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ISOMORPHISM PROBLEM FOR METACIRCULANT GRAPHS OF
ORDER A PRODUCT OF DISTINCT PRIMES

EDWARD DOBSON

ABSTRACT. In this paper, we solve the isomorphism problem for metacirculant
graphs of order pq that are not circulant. To solve this problem, we first extend Babai’s
characterization of the CI-property to non-Cayley vertex-transitive hypergraphs. Addi-
tionally, we find a simple characterization of metacirculant Cayley graphs of order pq,
and exactly determine the full isomorphism classes of circulant graphs of order pq.

1. Preliminaries. Throughout the paper, p and q are distinct primes. For definitions
and properties of permutation groups the reader is referred to [10], and for graph theoretic
notation to [4]. Let Zn be the ring of integers modulo n, and ZŁn be the units of Zn. Let
mÒ n be positive integers and set ñ = bmÛ2c. Let V = V(Γ) = fvi

j : i 2 ZmÒ j 2 Zng, and
ã 2 ZŁn. Let S0Ò S1Ò    Ò Sñ be subsets of Zn satisfying the following conditions:

(1) 0 62 S0 = �S0,
(2) ãmSr = Sr for 0 � r � ñ,
(3) if m is even, then ãñSñ = �Sñ.

Let E = f(vi
jÒ v

i+r
h ) : 0 � r � ñ and h � j 2 ãiSrg. We define the metacirculant graph

Γ = Γ(mÒ nÒ ãÒ S0 Ò    Ò Sñ) to be the graph with vertex set V and edge set E. We will also
refer to Γ as an (mÒ n)-metacirculant. Define two permutations öÒ ú on V by ö(vi

j) = vi
j+1

and ú(vi
j) = vi+1

ãj .
Metacirculant graphs were first introduced by Alspach and Parsons [2], where their

elementary properties were discussed.

THEOREM 1 (ALPACH AND PARSONS, [2]). The metacirculant Γ = Γ(mÒ nÒ ãÒ S0Ò    Ò
Sñ) is vertex-transitive with höÒ úi � Aut(Γ). Conversely, any graph Γ0 with vertex set V
and höÒ úi � Aut(Γ0) is an (mÒ n)-metacirculant.

Although we are primarily interested in graphs, some of the results we will prove are
true for more general objects than graphs. Let G be a finite set and S � G[2G[22G

[Ð Ð Ð,
where 2G is the collection of subsets of G, 22G

the collection of subsets of subsets, etc.
The pair X = (GÒ S) is called a combinatorial object. If S � P(G), the power set
of G, then X will be called a hypergraph. We call G the vertex set of X and denote
it by V(X). Furthermore, S is called the edge set of X, and we denote it by E(X).
Let G be a set of cardinality n. Define the trivial combinatorial object En, to be the
combinatorial object with V(En) = G and E(En) = ;. An isomorphism between two
combinatorial objects (GÒ S) and (G0Ò S0) is a bijective function f : G ! G0 such that
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f (S) = S0. Aut(X), the automorphism group of X, is the group of all isomorphisms from
X to itself. We will say that a combinatorial object X is an (mÒ nÒ ã)-metacirculant object
((mÒ n)-metacirculant) if G = V and höÒ úi � Aut(X), where öÒ ú are defined as above. Let
X be a vertex-transitive combinatorial object with V(X) = G, where G is some group. Let
GL = fgL: G ! G : gL(x) = gxÒ g 2 Gg. We say X is a Cayley object of G (Cayley object
if the group is unimportant) if and only if GL � Aut(X). In [2], Alspach and Parsons
gave sufficient conditions for an (mÒ n)-metacirculant graph to be a Cayley graph. Their
proof is entirely group theoretic and hence also gives the following sufficient conditions
for an (mÒ n)-metacirculant combinatorial object to be a Cayley object.

THEOREM 2 (ALSPACH AND PARSONS, [2]). Let X be an (mÒ nÒ ã)-metacirculant com-
binatorial object with a = jãj, and c = aÛ gcd(aÒm). If gcd(cÒm) = 1, then X is a Cayley
object for the group höÒ úci. Furthermore, this group is abelian if gcd(aÒm) = 1 and it is
cyclic if gcd(aÒm) = 1 = gcd(mÒ n).

Marus̆ic̆ gave the full characterization of (qÒ p)-metacirculant graphs.

THEOREM 3 (MARUS̆IC̆, [8]). A vertex-transitive graph Γ of order qp is metacirculant
if and only if Aut(Γ) contains subgroups H and K 6= 1 such that H is transitive, K Ø H
such that K is not transitive.

This theorem can be generalized to the following result (see [5], p. 5).

THEOREM 4. A vertex-transitive combinatorial object X of order qp is metacirculant
if and only if Aut(X) contains subgroups H and K 6= 1 such that H is transitive, K ØH, K
is not transitive and has orbits of size p, and the Sylow p-subgroups of K have order p.

Let G be a transitive group of degree mk such that there exists a transitive subgroup
H Ú G such that H admits a complete block system B of m blocks each of size k.
Enumerate the blocks B0ÒB1Ò    ÒBm�1. Define a map ô1: H ! Sm, the symmetric group
on m symbols, by ô1(ã) = ãÛB where ãÛB(i) = j if and only if ã(Bi) = Bj. Clearly ô1 is
a homomorphism. Let HÛB = Im(ô1). If G = Aut(Γ), for some vertex-transitive graph
Γ, define a graph ΓÛB with vertex set V(ΓÛB) = Zm and edge set

E(ΓÛB) =
n
(iÒ j) : some vertex of Bi is adjacent to some vertex of BjÒ i 6= j

o


We observe that HÛB � Aut(ΓÛB). In cases where no confusion will arise, we write
ãÛk, HÛk, etc., instead of ãÛB, HÛB, etc.

