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ISOMORPHISM PROBLEM FOR METACIRCULANT GRAPHS OF
ORDER A PRODUCT OF DISTINCT PRIMES

EDWARD DOBSON

ABSTRACT. In this paper, we solve the isomorphism problem for metacirculant
graphs of order pq that are not circulant. To solve this problem, we first extend Babai's
characterization of the Cl-property to non-Cayley vertex-transitive hypergraphs. Addi-
tionally, we find a simple characterization of metacirculant Cayley graphs of order pg,
and exactly determine the full isomorphism classes of circulant graphs of order pg.

1. Preliminaries. Throughout the paper, p and g are distinct primes. For definitions
and propertiesof permutation groupsthereader isreferred to [ 10], and for graph theoretic
notation to [4]. Let Z, be the ring of integers modulo n, and Z;; be the units of Z,,. Let
m. n be positive integersand set p = [m/2]. LetV = V(I') = {\/Ji (1 € Zm,j € Zpn}, and
a €l Let S, S..... S, be subsets of Z,, satisfying the following conditions:

(D0 S=-%,

2 a"S =S for0<r <y,

(3) if miseven, then oS, = —S,.
LetE={(V.}"):0<r <pandh—j € o'S}. We define the metacirculant graph
r=r(mn o S,...,S,) to bethe graph with vertex set V and edge set E. We will also
refer to " as an (m. n)-metacirculant. Define two permutations p. 7 on V by p(v}) = v}+1
and 7(v)) = v';jl.

Metacirculant graphs were first introduced by Alspach and Parsons [2], where their

elementary properties were discussed.

THEOREM 1 (ALPACH AND PARSONS, [2]). The metacirculant™ = F'(m,n, o, S, ...,

S,) isvertex-transitivewith (p,7) < Aut("). Conversely, any graph I'" with vertex set V
and (p,7) < Aut(l"’) isan (m, n)-metacirculant.

Although we are primarily interested in graphs, some of the resultswe will prove are
true for more general objectsthan graphs. Let G beafinitesetand SC GU26U2%U- - -,
where 26 is the collection of subsets of G, 22° the collection of subsets of subsets, etc.
The pair X = (G, 9 is caled a combinatorial object. If S C P(G), the power set
of G, then X will be called a hypergraph. We call G the vertex set of X and denote
it by V(X). Furthermore, S is called the edge set of X, and we denote it by E(X).
Let G be a set of cardinality n. Define the trivial combinatorial object E", to be the
combinatorial object with V(E") = G and E(E") = ). An isomorphism between two
combinatorial objects (G, S and (G, S) is a hijective function f:G — G’ such that
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f(9 = S. Aut(X), the automorphism group of X, is the group of all isomorphisms from
Xtoitself. We will say that acombinatorial object X isan (m, n, «)-metacirculant object
((m, n)-metacirculant) if G = Vand (p, 7) < Aut(X), where p, T are defined asabove. Let
X be avertex-transitive combinatorial object with V(X) = G, where G issome group. L et
GL={0.:G— G:g.(x) =gx.g € G}. Wesay X isaCayley object of G (Cayley object
if the group is unimportant) if and only if G_. < Aut(X). In [2], Alspach and Parsons
gave sufficient conditionsfor an (m, n)-metacirculant graph to be a Cayley graph. Their
proof is entirely group theoretic and hence also gives the following sufficient conditions
for an (m, n)-metacirculant combinatorial object to be a Cayley object.

THEOREM 2 (ALSPACH AND PARSONS, [2]). Let X bean (m, n, o)-metacirculant com-
binatorial object witha = |«|, and ¢ = a/ gcd(a, m). If ged(c. m) = 1, then X isa Cayley
object for the group (p. 7°). Furthermore, this group is abelian if gcd(a, m) = 1 and it is
cyclicif gcd(a, m) = 1 = gcd(m, n).

Marusi¢ gave the full characterization of (g, p)-metacirculant graphs.

