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UNIONS OF COCKCROFT TWO-COMPLEXES

by W. A. BOGLEY

(Received 11th November 1992)

A combinatorial hypothesis is presented that serves as a necessary and sufficient condition for a union of
connected Cockcroft two-complexes to be Cockcroft. This combinatorial hypothesis has a component that can
be expressed in terms of the second homology of groups. The hypothesis is applied to the study of the third
homology of groups.

1991 Mathematics subject classification: Primary 57M20, Secondary 20F05, 20J05.

1. Introduction

It was observed by Cockcroft [5] that if a two-complex K (that is, a two-dimensional
CW complex) is a subcomplex of an aspherical two-complex, then for any basepoint
zeK, the Hurewicz map h:nz(K,z)-*H2K is trivial. In other words, each spherical map
S2-*K is homologically trivial. Two-complexes with this latter property are therefore
said to be Cockcroft. In this note, necessary and sufficient conditions are given for a
union K of subcomplexes Kr and K, to be Cockcroft. A necessary condition is that each
of Kr and Ks be Cockcroft. An additional condition is group-theoretic; it is of interest in
connection with a certain "relative Hopf formula" for third homology that was
introduced in [1].

This introductory section discusses refinements and the significance of the Cockcroft
property. The main result is proved in Section 2. Examples and applications to
homology calculations are presented in Section 3.

The Cockcroft property has group-theoretic content. Suppose that K is modeled on a
presentation 0> = {x:u) for a group G. For ueu, write u = qe where e^l and q is not a
proper power. If K is Cockcroft, then q determines an element of order exactly e in
G^itiK [18, 20]. Next, there is the exact Hopf sequence [15, 16]

where the middle map is naturally induced by h. It follows that if K is Cockcroft, then
H2G = H2K is free abelian and H3G = Z<S>zcn2K. From a combinatorial perspective, if
K is finite and Cockcroft, then & is efficient, in the sense that the number of generators
minus the number of relators is equal to the difference of the torsion-free rank of Hx G
minus the minimum number of generators for H2G [8]. In particular, K has minimum
Euler characteristic among all finite two-complexes with fundamental group isomorphic
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to G [2]. Finally, the Cockcroft property has been used to produce lower bounds for
isoperimetric functions of group presentations [9,17].

Increasingly delicate versions of the Cockcroft property arise upon passage to
coverings of K. For a subgroup H-^n^K, the two-complex K is H-Cockcroft if the lifted
Hurewicz map k:n2K-*H2K is trivial, where K-*K is the covering corresponding to
H. This is the same as saying that K is Cockcroft. In particular, K is aspherical if and
only if K is {1}-Cockcroft. For H . J / ' ^ T ^ K , if K is H-Cockcroft and some
Tij^-conjugate of H is contained in H', then K is H'-Cockcroft. (This is because
conjugate subgroups arise by changing basepoints in covering complexes.)

As an example, suppose that K is modeled on a one-relator presentation (x:r), where
r # 1 in the free group F with basis x. Write r=qe where q is not a proper power in F. It
follows from Lyndon's Simple Identity Theorem [19] that for a subgroup H ^ ^ f C , K is
H-Cockcroft if and only if H contains each rt^-congugate of q. The point is that the
Identity Theorem can be interpreted as a description of a generating set for n2K.
Generalizations of this observation appear in [10].

These refined versions of the Cockcroft property first appeared in [2], and have since
received considerable attention [3, 7, 8, 10, 11, 14, 20, 21]. They provide an intrinsic
connection between the subgroup structure of ntK and the module structure of n2K. It
is shown in [10] and in [14] that if K is Cockcroft, then n^K contains a minimal
subgroup H such that K is H-Cockcroft. These so-called threshold subgroups are
studied extensively in [10, 11]. Examples of two-complexes with nonunique thresholds
are presented in [21].

2. The main result

Suppose that a connected two-complex K is given as the union of connected
subcomplexes Kr and K3, where Krn K,=K(1). Let F = n1K

(1) and let R = keT(F-+nlKr)
and S = ker(F-»7t1Ks) be the kernels of the inclusion-induced maps. The subgroups of
nlK = F/RS are all of the form N/RS, where RS^N^F. If A and B are subgroups of
F, then [A, B] denotes the subgroup of F generated by all commutators [a, b] =
aba~lb~l, where aeA and beB.

