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1. Introduction

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative
analogue of principal ideal domains, to which they reduce in the commutative
case, and in [3] a category TR of right /{-modules was defined, over any fir R,
which forms an analogue of finitely generated torsion modules. The category TR

was shown to be abelian, and all its objects have finite composition length; more-
over, the corresponding category RT of left /{-modules is dual to TR.

A natural problem at this point is to find an analogue of torsion modules that
are not necessarily finitely generated. There are a number of ways of forming the
completion of an abelian category (cf. e.g. Gabriel [5]); in our case the problem is
simplified by the fact that TR is a full subcategory of MR, the category of all right
/{-modules. On the other hand, we shall want an explicit description of the tor-
sion modules and this is not provided by the general theory. We shall therefore
proceed somewhat differently: We begin by defining general torsion modules
over a fir (§ 2), and show that these modules form the objects of a full subcate-
gory TR of MR which is abelian and has exact direct limits and a generator, i.e. it
is a Grothendieck category. It is obtained from TR by forming direct limits in MR.

A dual procedure leads to the notion of a protorsion module, and in this way
we obtain a category TR with exact inverse limits and a cogenerator. Further, when
the categories of left /{-modules RT^, RTl are defined correspondingly, we find
that there is a duality between T£ and R Tl. This duality allows us to dispense
with the verification that TR is again an abelian category. Using a result of Ga-
briel [5], we can interpret TR as the category of all pseudo-compact modules over
a certain pseudo-compact ring E. In the special case of a principal ideal domain,
E can be constructed as a completion of R (e.g. when R = Z, E = Z), but this
construction does not extend to general firs.

2. The category of general torsion modules over a fir

All rings are understood to have a unit-element 1, modules are unital and ho-
momorphisms preserve 1. By a free right ideal ring, or right fir for short, one un-
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[2] Torsion and protorsion modules 491

derstands a ring in which all right ideals are free, of unique rank; left firs are de-
fined correspondingly. Throughout this note, we shall only be dealing with rings
that are left and right firs.

Given a fir R, and an /?-module M with a finite presentation

0 -> Rm -> R" ->• M -> 0,

the characteristic of M is defined by

(1) X(M) = n-m.

If M is finitely generated but not finitely related, we put #(M) = — oo, and if M
is not finitely generated, %{M) = oo. This defines #(M) for every J?-module, and
it is clear that the definition is independent of the presentation chosen for M. In
[3] it was shown that for any short exact sequence

(2) 0 -»• M' -> M -> M" -> 0

of modules over a fir, we have

(3) X(M) = x(M') + x(M"),

with the usual conventions about oo and the rules

(a) if x(M") = oo, then *(Af) = oo,

(/?) if #(Af") = — oo, and x(M') = oo, no conclusion can be drawn.

In particular, (3) is meaningful whenever M' and M" are finitely generated.
A torsion module over R was defined in [3] as an i?-module M such that

(i) Z(M) = 0

and either of the following conditions (equivalent when (i) holds):

(ii) for every submodule M' of M, z(M') S: 0,

(iii) for every quotient module M" of M, x{M") ^ 0.

Any torsion module in the sense of this definition is necessarily finitely

generated; we shall generalize this notion by making the following

DEFINITION. A right 7?-module M is said to be a torsion module if every finite
subset of M is contained in a finitely generated torsion module.

We denote the full subcategory of MR whose objects are the torsion modules
by TjJ and as in [3] denote by TR the subcategory of finitely generated torsion
modules. We remark that general torsion modules can be defined without referring
back to the finitely generated case by the conditions

(i') every finite subset is contained in a submodule Tsuch that x(T) = 0, and

(ii') for every finitely generated submodule M', z(Af') 2: 0.

Clearly (ii') actually holds for all submodules, finitely generated or not.
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Conditions (i') and (ii') again imply a condition on the finitely generated
quotient modules, but it is not clear whether this can actually replace (ii'). Before
proving it we note a general property of finitely related modules which is used
repeatedly in what follows.

LEMMA 2.1. Let R be any ring and M an R-module with a presentation

0-+G^>F^> M->0

where F is free and G is finitely generated. Then M is the direct sum of a finitely pre-
sented module and a free module.

This result follows by taking a finite generating set of G, expressing it in terms
of a basis of F and noting that only finitely many elements of the basis of F are
involved.

PROPOSITION 2.2. Let M be any torsion module over a fir. Then

(Hi')/or every finitely generated or finitely related quotient M" ofM, %(M") ^ 0.