Let H be a transitive group on V and K Ø H, K 6= 1 such that K is not transitive.
Then H admits a complete block system B of m blocks each of size k, where the blocks
are formed by the orbits of K. Let B 2 B. Define a map ô2: KjB ! Sk by ô2(ã) = ãjB.
Further, ô2 is also a homomorphism, and KjB ≤ J � Sk. If StabK(v0

0) 6= 1 and Ker(ô2) = 1
we define an equivalence relation� on V by vi

j � va
b if and only if StabK(vi

j) = StabK(va
b).

We denote the equivalence classes of � by E0ÒE1Ò    ÒEm�1. One can easily show that
each Ei is a block of H.
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Let X and Y be vertex-transitive hypergraphs. Let

A =
²�

(x1Ò y1)Ò (x2Ò y2)Ò    Ò (xrÒ yr)
�

: (x1Ò    Ò xr) 2 E(X)Ò yi 2 V(Y)
¦
Ò

B =
²�

(xÒ y1)Ò (xÒ y2)Ò    Ò (xÒ ys)
�

: ( y1Ò y2Ò    Ò ys) 2 E(Y)Ò x 2 V(X)
¦


Define the wreath ( or lexicographic) product of X and Y to be the hypergraph X oY such
that V(X o Y) = V(X)ðV(Y) and E(X o Y) = A[B. We observe that the wreath product of
a circulant hypergraph of order m and a circulant hypergraph of order n is isomorphic to
a circulant hypergraph.

2. Characterization of metacirculant Cayley graphs. Throughout this paper, we
will make a clear distinction between “Cayley graph of G” and “isomorphic to a Cayley
graph of G”. As we will always be working with metacirculant graphs, a circulant graph
with always be a graph Γ such that höÒ úi � Aut(Γ), where ã = 1. In some sense, this is a
departure from normal practice, although given the content of this paper, necessary. This
can also lead to some behavior which the reader may not have considered, as in many
cases the distinction being made here is not necessary or even useful. For example, it
is quite possible for the wreath product of two circulant graphs of order q and p to not
be a circulant graph. For example, the metacirculant graph Γ = Γ(3Ò 7Ò 2Ò f1Ò 6gÒ Z7) is
the wreath product of a circulant graph of order 3 and a circulant graph of order 7, and
is thus certainly isomorphic to a circulant graph. However, Aut(Γ) does not contain an
appropriate ú for this graph to be a circulant graph (for any choice of ú, ã = 2 or 6).

We first give necessary and sufficient conditions for a (qÒ p)-metacirculant combina-
torial object to be a Cayley object when p2 6j jAut(X)j. Let Vj = fvi

j : i 2 Zqg and
Vi = fvi

j : j 2 Zpg.

THEOREM 5. Let X = X(qÒ pÒ ã) be a metacirculant combinatorial object, p Ù q, such
that p2 6j jAut(X)j. Then X is a Cayley object if and only if X = X(qÒ pÒ ã0) where jã0j = 1
or jã0j = q. Further, if q2 j jãj, then X is a Cayley object if and only if X is circulant.

PROOF. By Theorem 1 it suffices to show necessity. Let X = X(qÒ pÒ ã) satisfy the
hypothesis and suppose that X is a Cayley object. As X is a Cayley object, Aut(X) contains
the left translations of some group of order pq, and hence contains a regular subgroup,
say G. As the Sylow p-subgroups of Aut(X) have order p, by conjugating G, if necessary,
we may assume without loss of generality that höi � G. Further, höi is also a Sylow
p-subgroup of G and, as jGj = pq, höi Ø G, and certainly höi is not transitive. Hence G
admits a complete block system of q blocks each of size p, where the blocks are formed
by the orbits of höi. Note that we may assume that G = höÒ ú1i where jú1j = q as up to
isomorphism there are exactly two groups of order pq, both of which can be generated
in this fashion [6]. We conclude that G = höÒ ú1i, where ú1(vi

j) = võ(i)
ã1j+ai

, õ 2 Sq, ã1 2 ZŁp,
and ai 2 Zp.

Let N = NAut(X)(höi) be the normalizer in Aut(X) of höi. Clearly N admits a complete
block system B of q blocks of size p, where the blocks are orbits of höi. Then ô1 is
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defined. Let K = Ker(ô1). Note that úÒ ú1 2 N where ú(vi
j) = vi+1

ãj . If q2 6j jãj we are done
so assume that q2 j jãj. We must show that X is circulant. As úq(v0

0) = v0
0 but úq 6= 1,

StabK(v0
0) 6= 1. As p2 6j jAut(X)j, it is not difficult to show that (see [2]) Ker(ô2) = 1, and

hence the equivalence classes of E0Ò    ÒEp�1 of � each have cardinality q, where each
Ei contains exactly one element from each orbit of ö. As úq fixes only v0

0Ò v
1
0Ò    Ò v

q�1
0

and ö 2 K, we may take Ei = Vj. As ö 2 K, we have that ai = aj for every iÒ j 2 Zq.
Hence ö�a0ú1(vi

j) = võ(i)
ã1j . Let ú2 = ö�a0ú1.

Note that hú2iÛp = hõi and húiÛp are Sylow q-subgroups of NÛp. Thus there exists
å 2 N such that (å�1Ûp)(hú2iÛp)(åÛp) = húiÛp. Then å�1ú2å 2 N and å�1ú2å(Vi) =
Vi+w, for some w 2 Zq. We conclude that å�1ú2å(vi

j) = vi+w
ã2j+bi

, for some ã2 and bi 2 Zp.
Further, by an argument analogous to an argument above, we have that bi = bj for every
iÒ j 2 Zq. Hence we may assume å�1ú2å(vi

j) = vi+w
ã2j . Let t 2 Zq such that tw � 1 (mod q).

Then å�1út
2å(vi

j) = vi+1
ãt

2j. Let ú0 = å�1út
2å and ã0 = ãt

2. Then ú0(vi
j) = vi+1

ã0j and, as jú1j = q

and gcd(tÒ q) = 1, jú0j = q. Hence jã0j = 1 or jã0j = q. If ã0 = 1, then X is circulant
as required. If jã0j = q, then, as ZŁp is cyclic and ú 2 Aut(X), the function ç : V ! V
by ç(vi

j) = vi
ã0j is contained in Aut(X). Hence ç�1ú0 2 Aut(X), and ç�1ú0(vi

j) = vi+1
j . We

conclude that X is circulant.