Theorem. For a subgroup N^F with RS^N,K is N/RS-Cockcroft if and only if

(i) Kr is N/R-Cockcroft,

(ii) Ks is N/S-Cockcroft, and

(iii) RnSc[fi,AF]n[S,JV].

Proof. Let p:K-*K be the covering of K corresponding to N/RS. Let pr:Kr-*Kr be
the restriction of p to Kr=p~i(Kr); pr is the covering of Kr corresponding to N/R. If K
is N//?S-Cockcroft, then K is Cockcroft, and so the subcomplex Kr is Cockcroft.
Similarly, K3=p~1(K,) is Cockcroft. We may thus assume throughout that Kr is
JV//?-Cockcroft and that K, is N/S-Cockcroft. The following commutative diagram has
exact rows and columns. The top row is from [12, Theorem 1] (see also [4, Corollary
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3.2] and [1, Corollary 3.4]) and the middle row is from the Mayer-Vietoris homology
sequence for K = Kr\j K,. Exactness of the first two columns is due to Hopf [15, 16].

n2Kr@n2Ks -> n2K 1 ^ ~ ^ 0

_ 10 |/F_
0-» H2Kr@H2K, -» H2K -•

| S J,onto
H2AT//? 0 H2N/S -> H2N/RS

As in [1, Lemma 3.1], the homomorphism vN can be identified with the map

RnS N

that is induced by the inclusion of R n S in N. Applying the snake lemma, Hopfs
formula for the second homology of groups shows that the bottom row of the diagram
can be extended to the left and rewritten as the exact sequence

where

for each weRnSn[N,N~}. To see this, a description of the map t\ is given in [12, p.
49] and in [1, Remarks 2.6 and 3.6]. Namely, given we RnS, there exist singular discs
a:(B2,S1)-^(Kr,X

(1)) and 0:(B2,Sl)->(Ka.R
w) with boundaries a|s, = 0|s. representing

w e T t ^ ^ s N . One then has that

[a] [fi] ~l e kcr(n2(K, Kw) -> n^") s ^2K

and that f/([a][/S]~1) = w[/?,S]. If w e J J n S n [N,N] _then the image of [a] under the
relative Hurewicz map n2(Kr,K

w)-+H2{Kr,K
ll)) is an element of

ker(H2(Kr,K
(1))-*H1^(1))S//2KI.. Further, this element projects to w[K,N] under the

Hopf map H2Kr->(Rn[N,N])/[/?,N~\. Similar remarks apply to [/?] and the descrip-
tion of i follows directly.

A diagram chase now reveals that

K is W/KS-Cockcrofto/T=Oov'v = 0 and i=0.

The definitions of vw and i thus imply that K is N/RS-Cockcroft if and only if

R n S <= IN, AT] and R n S n [iV, N] c [R, AT] n [S, N],
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which is equivalent to the assertion that

RnS£[K,N]n[S, . /V]. •

It is worth noting that if K is N/i?S-Cockcroft, then i=0, and so the natural map

H2N/R © H2N/S -> H2N/RS

is injective. (Compare [10, 11].)
Taking N = RS, the theorem yields a result on asphericity of two-complexes. All

notation is that of the theorem.

Corollary. K is aspherical if and only if

(i) Kr is RS/R-Cockcroft,

(ii) Ks is RS/S-Cockcroft, and

(Hi) RnS<=[R,R][R,S]nlS,S][R,Sl

This result can also be deduced from [12, Theorem 1] and an exact sequence due to R.
Brown [4].

3. Examples

The condition (iii) of the theorem is of interest in the study of the third integral
homology of groups. The four-term Hopf sequence displayed in the Introduction shows
that elements in third homology are the residues of homologically trivial spherical maps
when the homotopy action of the fundamental group is trivialized. It is relatively easy
to produce homologically trivial spherical maps in specific examples. To decide whether
a spherical homotopy class survives when the fundamental group action is trivialized is
more difficult; this problem involves the internal structure of n2.