PROOF. When M is finitely generated, /(A/) = 0 and the result is clear by
(3). Now let M be a general torsion module and M" = M/M' a finitely generated
quotient. Then Mcontains a finitely generated submodule Nsuch that N+M' = M.
Enlarging N if necessary we may assume that N is a finitely generated torsion
module and hence satisfies (iii'). Now M" = (N+M')fM' ^ N/(N n M'), and so
x(M") ^ 0. Thus every finitely generated quotient of M has nonpositive charac-
teristic. If M" is finitely related but not finitely generated, then by the lemma,
M" = Mo ® F, where Fis free of infinite rank. Hence M" has a finitely generated
quotient of positive rank, and so does M, but this contradicts what has just been
proved.

In order to show that TR is an abelian category it is enough to verify

(a) in any short exact sequence (2) of R-modules, if any two terms are torsion
modules, so is the third, and

(b) for any homomorphism f between torsion modules, both kerf and cokerf
are torsion modules.

PROOF OF (a). Let M', M" be torsion modules and X a finite subset of M.
The image of X in M" is contained in a finitely generated torsion submodule T"
of M". Pick a finitely generated submodule L of M which contains X and maps onto
T". Let L' be the kernel of the mapping L -> T" (induced by the mapping M-* M"),
then x(L') = x(L)~x(T") = x{L). The latter is finite, so L' is finitely generated,
and is therefore contained in a finitely generated torsion submodule T' of M'. Let
T be the submodule of M generated by L and the image of T under the mapping
M' -»• M. Then T is an extension of T by T", hence a finitely generated torsion
module, and it contains X.

Next assume that M and M' are torsion modules. Given any finite subset
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X of M", there exists a finite subset of M mapping onto X, and hence a finitely
generated torsion module L of M whose image L" contains X. Let L' =
ker (L -»L"); thus if M' is identified with a submodule of M, then L' = Ln M'.
Since #(Z,) = 0 and L" is finitely generated, L' is finitely related. Suppose first that
L' is finitely generated and enlarge it to a finitely generated torsion submodule 7'
of M'. Then 7 = T' + L is finitely generated and hence has non-negative character-
istic. But as homomorphic image of the torsion module 7 ' © L it has non-po-
sitive characteristic, hence / (7 ) = 0 and 7is a torsion module. Now coker (7" -> 7)
is a finitely generated torsion submodule of M" containing X. It remains to
consider the case when L' is not finitely generated. We know that it is finitely re-
lated, so L' = Lo ® F, where Lo is finitely presented and 7MS free of infinite rank.
Since M' n L = Lo + F, we can find a finitely generated torsion submodule Ml of
M' which contains L0 + Ft, where /^ is a direct summand of F, chosen so that
Lo + F1 has positive characteristic. Clearly Ml n L = Lo-\-F1 and the exact
sequence

0 -> Mj n L -» Mx ® L -> Mt +L -»• 0

shows that M t + L has negative characteristic. But this contradicts the fact that
M is a torsion module. So this case cannot occur, and M" is therefore a torsion
module.

Thirdly, assume M, M" to be torsion modules and let X be a finite subset of
M'. Let us take M' to be a submodule of M, then there exists a finitely generated
torsion submodule T of M containing X. Put 7" = T n M' and 7"' = coker
(7' -> 7), then 7 " is finitely generated, a quotient of 7 and a submodule of M",
and hence is a torsion module. Therefore 7 ' is also a torsion module and it con-
tains X. This shows M' to be a torsion module, and it completes the proof of (a).

PROOF OF (b). Let / : M -> N be a homomorphism of torsion modules, and
put K — ker/. Any finite subset X' of MjK is the image of a finite subset X of M.
Let 7 be a finitely generated torsion submodule of M containing X and consider
the isomorphism

(4) {T + K)/K^Tf(TnK).

The left-hand side contains X' and is isomorphic to a submodule of N, hence
X((T + K)/K) ^ 0. But (4) shows that x((T + K)/K) S 0, hence (T + K)/K is a
torsion module containing X', and we have shown that M/K is a torsion module.
Now part (a), just proved, shows that ker/, i m / a n d coker/are also torsion
modules. Thus T^ is an abelian category and we have established part of

THEOREM 2.3. The category TR of torsion modules over afirR is a Grothen-
dieck category, i.e. an abelian category with exact direct limits and a generator.

It is clear that T^ is closed under direct unions, and the AB.5 axiom

(5) (J (Mx nN) = ({J Mx) n N
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follows because we have a subcategory of MR. To obtain a generator we simply
form the direct sum of one copy each of all the simple finitely generated torsion
modules.