COROLLARY 6. Let Γ = Γ(qÒ pÒ ãÒ S0Ò    Ò Sñ) be a Cayley graph, where p and q are
primes satisfying p Ù q. Suppose that q2 j jãj and for some r, 0 Ú r � ñ, 0 Ú jSrj Ú p.
Then Γ is a Cayley graph if and only if Γ is circulant.

PROOF. If the Sylow p-subgroups of Aut(Γ) have order p, then the result follows
from Theorem 5. If the Sylow p-subgroups of Aut(Γ) have order greater than p, then
by [2], they have order pq and Γ ≤ Γ1 o Γ2, where Γ1 is an order q-circulant and Γ2 an
order p-circulant. Then jSrj = 0 or p for every 0 Ú r � ñ and the result follows.

We illustrate this corollary with an example.

EXAMPLE 7. The Petersen graph is not Cayley.

PROOF. By [2], the Petersen graph is a (2Ò 5Ò 2Ò f1Ò 4gÒ f0g) metacirculant graph.
Clearly, the Petersen graph satisfies the hypothesis of Corollary 6, and so is Cayley if
and only if it is circulant. By inspection, the Petersen graph is not circulant with this
labeling, and is thus not Cayley.

3. Isomorphisms of metacirulant Cayley graphs. Let X be some Cayley object
for some group G. We shall say that X is a CI-object if given any Cayley object Y of G
such that X is isomorphic to Y, then X and Y are isomorphic by some ã 2 Aut(G). Babai
characterized this property in the following way:

LEMMA 8 (BABAI, [3]). For a Cayley object X of G the following are equivalent.
(i) X is a CI-object,

(ii) given a permutation û 2 SG such that û�1GLû � Aut(X), GL and û�1GLû are
conjugate in Aut(X).
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Let p Ù q, q j p � 1, and ã 2 ZŁp such that jãj = q. Then up to isomorphism, höÒ úi is
one of two groups of order pq, the other being Zpq.

THEOREM 9. Let X be a Cayley object of G with jGj = pq, p Ù q and q divides p� 1,
such that p2 6j jAut(X)j. If G = Zpq then X is a CI-object for G. If G = höÒ úi, for some ã
as above, then either X is a CI-object for G or X is also a Cayley object of Zpq.

PROOF. If G = Zpq, then the result follows from the proof of Theorem 1, Case 1 [1].
If G = höÒ úi, for some ã with jãj = q, we will show that if û 2 Spq such that

û�1höÒ úiû � Aut(X), then either û�1höÒ úiû and höÒ úi are conjugate in Aut(X), or that
X is also a Cayley object for Zpq. For brevity, let û1 = û�1úû. By hypothesis, höi and
hû�1öûi are Sylow p-subgroups of Aut(X) and are thus conjugate. Let é1 2 Aut(X)
such that é�1

1 hû�1öûié1 = höi. Thus é�1
1 hû�1öûÒ û1ié1 = höÒ é�1

1 û1é1i. Let û2 = é�1
1 û1é1.

Clearly höi Ø höÒ û2i and so höÒ úÒ û2i admits a complete block system of q blocks each
of size p. Thus the map ô1: höÒ úÒ û2i ! Sq is well defined. Hence húiÛp and hû2iÛp are
Sylow q-subgroups of höÒ úÒ û2iÛp. Let é2 2 höÒ úÒ û2i such that (é�1

2 Ûp)(hû2iÛp)(é2Ûp) =
húiÛp. Let û3 = é�1

2 û2é2. Let Q be a Sylow q-subgroup of höÒ úÒ û3i. If jQj = q then
húi and hû3i are Sylow q-subgroups of höÒ úÒ û3i and so there exists é3 2 höÒ úÒ û3i such
that é�1

3 hû3ié3 = húi. Let é = é3é2é1. Then (éû)�1höÒ úiéû = höÒ úi. Thus by Lemma 8, if
jQj = q, then X is a CI-object for höÒ úi.

If jQj = qa, a Ù 1, we will show that X is a Cayley object for Zpq. As hû3iÛp = húiÛp,
there exist å 2 Ker(ô1) such that jåj = qb, b ½ 1. Without loss of generality we may
assume that b = 1. As höi Ø höÒ úÒ û2i, å(vi

j) = vi
ãij+bi

where ãi 2 ZŁp and bi 2 Zp. As
p2 6j jAut(X)j, ãi = ã0 for all i, and as jåj = q, we must have jã0j = q. Now, ZŁp is cyclic
of order p � 1 so there exists r 2 ZŁp such that ãr

0 = ã�1. Hence årú 2 höÒ úÒ û2i and
årú(vi

j) = vi+1
j+ci

, where each ci 2 Zp.
Let K = Ker(ô1). As the Sylow p-subgroups of Aut(X) have order p, by a previous

argument Ker(ô2) = 1. As å 2 K, StabK(v0
0) 6= 1 and, again by a previous argument, we

have that the equivalence classes E0ÒE1Ò    ÒEp�1 of � have cardinality q. We must then
have that höÒ úÒ û2i admits a complete block system of p blocks each of size q, where the
blocks are the equivalence classes E0ÒE1Ò    ÒEp�1. As ú 2 höÒ úÒ û2i, Ei = Vj for some
j. We conclude that ci = cj for all iÒ j. Hence X is a Cayley object for Zpq.

COROLLARY 10. Let X = X( pÒ qÒ ã) and X0 = X0( pÒ qÒ ã0) be metacirculant combi-
natorial objects such that X and X0 are Cayley objects and p2 6j jAut(X)j. Then X is
isomorphic to X0 if and only if

(i) if X is circulant then there exists é 2 Aut(Zpq) such that é(X) = X0.
(ii) if X is not circulant then there exists é 2 Aut(höÒ úi) and ç: V ! V, where

ç(vi
j) = vri

j , r 2 ZŁq and çé(X) = X0.
Further if X and X0 are isomorphic, then X is circulant if and only if X0 is circulant.