THEOREM 3 (MARUSIC, [8]). Avertex-transitivegraph I” of order gp is metacirculant
if and only if Aut(I") contains subgroupsH and K # 1 such that H is transitive, K <H
suchthat K is not transitive.

This theorem can be generalized to the following result (see[5], p. 5).

THEOREM 4. A vertex-transitive combinatorial object X of order gp is metacirculant
if and only if Aut(X) containssubgroupsH and K # 1 suchthat H istransitive, K <H, K
is not transitive and has orbits of size p, and the Sylow p-subgroups of K have order p.

Let G be atransitive group of degree mk such that there exists a transitive subgroup
H < G such that H admits a complete block system B of m blocks each of size k.
Enumerate the blocks By, By, . . . , Bn—1. Defineamap 71: H — S, the symmetric group
onmsymbols, by () = «/B where o /B(i) =j if and only if «(B;) = B;. Clearly 71 is
ahomomorphism. Let H/B = Im(m1). If G = Aut("), for some vertex-transitive graph
I, defineagraph I /B with vertex set V(I /B) = Z,, and edge set

E(r/B) = {(i.}) : some vertex of B; is adjacent to some vertex of B;.i #j}.

We observe that H/B < Aut(" /B). In cases where no confusion will arise, we write
a/k, H/k, etc., instead of o/ B, H/B, etc.

Let H be a transitive group on V and K < H, K # 1 such that K is not transitive.
Then H admits a complete block system B of m blocks each of size k, where the blocks
are formed by the orbits of K. Let B € B. Define amap m,: K|g — S by m(a) = alg.
Further, 7, isalsoahomomorphism, and K|g >~ J < S f StabK(vg) # landKer(m) =1
wedefinean equivalencerelation=onV byvji =\ if andonly if StabK(v}) = Stabk (V).
We denote the equivalence classes of = by Eg. E;. . ... Em-1. One can easily show that
each E; isablock of H.
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Let X and Y be vertex-transitive hypergraphs. Let

A= { (00 YD 022D 06 90) & B2 ) € EQQLyi € VN |
B= (Y1) 0¥ o2 (0 39)  (Ya.Yze -2 ¥8) € EO)X € V(X))

Definethe wreath ( or lexicographic) product of X and Y to be the hypergraph X? Y such
that V(X2 Y) = V(X) x V(Y) and E(X2 Y) = AU B. We observethat the wreath product of
acirculant hypergraph of order mand acirculant hypergraph of order nisisomorphicto
acirculant hypergraph.

2. Characterization of metacirculant Cayley graphs. Throughout this paper, we
will make a clear distinction between “ Cayley graph of G” and “isomorphic to a Cayley
graph of G”. Aswewill always be working with metacirculant graphs, a circulant graph
with alwaysbeagraph " suchthat (p,7) < Aut("), where o = 1. In some sense, thisisa
departure from normal practice, although given the content of this paper, necessary. This
can also lead to some behavior which the reader may not have considered, as in many
cases the distinction being made here is not necessary or even useful. For example, it
is quite possible for the wreath product of two circulant graphs of order g and p to not
be a circulant graph. For example, the metacirculant graph I = I'(3,7,2,{1.6},Z7) is
the wreath product of a circulant graph of order 3 and a circulant graph of order 7, and
is thus certainly isomorphic to a circulant graph. However, Aut(I") does not contain an
appropriate 7 for this graph to be a circulant graph (for any choice of 7, « = 2 or 6).

We first give necessary and sufficient conditions for a (q, p)-metacirculant combina-
torial object to be a Cayley object when p? / | Aut(X)|. Let Vj = {VJi 11 € Zg} and
Vi={v 1] € Zp}.

THEOREM 5. Let X = X(q, p, ) be a metacirculant combinatorial object, p > ¢, such
that p? / | Aut(X)|. Then X isa Cayley object if and only if X = X(q. p, o) where || = 1
or |o/| = q. Further, if ¢? | ||, then X is a Cayley object if and only if X is circulant.