3. Protorsion modules

DEFINITION. A protorsion module over a fir R is a module of the form

M = Jim Mi,

where (M() is an inverse system of finitely generated torsion modules.
Every protorsion module carries a natural topology, obtained by taking

finitely generated torsion modules to be discrete and regarding M as a submodule
of the topological product TIMt. We shall write T^ for the category consisting
of all protorsion modules and all continuous homomorphisms between them. By
arguments similar to those of § 2 it can be shown that TR is an abelian category
satisfying the dual of AB.5; this will also follow directly from the next result which
establishes a duality between RTl and TR . Note that this extends the duality be-
tween R r a n d TR described in [3], Th. 5.2. We shall abbreviate Ext^ by Ext in what
follows; this is unambiguous because R is a fixed ring, always a fir, and so Ext| = 0.

THEOREM 3.1. Over any fir R, the category T# of right torsion modules is dual
to the category RTl of left protorsion modules.

PROOF. Let Me T,R say M = lirnM,, where j t / , e T s , Then, on writing
DM = Ext (M, R) (tor any i?-module M), we have

DM = Ext (M, R) = Ext (Hm Mi,R) = Hm Ext (M;, R) = Jim DMt.

By Th. 5.2 of [3], DMt e RT, hence DM e RTl. Thus

(1) D : M H> Ext (M, R)

is a contravariant functor from TR to R T l . We complete the proof by showing
that D is a duality. In the first place we observe that D preserves short exact
sequences, because Ext | = 0 and Horn (M, R) = 0 for any M eTR. Thus D
is exact.

Next we show that every object P of RTl has the form DQ, for some QeTR.
Let P = jim Pt, where (Pt) is an inverse system of modules in RT, and write Q% =
DPt, then (Qt) is a direct system in TR and hence Q = Hm Qt e TR, so

DQ = D(\jm Qi) = Jim DQt = Um P, = P.

It only remains to show that for any M, Ne T^, the natural mapping

(2) Horn (M, TV) -> Horn (DN, DM)

is a bijection. It is injective, for i f / : M -> N is non-zero, take M' s M, finitely
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generated, such tha t /M' ^ 0 and choose a finitely generated submodule N' of N
such tha t /M' s N', then/induces a mapping/' : M' -* N' which is non-zero; we
have the commutative diagram with exact rows

0

DN

By the duality in the finite case, Df / 0 and hence Df # 0.
To show that (2) is surjective, let g : DN -> DM be given, and assume

that M = lim Mt; then DM = Jim DMt and by composition we get mappings
gt : DN -> DMt. Let DN = UmP^, then by the continuity of g( there exists
a = a(i) and a mapping ut : Px -> DMi such that the triangle

DN

commutes, where px is the natural projection. Write Qa = DPX, Q = Hm Qx,
then DQ = Z>(Jim £>J = lim ££>„ = lim Px = Z)^, hence N s Q, by what has
been shown. Now Dw; : Mt -* Qx combined with the natural injection gives a
mapping u* : Mt -> g . If <pJt : M; ->• My- denotes the canonical mapping (j > i),
then clearly the u* satisfy

"* = u* <Pji f o r J > L

Hence the u* combine to give a mapping u* : M -» Q which satisfies Du* = g.
It now follows (e.g. by the criterion 1.19 of [1]) that D defines a duality be-

tween Tl and RTi, and this completes the proof.
Since the notion of a (two-sided) fir is left-right symmetric, we also have a

duality between RTT and T^.
Let us return to TR and consider S = Spec TR, the associated spectral cate-

gory (cf. [6, 8]). We recall that the natural functor

P:Tl ^ S = Spec T^

may be described as the solution of the universal problem of making all essential
monomorphisms in T^ invertible. Further, PM ^ PN if and only if M and N
have isomorphic injective hulls l, or equivalently, if there exists LeTR with es-
sential monomorphisms L -* M, L -> N. Consider first the case where M, N are
both finitely generated, by n elements say. Writing T'= Rn, the nxn matrix ring

1 Taken in T£, of course. The injective hull within MR is generally larger.

https://doi.org/10.1017/S144678870000793X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000793X


496 P. M. Cohn [7]

over R, we may regard M and N as cyclic T-modules, say M = T/cT, N = T/dT,
where c, d are elements of T defining torsion modules. We recall from [3] that an
element c defines a torsion module precisely if it has no left or right factor which
is a zero-divisor; such an element of T will be called regular. We note that a T^-sub-
module M' of M corresponds to a right factor ot c: if c = ab, then aTjabT s
TjbT = M' say, T/aT = M", where the relation between M, M', M" is given by
the exact sequence (2) of § 1. In terms of the matrices a, b, c defining M", M', M
the monomorphism M' -» Mis essential if and only if b is an essential right factor
of c in the sense of the following

DEFINITION. Let c be a regular element of a ring T. Then a right factor c' of
c is inessential if c has a non-unit right factor which is right coprime to c'. Otherwise
c is essential.