PROOF. (i) In view of Theorem 9, if a = jãj and a0 = jã0j, we may assume without
loss of generality that a = 1 and a0 = 1 or a0 = q. If a0 = 1, then X and X0 are circulant and
the result follows from Theorem 9. Hence we assume that a0 = q, i.e., that X is circulant
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and X0 is not necessarily circulant. We will show that if X and X0 are isomorphic, then X0

is circulant implying (i) and by symmetry, that X is circulant if and only if X0 is circulant.
Assume X ≤ X0. Then Aut(X) ≤ Aut(X0) and so Aut(X0) contains a pq-cycle °0.

As p2 6j jAut(X)j, h°q
0i is a Sylow p-subgroup of Aut(X0) and NAut(X0)(h°

q
0i) contains

the pq cycle °0. Further höi is also a Sylow p-subgroup of Aut(X0) and so there exist
å0 2 Aut(X0) such that å�1

0 h°q
0iå0 = höi and å�1

0 NAut(X0)(h°
q
0i)å

�1
0 = NAut(X0)(höi). Let

°1 = å�1
0 °0å0 and R = NAut(X0)(höi). Then h°1i � R, h°q

1i = höi, and h°1i is cyclic
of order pq. As höi Ø R, R admits a complete block system of q blocks each of size p,
where the blocks are formed by the orbits of höi. Hence the map ô1 is well defined, and
húiÛp and h°p

1iÛp are Sylow q-subgroups of RÛp. Thus there exist å1 2 R such that
(å�1

1 Ûp)(h°p
1iÛp)(å1Ûp) = húiÛp. Let ° = å�1

1 °1å1. As h°piÛp = húiÛp, °(Vi) = Vi+w

for some w 2 Zq. As höi Ø h°i, °(vi
j) = vi+w

ûj+bi
, where û 2 ZŁp, and bi 2 Zp. Trivially,

either the Sylow q-subgroups of R are either of order q or of order qi, i Ù 1. In either
case, the result follows with arguments analogous to those in Theorem 5.

(ii) If p2 6j jAut(X)j and X is not circulant, then X is a Cayley graph for höÒ úi.
Further, there exists r 2 Zq such that ç�1(X0) is also a Cayley graph for höÒ úi. Hence by
Theorem 9, X and ç�1(X0) are isomorphic if and only if there exists é 2 Aut(höÒ úi) such
that é(X) = ç�1(X0). Hence X and X0 are isomorphic if and only if çé(X) = X0.

We now investigate the case where Γ can be written as the wreath product of an order
q-circulant over an order p-circulant.

LEMMA 11. Let Γ = Γ(qÒ pÒ 1Ò S0Ò    Ò Sñ) be a metacirculant graph with Γ = Γ1 o Γ2,
where Γ1 is an order q circulant graph and Γ2 an order p circulant graph. Let Γ0 =
Γ0(qÒ pÒ ãÒ S00Ò    Ò S

0
ñ) be a metacirculant graph such that Γ ≤ Γ0 but Γ0 is not circulant.

Then Γ = Γ(qÒ pÒ ãqÒ S0Ò    Ò Sñ).

PROOF. Let é 2 SV such that é(Γ) = Γ0. As Γ = Γ1 o Γ2, Aut(Γ) and Aut(Γ0) admit
a complete block system B of q blocks of size p, formed by the orbits of höi. Also,
as Γ = Γ1 o Γ2, höjB : B 2 Bi is a Sylow p-subgroup of Aut(Γ) and Aut(Γ0). Hence
é�1höjB : B 2 Bié is also a Sylow p-subgroup of Aut(Γ0), so there exists ° 2 Aut(Γ0)
such that °�1é�1höjB : B 2 Bié° = höjB : B 2 Bi. Replacing é by é°, we assume that
é�1höjB : B 2 Bié = höjB : B 2 Bi. Define ô1: Aut(Γ0) ! Sq by ô1(ç) = çÛB. Then
hô1(ú)i and hô1(é�1úé)i are Sylow q-subgroups of Im(ô1) so there exists ° 2 Aut(Γ0)
such that hô1(°�1é�1úé°)i = hô1(ú)i. As before, by replacing é° by é, we assume that
hô1(é�1úé)i = hô1(ú)i. Hence é(vi

j) = vri+b
åij+ci

, r 2 ZŁq, b 2 Zq, åi 2 ZŁp, and ci 2 Zp. As
ö 2 Aut(Γ) \Aut(Γ0), we assume without loss of generality that c0 = 0. As Γ and Γ0 are
both metacirculant, we also assume that b = 0.

Now, úq 2 Ker(ô1) and éúqé�1 2 Aut(Γ). Furthermore,

éúqé�1(v0
j ) = v0

ãqj

As Aut(Γ) = Aut(Γ1) o Aut(Γ2), the function ì: V ! V by ì(vi
j) = vi

ãqj is in Aut(Γ) so that
Γ = Γ(qÒ pÒ ãqÒ S0Ò    Ò Sñ) as required.
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COROLLARY 12. Let Γ = Γ( pÒ qÒ ãÒ S0Ò    Ò Sñ) and Γ0 = Γ0( pÒ qÒ ã0 Ò S00Ò    Ò S
0
ñ) be

metacirculant graphs that are Cayley graphs. Then Γ is isomorphic to Γ0 if and only if
(i) if Γ and Γ0 are circulant then there exists é 2 Aut(Zpq) such that é(Γ) = Γ0,

(ii) if Γ is not circulant and Γ 6≤ Γ1 o Γ2, Γ1 an order q-circulant and Γ2 an order
p-circulant, then there exists é 2 Aut(höÒ úi) and ç: V ! V where ç(vi

j) = vri
j ,

r 2 ZŁq, and çé(Γ) = Γ0.
(iii) If Γ is not circulant and Γ ≤ Γ1 o Γ2, then define ç1Ò ç2: V ! V by ç1(vi

j) = vi
ãij

and Γ2(vi
j) = vi

(ã0)ij. Then ç2éç1(Γ) = Γ0, for some é 2 Aut(Γ).

