to the point at infinity, along 
the line y = 1. A broken line joining two vertices, even if it passes through 
the point at infinity, will be called an edge. There are three edges meeting at 
every vertex. The simply connected regions into which the edges divide the 
plane will be called faces. Since the plane can be mapped on a sphere by an 
inverse stereographic projection, we obtain a concrete representation of an 
Eulerian polyhedron. We may also verify independently that V = 2n, 
F = n + 2, and E = 3w, so that V + F — E = 2. A simple case, for which 
n = 2, is illustrated by Fig. 5. 
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Consider the vertex corresponding to the contraction of 

5(d= k T- 1) = (. . . , ail Ci, Ci/bu • • . ) into 5 ( ± &) = ( . . . , a^bi, . . .). 

To the three angles formed at this vertex we assign a;,Q, and bi, in this order, 
going from top to bottom, as shown in Fig. 5. By our construction, if a and b 
have been assigned to the upper, respectively lower angle at one end of any 
finite edge, and if this edge passes through any integral lattice point (i,j), then 
the j th term of S(i) is a/b. But in the same way, we find that this term is c/d, 
where c and d correspond to the two angles at the other end of the edge. Thus, 
for any finite edge, we have a "proportion" a/b = c/d. We will prove that 
such a proportion also holds for the edge passing through the point at infinity. 

a x e 
b y d 

Fi96 

b.n v 

Fiq. 7 

In view of (3), the above proportion may be replaced by the two equations 
xa = yb and xc = yd. Here x and y may be conveniently assigned to the two 
sides of the edge (see Fig. 6), and the two equations may be said to correspond 
to the two half-edges. Consider now the edge joining (n, 1) and (— n, 1) 
through the point at infinity. An appropriate transformation will bring the 
point at infinity into the finite part of the plane. Since a-n/b-n is a ratio, 
by definition, there exist elements u and v of § such that ua-n = vb-n. We 
may assign u and v to the upper, respectively lower side of the edge depicted 
in Fig. 7, and the given equation will correspond to the left half of this edge. 
With the help of the polyhedral condition, we deduce the remaining equation 
uan = vbn. It follows from (3) that a-n/b-n = an/bn, i.e., S( — n) = 5 ( + n). 
This concludes the proof of the associative law. 
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5. Sufficiency of polyhedral condition. Two finite sequences of ratios, U 
and V, will be called similar, if there is a sequence W from which both can be 
obtained by repeated contraction. We will prove the following result: 

(7) If both U and V reduce to S by iterated contraction, then they are similar. 

First, suppose U contracts to S, so that U= (P, a/c,c/b,Q) and 5 = (P, a/b,Q), 
where P and Q may be empty sequences. Since V reduces to 5, we may put 
V = (X, Y, Z), where X, Y, and Z reduce to P, a/b, and Q respectively, by 
iterated contraction. It is easily seen that W = (X,Y,b/c,c/b,Z) can be re­
duced to both U and V by repeated contraction, so that U and V are similar. 
Hence (7) holds when U reduces to 5 in one step. 

Fiq.à 

Next, suppose U reduces to 5 in n steps, n > 1. Then U contracts to U' 
which reduces to 5 in n —• 1 steps. By induction hypothesis, there exists a 
sequence W which reduces to Uf and V by iterated contraction. Since U 
reduces to V in only one step, by the above, there exists a sequence W which 
reduces to both U and W and therefore V. Hence U and V are similar, as 
was to be proved. (See Fig. 8 for an illustration of the second part of this 
proof.) 

We are now in a position to show that similarity of sequences of ratios is 
an equivalence relation in the usual sense. 

(8) Similarity is symmetric, reflexive, and transitive. 

Its symmetry is obvious. Reflexivity follows from the fact that (S,I) con­
tracts to S. To prove transitivity, let us assume that R is similar to S, and S 
is similar to T. Hence there exists a sequence U which reduces to both R and 
S, and a sequence V which reduces to both S and T (see Fig. 9). Since both 
U and V reduce to S, by (7) they can both be obtained from a sequence W 
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by repeated contraction. Now W reduces to R via U and to T via V, hence 
R is similar to T, as was to be proved. 