With this definition two regular n x n matrices over a fir R correspond to
right i?-modules with isomorphic injective hulls if and only if they have an essen-
tial right factor in common.

Since TR is locally Noetherian, each injective is a direct sum of indecompos-
able injectives. In general, these summands are not finitely generated, but any in-
decomposable injective can be obtained as the injective hull of any one of its
non-zero submodules, and we know that there always is a finitely generated sub-
module.

We recall that an object PM of S is simple if and only if M is coirreducible
in TR. i.e. if M has a unique minimal non-zero submodule M', and clearly PM =
PM'. Thus the simple S-objects P are just the injective hulls of the T-simple torsion
modules, so each is determined by an atom in some Rn (n = 1, 2, • • •). Let P
be a system of representatives for the simple S-objects, then the mappings
M ->• Homs(/>, M)(P e P) provide an equivalence between S and a product category

S -* IJMKp, where KP = Ends(,P) is a skew field.

Now in TjJ any direct sum of injectives is again injective (cf. e.g. [1], 6.50).
Let U be the direct sum of one copy of each indecomposable injective in TR . This
module U may also be formed obtained by taking one copy of each T-simple module
and forming the injective hull. Let E denote the endomorphism ring of U:

(3) E = Endr(C/).

The ring E may be regarded as a pseudo-compact ring in a natural way ([5],
Prop. IV.4.13); by Th. IV.4.4 of [5], R r r is dual to PC(E), the category of pseudo-
compact right ^-modules, hence by applying Th. 3.1 above we obtain

THEOREM 3.2. Let PC{E) be the category of pseudo-compact right E-modules,
where E is given by (3), then T^. is equivalent to PC{E).

By way of illustration let us briefly consider the case of a principal ideal do-
main. By [4] the category T^, as subcategory of MR, admits submodules if and only
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if R is a principal right ideal domain. In that case the duality of Th. 3.1 reduces to
the situation familiar in abelian groups:

Ext (M, R) = Horn (M, K),

where K = / /R, /being the injective hull of R as right /?-module. More particularly,
assume that R is a principal ideal domain (not necessarily commutative). Then every
simple object in 7^ is a cyclic module and hence of the form RjpR (p an atom of
R). Now / is just the skew field of fractions of R (this is true for any right Ore
domain; it follows e.g. from Prop. 3, p. 95 of [7]). The i?-module K, as image of
/, is again injective.

We can write / in the form / = lim a~1R; then

End (KR) = HomQim a'lR/R, AT) = Jim Horn {a~lR/R, K) = lim R/Ra,

hence

(4) End (KR) = ]jm R/Ra = R.

Clearly K is an injective cogenerator for T&; hence R, defined by (4), is a
projective generator for RT\ In fact R is just the ring E defined in (3), hence

RTT may be regarded as the category of all pseudo-compact left ft-modules.
Since K is a direct sum of indecomposable injectives (cf. e.g. [1], 6.50), R

is a direct product of indecomposable projectives. These correspond to the dif-
ferent atoms of R and the indecomposable projective corresponding to a given atom
p of R has the form

(5) Rp = lim R/Ra,

where a runs over all elements of R containingp as essential right factor. In the com-
mutative case (5) of course simplifies to

RP = lim

Returning to the case of a general fir R, we still have an injective cogenerator
K for TR which is a direct sum of indecomposable injectives. Its dual DK is a di-
rect product of indecomposable projectives and is a projective generator for RTl.
However, there is now no natural way of constructing DK (analogously to R);
firstly because not every simple object of TR is defined by an atom in R (we gener-
ally need Rn for all n), and secondly, because even in R itself the family of princi-
pal right ideals generated by atoms is not closed under finite intersections. Even the
formula (5) for an indecomposable projective may fail in this case: e.g., if R =
k(x, y, z> is the free A>algebra on x, y,z (ka field), then yx, zx are two elements with
x as essential right factor, but Ryx n Rzx = 0. This means that the injective hull
of R/xR cannot be expressed as a direct limit of cyclic modules, and correspon-
dingly the projective cover ofR/Rx is not an inverse limit of the form (5).
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