PROOF. (i) and (ii) follow from [2] and Corollary 12. (iii) If Γ ≤ Γ1 o Γ2 and Γ is
not circulant, then Γ ≤ ΓŁ, where ΓŁ is a circulant graph. By Lemma 11, if ì: V ! V by
ì(vi

j) = vi
ãqj, then ì 2 Aut(Γ). As Aut(ΓŁ) = Aut(Γ1) o Aut(Γ2), the function úŁ: V ! V

by úŁ(vi
j) = vi+1

éi( j), where éq�1( j) = ãqj and éi( j) = j, 0 � i � q � 2 is also contained

in Aut(ΓŁ). Then ç1úŁç�1
1 (vi

j) = vi+1
ãj if i 6= q � 1 and ç1úŁç�1

1 (vq�1
j ) = v0

ãj. Clearly
höi � ç1 Aut(ΓŁ)ç�1

1 so that ç�1
1 (ΓŁ) is a (qÒ pÒ ã)-metacirculant graph. Thus ç1(Γ) is

a circulant graph. Analogous arguments will show that ç2(Γ0) is a circulant graph, in
which case the result follows from [1].

4. Isomorphisms of non-Cayley metacirculant graphs. Let X and X0 be (qÒ p)-
metacirculant combinatorial objects that are not Cayley objects. Initially, determining
necessary and sufficient conditions for X and X0 to be isomorphic is hampered by no
result corresponding to Babai’s characterization of the CI-property for Cayley objects
(Lemma 8). Sabidussi proved [9] that some ‘multiple’ nΓ of Γ is a Cayley graph. We
first generalize Sabidussi’s result to vertex-transitive hypergraphs, and then use Babai’s
characterization of the CI-property for Cayley objects to characterize an analogous
isomorphism result for non-Cayley hypergraphs.

LEMMA 13. A combinatorial object X is isomorphic to a Cayley object of G if and
only if Aut(X) contains a regular subgroup isomorphic to G.

PROOF. If X is a Cayley object then GL is a regular subgroup for some group G. If
Aut(X) contains a regular subgroup S, then by Schur’s method [10] we may relabel V(X)
with elements of S so that SL � Aut(X). Hence X is a Cayley object.

If there exists a vertex-transitive hypergraph Y and an integer nÙ 1 such that X ≤ YoEn

then we say that X is reducible. Otherwise, X will be said to be irreducible.

LEMMA 14. Let X be a reducible vertex-transitive hypergraph, Y an irreducible
vertex-transitive hypergraph and n an integer such that X = Y o En. Then Aut(X) =
Aut(Y) o Sn, and the orbits of 1 o Sn form a complete block system for Aut(X).

PROOF. Clearly Aut(Y) o Sn � Aut(X), and the orbits of 1 o Sn form a complete block
system for Aut(Y) o Sn. Denote the blocks of size n by B0ÒB1Ò    ÒBk. We note that it
suffices to show that B0Ò    ÒBk are blocks of Aut(X). Assume not. Then there exists
ã 2 Aut(X) such that ã(Bi) \ Bi 6= ; and ã(Bi) 6= Bi, for some 0 � i � k. Then there
exists x 2 Bi and y 62 Bi such that ã(x) 2 Bi and x0 2 Bi such that ã(x0) = y. If
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there exists an edge (x1Ò    Ò xr) 2 E(X) such that ã(x) = xa, y = xb for some aÒ b then
ã�1(x1Ò    Ò xr) 2 E(X), contradicting the fact that X = Y o En.

Hence we assume that no such edge exists. Let s = maxfr : ( y1Ò y2Ò    Ò yr) 2 E(Y)g.
Define Ỹ to be the hypergraph with vertex set V(Y) = V(Ỹ) and

E(Ỹ) =
n

( y1Ò    Ò yr) : 2 � r � s and ( y1Ò    Ò yr) 62 E(Y)
o


Let X̃ = Ỹ o En. We will show that Aut(X) = Aut(X̃). Note that this will imply the result
as there exists e = (x1Ò x2Ò    Ò xr) 2 E(X̃) such that xa = ã(x) and xb = y.

Let å 2 Aut(X̃). If e = (x1Ò x2Ò    Ò xr) 2 E(X), then å(e) 62 E(X̃). Hence å(e) 2 E(X).
Thus å 2 Aut(X) and so Aut(X̃) � Aut(X). Conversely, let å 2 Aut(X) and e be an edge
of X̃. Then å(e) 62 E(X) so å(e) 2 E(X̃). Thus Aut(X) = Aut(X̃).

If XÒYÒ and n satisfy the hypothesis of Lemma 14, then Y will be denoted by XŁ

and B0Ò    ÒBk will be denoted by xŁÒ yŁÒ etc., where x 2 Bi, y 2 Bj, etc. Observe that
Lemma 14 implies that if X and X0 are isomorphic vertex-transitive hypergraphs and
é : X ! X0 is an isomorphism, then éŁ : XŁ ! X0

Ł is an isomorphism where éŁ(xŁ) = yŁ
if and only if é(x) 2 yŁ. Further né : V(X o En) ! V(X0 o En) where né

�
(xÒ a)

�
=
�
é(x)Ò a

�
is also an isomorphism. Finally, if X and X0 are irreducible, then (né)Ł = é.

THEOREM 15. Let X be an irreducible vertex-transitive hypergraph, and G � Aut(X)
be transitive. Let n = jStabG(x)j, x 2 V(G). Then X o En is isomorphic to a Cayley
hypergraph of G.