In this connection we may also state: 

(9) If S is similar to S' and T is similar to T', then (5, T) is similar to {S,
1T

/). 

For, by repeated contraction, we obtain 5 and Sr from Z7, T and T' from V, 
hence (S,T) and (Sf, V) from (U,V). 

w 

A A 
I 5 T 

Fiq.9 
A ratio may be regarded as a sequence of ratios with one term. When are 

two ratios similar? 
(10) Two ratios are similar if and only if they are equal. 

Because of reflexivity we know that equal ratios are similar. Conversely, 
let two ratios be similar. By definition, this means that both can be derived 
from the same sequence W by repeated contraction. From (6) we deduce 
that they are equal. 

Let us denote by 5* the class of all sequences which are similar to 5, so that 
S* = T* if and only if 5 and T are similar, in view of (8). We define multi­
plication of similarity classes as follows: 

(11) S*T* = (S,r)*. 

From (9) we know that the product thus defined is unique. 
Associativity becomes apparent if we write both (S*T*)U* and S*(T*U*) 

as (5,r,C/)*. The unit element under multiplication is J*, since both (5,/) 
and (I,S) are similar to S; for both are obtained by contracting (7,5,7). If 
T contains the reciprocals of the ratios of 5 in reverse order, then both (5,7") 
and (T,5) reduce to and are therefore similar to 7; thus T* may be regarded 
as the inverse of 5* under multiplication. We have thus proved that the 
similarity classes form a group ®, with multiplication defined by (11). 

The correspondence a/b —» (a/b)* is a homomorphic mapping of the set of 
ratios on a subset of ®. For, by (11) and (4), 
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(a/b)*(fi/c)* = (a/btb/c)* = (a/c)* = ((a/b) (b /c))\ 

More than this, the mapping is isomorphic. For if (a/b)* = (c/d)* then a/b 
and c/d are similar, hence a/b = c/d, by (10). The correspondence a/b-^(a/b)* 
therefore embeds the set of ratios in ®. But the correspondence a —» (a) 
embeds the semigroup § in the set of ratios, as we have shown in §3. Hence 
the correspondence a —> (a)* embeds § in ©. This establishes the sufficiency 
of the polyhedral condition. 

6. Application to Abelian semigroups. Let § be an Abelian semigroup 
with cancellation law. Although it is not difficult to show directly that § is 
immersible in a group (namely the set of ratios), we shall test the usefulness 
of the polyhedral condition, by showing independently that the latter holds 
in § . 

Let elements of § be assigned to all angles and sides of any given polyhedron. 
Of the equations corresponding to the half-edges we will assume that all but 
one hold, and we wish to deduce the remaining equation. As in the necessity 
proof of the polyhedral condition, we introduce a triangulation and replace 
each equation xa = yb by two equations xa = p and yb = p corresponding to 
triangles. We may assume then that all but two of these latter equations 
are given. 

If we reverse the direction assigned to all half-edges, we obtain a cyclic 
orientation for each triangle, enabling us to distinguish clockwise and counter­
clockwise triangles. The triangles are thus divided into two classes, so that 
triangles with a common edge do not belong to the same class. We will write 
the equation corresponding to a triangle of the first class as xa = p, and the 
equation corresponding to a triangle of the second class as p — yb, making 
a careful distinction between the two sides of each equation. Now multiply 
all 4E — 2 given equations together, after their sides have been thus arranged. 
It will be observed that the four variables belonging to the half-edge whose 
equation is to be deduced occur once in the product equation. All other vari­
ables occur twice, once on each side of the product equation, and may there­
fore be cancelled, by (C). There results an equation containing four variables, 
and it is easily seen that this is in fact the equation we wish to deduce. Hence 
the polyhedral condition is satisfied, as was to be proved. 
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