A combinatorial approach to this problem was introduced in [1]. Among the results
there is a "relative Hopf formula" for third homology [1, Corollary 5.5] in the form of
an exact sequence

H3F/R 0 ± [ * F ] ' ~ ; [ S F ]

The value of this sequence begins with the fact that the homology of one-relator groups
is completely understood [19]. One may think of the image of j as representing
"obvious" elements of H3F/RS. Results on the kernel of j appear in [6]. The image of e
carries the "nonobvious" elements of HsF/RS. If R n S Q. [/?, F] n [S, F], then every
element of R n 5 determines an element in the image of e. This is relevant to the search

https://doi.org/10.1017/S001309150000609X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000609X


UNIONS OF COCKCROFT TWO-COMPLEXES 321

for nonobvious elements in H3F/RS as it is easier to produce elements of RnS than of
the subgroup [R,F] n [S,F~\.

As in [1, Section 6], suitable conditions on RnS facilitate the detection of non-
obvious elements of H3F/RS. The lower central series of F provides a good context for
calculations. For a positive integer n, let Fn denote the nth term of the lower central
series of the free group F. Thus, F1=F, and Fn+1 = [F,Fn]. The quotient groups
FJFn+1 are free abelian, with bases determined by the basic commutators of weight n.
(A good reference for this is [13, p. 149ff].) From the relative Hopf formula, it follows
that if R n S £ Fn, then there is a homomorphism

en:H3F/RS-+-

such that enj=O. The image of en therefore detects non-obvious elements of H3F/RS.
Elements in the image of en are represented by elements of [/?, F] n [S, F].

Proposition. Let (x:r,s) be a group presentation and let F be the free group with basis
x. Assume that the following conditions hold.

(i) There is a positive integer n such that r u s e f , and

(ii) the elements uFn+l (uerus) are linearly independent in the free abelian group
FJFn+l.

Let R {resp. S) denote the normal closure of r (resp. s) in F. Then,

It follows that RnS^Fn+l and that the model o/(x:r,s) is Cocker oft.

Proof. Let we RnS. There exist r, e r, Sj e s, w,, Vj e F, and eh Sj = ± 1 such that

For ret, let

and similarly define n, for each ses. Since r u s £ Fn,

1 1 ' M n + 1
ret

and hence
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The linear independence hypothesis now implies that nu=0 for all u e r u s . Finally,

w[K, F] = [I tf C«. F] = n »*[*. n = 1 [K, F]

so we[J?,F]. It follows similarly that wG[S,f]. Since /?£Fn , we also have that
RnS^Fn+l. Since the model of a one-relator presentation is Cockcroft, it follows by
induction, compact supports and the theorem that the model K of (x:r,s) is Cockcroft.

•
This generalizes a result from [8], which considers the case n = 1.

For the presentation considered in the Proposition, there is the homomorphism
en+1:H3F/RS^>Fn+1/[R,S]Fn+2. Examples with n = \ appear in [1, Example 6.3, 6.4].
In each of the examples, the homomorphism e2 is shown to be nontrivial.

For an example in the case n = 2, let F be the free group with basis {x,y,z}. Let
r = {[xa,>']} and s = {[/,z],[zc,x]}, where afec/0. Since the elements [x",y~\F3,
\y,z]F3, rV,x]F3 are linearly independent in F2/F3^Z( 3 ) , the Proposition provides
that RnS^[R,F~\n [S, F] n F3. Since RS £ F2, we have the homomorphism

Each element fieRnS determines an element /xF4 in the image of e3. Now, it can be
shown that

fi = x"zcx~aybxay'bz~cy"x~"y~b e R n S.

For example, since x" centralizes all powers of y modulo R,

and so fieR. Similarly, peS. (It is not too difficult to produce elements of RnS
geometrically using equators of spherical pictures. See [1,6,20] for discussions.)
Manipulations with the commutator identities yield

Since [[x,j>],z]F4 is contained in a basis for the free abelian group F3/F4, it follows
that /iF^ is the image under e3 of a nonobvious element .of infinite order in H3F/RS.
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Note that if K is the model of {x,y,z:r,s), then h:n2K-*H2K is trivial, although both
n2K and H2K are nontrivial.

Take r={[x, [x, / ]]} and s={O, [x, /]]} in the free group F with basis {x,y}, where
c#0. Here, one can show that

The proposition applies with n = 3, giving the homomorphism

Further, one finds that

thereby detecting a non-obvious element of infinite order in H3F/RS.
Huck and Rosebrock [17] have used the fact that the model of (x,y:[x, [ x , / ] ] ,

[y> [*t / ] ] ) is Cockcroft to show that this presentation does not have a quadratic
isoperimetric inequality.
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