PROOF. By Lemma 13 it suffices to show that Aut(X oEn) contains a regular subgroup
isomorphic to G. Clearly Aut(X) o Sn � Aut(X o En). We will show that G o Sn contains
a regular subgroup isomorphic to G. For the moment, assume that X is a graph. Then
by Theorems 4 and 7 of [9], the result is true and Aut(X o En) = Aut(X) o Sn. Observe
that Aut(X) o Sn admits a complete block system of jV(X)j blocks of size n, where the
blocks are formed by the orbits of 1 o Sn, and hence the map ô1: Aut(X) o Sn ! Aut(X) is
surjective. By Theorem 2 of [9], we may label V(X o En) with elements of G so that the
blocks of size n are the left cosets in G of StabG(x), for fixed x 2 V(X), and the vertices
of X may be labeled with left cosets in G of StabG(x). With this labeling, ô1(gL) = g
for all g 2 G. Hence GL � ô�1

1 (G) = G o Sn. Now, let X be an arbitrary irreducible
vertex-transitive hypergraph and n = jStabG(x)j, for some x 2 V(X). By Lemma 14,
Aut(X o En) = Aut(X) o Sn ½ G o Sn. As Aut(Kr) = Sr, the result follows.

Let X be a vertex-transitive hypergraph, and G a transitive subgroup of Aut(X). Let
n = jStabG(x)j, x 2 V(X). Then X o En is a Cayley hypergraph of G. We will refer
to X as an n-Cayley hypergraph of G. Assume that X is irreducible, and that if X0 is
another n-Cayley hypergraph of G then X and X0 are isomorphic by ãŁ, ã 2 Aut(G).
We then say that X is an (nÒG)-CI-hypergraph. If whenever G � Aut(X) then X is an
(nÒG)-CI-hypergraph, we say that G is an (nÒG)-CI-group with respect to hypergraphs.
Of course, if n = 1, then X is isomorphic to a Cayley hypergraph and we revert to our
earlier notation.
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THEOREM 16. The following are equivalent:

(i) X is an (nÒG)-CI-hypergraph,
(ii) given a permutation û 2 SG

Ł , whenever û�1Gû � Aut(X), then û�1Gû and G are
conjugate in Aut(X).

PROOF. Let X and X0 be irreducible vertex-transitive hypergraphs such that X ≤ X0

and X and X0 are n-Cayley hypergraphs of G. As X and X0 are irreducible, by Lemma 14,
if n is any integer then Aut(X oEn) = Aut(X) oSn. Let n = jStabG(x0)j, x0 2 V(X) = V(X0).
By Theorem 15, X o En and X0 o En are both Cayley hypergraphs for G and so if X o En

and X0 o En are isomorphic, then by Lemma 8 they are isomorphic by ã 2 Aut(G) if and
only if whenever é�1Gé � Aut(X o En) then é�1Gé and G are conjugate in Aut(X o En).
Observe that as X and X0 are irreducible, that if (xÒ a) 2 V(X o En) = V(X o En), then
(xÒ a)Ł = fxg ð N, where N is a set of cardinality n, and that by Lemma 14, these sets
together form a complete block system of Aut(X o En) and Aut(X0 o En).

Assume that whenever é�1Gé � Aut(X o En) then é�1Gé and G are conjugate in
Aut(XoEn). Let é0 2 SV such that (é0)�1Gé0 � Aut(X). Then

�
n(é0)�1

�
G(né0) � Aut(XoEn)

and so
�
n(é0)�1

�
G(né0) and G are conjugate in Aut(X oEn). Then (né0)Ł = é0. We conclude

that (é0)�1Gé0 and G are conjugate in Aut(X).

Now assume that whenever é�1Gé � Aut(X) then é�1Gé and G are conjugate in
Aut(X). Let é0 2 SG such that (é0)�1Gé0 � Aut(X o En). By reversing the argument above
we conclude that (é0)�1Gé0 is conjugate to å�1Gå where åŁ = 1. Hence å�1 2 1 o Sn,
å 2 Aut(X o En) and so åå�1Gåå�1 = G. We conclude that (é0)�1Gé0 is conjugate to
G in Aut(X o En). Thus if û 2 SG

Ł such that û�1Gû � Aut(X), then û�1Gû and G are
conjugate if and only if whenever û0 2 SG and (û0)�1Gû0 � Aut(X o En), then (û0)�1Gû0

and G are conjugate in Aut(X o En). Thus the result follows by Lemma 8.

Define the deviation, dev(X), of a vertex-transitive hypergraph X, to be the smallest
integer n such that X o En is a Cayley hypergraph.

For the time being, we restrict our attention to (qÒ p)-metacirculant hypergraphs X
such that q Ú p and X is not Cayley.

LEMMA 17. If p2 6j jAut(X)j, then dev(X) = qk�1, where qk is the smallest power of
q that divides jãj, for any choice of ã such that ú 2 Aut(X).

PROOF. It suffices to show that if H � Aut(Γ) and H is transitive, then there exists
H0 such that jH0j � H and höÒ úi � jH0j for some choice of ã. This follows with a proof
similar to that of Theorem 5.

We remark that if Γ is a (qÒ p)-metacirculant graph that is not Cayley, then p2 6j
jAut(Γ)j.

THEOREM 18. Let X = X(qÒ pÒ ã) be an irreducible metacirculant hypergraph that is
not a Cayley hypergraph such that p2 6j jAut(X)j. Assume without loss of generality that
jãj = qk. Then X is an (qk�1Ò höÒ úi)-CI-hypergraph.
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PROOF. We will show that wheneverå�1höÒ úiå � Aut(X) then å�1höÒ úiå and höÒ úi
are conjugate in Aut(X). Let å 2 SV such thatå�1höÒ úiå � Aut(X). By arguments similar
to those in Theorem 9, there exists õ 2 Aut(X) such that (õå)�1höÒ úi(õå) = höÒ ú0i, where
ú0(vi

j) = vi+c
ã0j , c 2 ZŁq, ã0 2 ZŁp and jã0j = jãj. Let N = NAut(X)(höi). Clearly úÒ ú0 2 N.

If the Sylow q-subgroups of N have cardinality qdev(X)+1 then húi and hú0i are Sylow
q-subgroups of N and are thus conjugate in N. Hence å�1höÒ úiå and höÒ úi are conjugate
in Aut(X). Hence we assume that the Sylow q-subgroups of N have cardinality at least
qdev(X)+2. Let ô1: N ! Sq. Then there exist † 2 Ker(ô1) such that j†j = qdev(X)+1. Hence
by an argument similar to an argument in Theorem 5, we conclude that X is circulant
and so X is Cayley, a contradiction.

COROLLARY 19. Let X = X(qÒ pÒ ã) and X0 = X0(qÒ pÒ ã0) be irreducible metacirculant
hypergraphs that are not Cayley hypergraphs such that p2 does not divide jAut(X)j or
jAut(X0)j. Then X and X0 are isomorphic if and only if there exist é 2 Aut(höÒ ú1i), where
ú1(vi

j) = vi+1
ã1j, jã1j = dev(X) = dev(X0), and ç: V ! V by ç(vi

j) = vri
j , r 2 ZŁq, such that

éŁç(X) = X0.

PROOF. It follows from arguments similar to arguments in Corollary 12 that there
exists ç 2 SV , ç(vi

j) = vri
j , r 2 ZŁq, such that if n = dev(X) then X o En and X0 o En are

both Cayley hypergraphs for the group höÒ ú1i, where ú1(vi
j) = vi+1

ã1j. Hence by Theorem 18
ç(X) and X0 are isomorphic by éŁ, é 2 Aut(höÒ ú1i).

COROLLARY 20. Let Γ = Γ(qÒ pÒ ãÒ S0Ò    Ò Sñ) and Γ0 = Γ0(qÒ pÒ ã0Ò S00Ò    Ò S
0
ñ) be

metacirculant graphs that are not Cayley graphs. Then Γ and Γ0 are isomorphic if and
only if there exists é 2 Aut(höÒ ú1i), where ú1(vi

j) = vi+1
ã1j, jã1j = dev(Γ) = dev(Γ0) and

ç: V ! V by ç(vi
j) = vri

j , r 2 ZŁq such that éŁç(Γ) = Γ0.

PROOF. If p2 j jAut(Γ)j, or p2 j jAut(Γ0)j, then Γ or Γ0 is a Cayley graph. Hence the
result follows from Corollary 19.

Let G and G0 be transitive permutation groups on Ω, m = jStabG(x)j, n = jStabG0(x)j,
x 2 Ω. We say that G0 is a weak (nÒG)-CI-group via G with respect to some class of
hypergraphs if and only if whenever X is an n-Cayley hypergraph of G0 but X is not an
(nÒG0)-CI-hypergraph, then X is isomorphic to an m-Cayley hypergraph of G and X is an
(mÒG)-CI-hypergraph. It follows by [1] that Zp2 is a weak CI-group via Z2

p with respect
to graphs.

In [3], Babai proved that if jGj = 2p, then G is a CI-group with respect to graphs.
It would seem natural to ask for what values of q dividing p � 1, is G = höÒ úi a
(qkÒG)-CI-group, for k ½ 0?

THEOREM 21. Let qjp � 1, ã 2 ZŁp such that jãj = qk+1, and ú(vi
j) = vi+1

ãj . Then
G = höÒ úi is a weak (qkÒG)-CI-group via Zpq with respect to graphs, and is a (qkÒG)-
CI-group with respect to graphs if and only if q � 3.
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PROOF. Let Γ be a qk-Cayley graph for G. By Theorems 9 and 18, G is a weak
(qkÒG)-CI-group via Zpq with respect to graphs. Hence we need only show that G is a
(qkÒG)-CI-group with respect to graphs if and only if q � 3. As G is a weak (qkÒG)-CI-
group via Zpq with respect to graphs, we need only consider the case when Γ is also a
Cayley graph for Zpq. Define ú1: V ! V by ú1(vi

j) = vi+1
j . Hence ú1 2 Aut(Γ).

If q Ù 3, let ã0 2 ZŁp such that jã0j = qk+1. Define ú0: V ! V by ú0(vi
j) = vi+1

ã0j . Denote
the orbits of (ú0)�1ú1 of length qk+1 by O1ÒO2Ò    ÒOs. Let 1 � t � s be such that Ot � V1.
Let T = Ot[fv�i

�j : vi
j 2 Otg. Define a metacirculant graph Γ by E(Γ) = fva

bvc
d : va�c

c�d 2 Tg.
Then Γ is circulant, ú0 2 Aut(Γ), and, by Theorem 3.3 of [7] Aut(Γ) = hú1Ò öÒ ú0úÒ ìi. Let
ú2: V ! V by ú2(vi

j) = vi+1
ã2j. Then ú2 2 Aut(Γ), höÒ ú2i ≤ höÒ úi, and it is not difficult to

see that höÒ ú2i is not conjugate to höÒ úi in Aut(Γ). Hence Γ is not a (qkÒG)-CI-graph and
so G is not a (qkÒG)-CI-group with respect to graphs.

If q � 3, we first consider when p2 6j jAut(Γ)j. Let Γ0 be a qk-Cayley graph of höÒ úi
such that Γ0 is isomorphic to Γ, and ß: Γ ! Γ0 an isomorphism. By Corollary 10, Γ0 is
circulant and as Zpq is a CI-group with respect to graphs, there exists é 2 Aut(Γ) such
that é�1ß�1höÒ ú1ißé = höÒ ú1i, and ßé(vi

j) = vr�1i
s�1j (as ßé 2 Aut(Zpq)). Let ß1 = ßé.

Then ß�1
1 höiß1 = höi and ß�1

1 úß1(vi
j) = vi+r

ãj . If q = 2, then ß�1
1 úß1 = ú so that

ß�1
1 höÒ úiß1 = höÒ úi. If q = 3, then r = 1 or r = 2. If r = 1, then ß�1

1 höÒ úiß1 = höÒ úi. If
r = 2, then ì�1ß�1

1 úßì = ú, so that ì�1ß�1
1 höÒ ú1iß1ì = höÒ úi.

If p2 j jAut(Γ)j, then Γ is isomorphic to the wreath product of an order q-circulant
over an order p-circulant, so it suffices to show that if q = 2Ò 3, then höÒ úi is a CI-group
with respect to graphs. First observe that if Γ = Γ1 o Γ2, then Γ1 is complete or trivial.
Let Γ0 ≤ Γ such that Γ0 is a (qkÒG)-Cayley graph.

If Γ is circulant, then Γ0 is circulant. As Zpq is a CI-group with respect to graphs, there
exists é 2 Aut(Zpq) such that é(Γ) = Γ0. Furthermore, é(vi

j) = vîi
åj. As Γ1 is complete or

trivial and Γ = Γ1 oΓ2, we may take î = 1. It is then easy to verify that é�1höÒ úié = höÒ úi.
If Γ is not circulant, then Γ0 is also not circulant. By Corollary 12, ç2éç1(Γ) = Γ0,

where ç1Ò ç2, and é are as in Corollary 12. As above, we may assume that if é(vi
j) = vîi

åj,
then î = 1. Then ç2éç1 = é and as above, é�1höÒ úié = höÒ úi.

5. Isomorphism classes of circulant graphs. We first prove a lemma in more
generality than is necessary for our purposes, characterizing the isomorphism class of a
vertex-transitive combinatorial object in some circumstances.

Let X be a vertex-transitive combinatorial object of order m, G a transitive subgroup
of Aut(X), CG = fû�1Gû : û 2 Sng, and XG = fû�1Gû : û�1Gû � Aut(X)g. Let
Sn act on CG by conjugation and denote the permutation group induced by this action
as Ω. Let ã0 = 1, the identity permutation in Sn, and ã1Ò    Ò ãm 2 Sn be such that
G � Aut

�
ãi(X)

�
, 0 � i � m, ãi(X) 6= ãj(X) for any i 6= j, and if ã 2 Sn such that

G � ã(X), then ã(X) = ãi(X) for some 0 � i � m.
Assume that XG is a (possibly trivial) block of Ω. Let X0

G = XG, and denote by
X0

GÒX
1
GÒ    ÒX

r
G all blocks conjugate to X0

G in Ω. Let åi 2 Sn be such that å�1
i X0

Gåi = Xi
G,

1 � i � r and å0 = 1.
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LEMMA 22. If XG is a (possibly trivial) block of Ω, then the isomorphism class of X
is [r

i=0 [
m
j=0 åiãj(X), and if a 6= b or c 6= d, then åaãc(X) 6= åbãd(X).

PROOF. Fix åi, 0 � i � r and ãj, 0 � j � m as above. Clearly åiãj(X) ≤ X for
all 0 � i � r, 0 � j � m. Conversely, let Y be a combinatorial object isomorphic to
X, with å : X ! Y an isomorphism. If G � Aut(Y), then G � Aut

�
å�1

0 (Y)
�

and there
exists 0 � j � m such that ã�1

j å�1
0 (Y) = X. Thus Y = å0ãj(X). If G 6� Aut(Y), then

å�1(X0
G)å = Xi

G for some 1 � i � r. Then G � å�1
i (Y) and so there exists 0 � j � m

such that ã�1
j å�1

i (Y) = X. Thus åiãj(X) = Y as required. Finally, the last statement
follows immediately from the definitions of åiÒ ãj .

THEOREM 23. If X is an (nÒG)-CI-object and Aut(G)Ł � NSV

�
Aut(X)

�
, then XG is a

block of Ω.

PROOF. Let é 2 SV be such that there exists a transitive subgroup G0 of Aut(X)
isomorphic to G and G0 � é�1 Aut(X)é. We will show that é 2 NSG

�
Aut(X)

�
. As X is an

(nÒG)-CI-object, there exists û 2 Aut(X) such that û�1G0û = G. Now G0 � Aut
�
é(X)

�
,

so G � Aut
�
ûé(X)

�
. Hence there exists ã 2 Aut(G)Ł such that ãŁ(X) = ûé(X), and as

Aut(G)Ł � NSG
Ł

�
Aut(X)

�
, Aut

�
ãŁ(X)

�
= Aut

�
ûé(X)

�
. As û 2 Aut(X), û�1 Aut(X)û =

Aut(X), and û�1 Aut(X)û = Aut
�
é(X)

�
. Hence Aut

�
é(X)

�
= Aut(X) and so é�1 Aut(X)é =

Aut(X). Thus é 2 NSG
Ł

�
Aut(X)

�
.

COROLLARY 24. Let Γ be a circulant graph of order pq, and G = Zpq. Then ΓG is a
block of Ω.

PROOF. By Theorem 2 of [1], Γ is a CI-graph of Zpq. Thus by Theorem 23 it suffices
to show that Aut(Zpq) � NSG

�
Aut(Γ)

�
. By Theorem 3.3 of [7], Aut(Γ) = Spq, Sp ð Sq,

Sp ð A, Sq ð B, Aut(Γ) � A ð B, A � AGL(1Ò q), B � AGL(1Ò p), or Aut(Γ) =
Aut(Γ1) o Aut(Γ2), where Γ1 and Γ2 are circulant graphs of order p and q respectively.
Note that Aut(G) � AGL(1Ò q) ð AGL(1Ò p), and that NSpq(Spq) = Spq, Sp ð Sq �
NSpq(Sp ð Sq), Sp ð AGL(1Ò q) � NSpq(Sp ð A), Sq ð AGL(1Ò p) � NSpq(Sq ð B), and
AGL(1Ò q)ðAGL(1Ò p) � NSpq(AðB). Hence the result follows in the preceeding cases.

If Γ0 is a circulant graph of prime order r, then Aut(Γ0) = Sr or Aut(Γ0) � N(r). Hence
if Aut(Γ) = Aut(Γ1) oAut(Γ2), then Aut(Γ) = Sp o Sq, Sp oA, B o Sq, or B oA where A and B
are as above. In all of the these cases, we have that N( p) o N(q) � NSpq

�
Aut(Γ)

�
. Then,

as N( p) ð N(q) � N( p) o N(q), Aut(G) � NSpq

�
Aut(Γ)

�
, and the corollary follows.
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