PrROOF. By Theorem 1 it suffices to show necessity. Let X = X(q. p. o) satisfy the
hypothesisand supposethat X isa Cayley object. AsXisaCayley object, Aut(X) contains
the left translations of some group of order pg, and hence contains a regular subgroup,
say G. Asthe Sylow p-subgroups of Aut(X) haveorder p, by conjugating G, if necessary,
we may assume without loss of generality that (p) < G. Further, (p) is also a Sylow
p-subgroup of G and, as |G| = pq, (p) < G, and certainly (p) is not transitive. Hence G
admits a complete block system of g blocks each of size p, where the blocks are formed
by the orbits of (p). Note that we may assumethat G = (p.71) where |r;| = q asup to
isomorphism there are exactly two groups of order pq, both of which can be generated
in this fashion [6]. We concludethat G = (p.7;), wherery (V) = V1), ., 0 € 1, on € Z;,
andg € Zp.

Let N = Nawx)((p)) bethe normalizer in Aut(X) of (p). Clearly N admits acomplete
block system B of q blocks of size p, where the blocks are orbits of (p). Then 7, is
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defined. Let K = Ker(my). Notethat 7,1 € N wherer(v)) = Vi If ¢ / | we are done
so assume that @2 | |«|. We must show that X is circulant. As 79(v3) = V3 but 79 # 1,
Stabk (V) # 1. Asp? /| Aut(X)], it isnot difficult to show that (see[2]) Ker(m,) = 1, and

E; contains exactly one element from each orbit of p. As 79 fixes only V3, V3, ..., Vit
and p € K, wemay take E; = V. Asp € K, we have that & = & for every i,j € Z,.
Hence p’aOTl(V}) = Vg(lij). Letr, = p~%7;.

Note that (m2) /p = (o) and (r) /p are Sylow g-subgroups of N /p. Thus there exists
8 € N suchthat (371 /p)((r2) /p)(8/p) = (7)/p. Then 8!8 € N and B~ B(V') =
Vi*¥, for somew € Z,. We concludethat 3~ 'm26(V) = Vit , for some o and b € Z,,.
Further, by an argument analogous to an argument above, we have that b; = b; for every
i.j € Zq. Hencewe may assume 3~ '7,3(V}) = V. Let t € Z such that tw = 1 (mod q).
Then 3~ 174B3(\) = v'(;z} Let7' = g'r53 and o = &y Then7'(v)) = Vil and, as|n| = q
and ged(t.q) = 1, |7| = g. Hence |/| = 1 or |&/| = q. If & = 1, then X is circulant
asrequired. If |o/| = q, then, as Z;, is cyclic and 7 € Aut(X), the functiony : V — V
by 7(V)) = Vi, is contained in Aut(X). Hencey~'7’ € Aut(X), and v~17/(v}) = vj*1. We
concludethat X is circulant. ]

COROLLARY 6. LetT =T(g.p. 2. S. - .- - S.) be a Cayley graph, wherep and q are
primes satisfying p > . Supposethat ¢? | || and for somer, 0 <r < 4,0 <|S| < p.
ThenT isa Cayley graphif and only if I" iscirculant.

ProoF. If the Sylow p-subgroups of Aut(l") have order p, then the result follows
from Theorem 5. If the Sylow p-subgroups of Aut(l") have order greater than p, then
by [2], they have order p? and I =~ "1 2 2, where 'y is an order g-circulant and I, an
order p-circulant. Then |S| = 0 or p for every 0 < r < y and the result follows. ]

We illustrate this corollary with an example.

ExXAMPLE 7. The Petersen graphisnot Cayley.

PrOOF. By [2], the Petersen graph is a (2,5,2, {1,4}, {0}) metacirculant graph.
Clearly, the Petersen graph satisfies the hypothesis of Corollary 6, and so is Cayley if
and only if it is circulant. By inspection, the Petersen graph is not circulant with this
labeling, and is thus not Cayley. ]

3. Isomorphisms of metacirulant Cayley graphs. Let X be some Cayley object
for some group G. We shall say that X is a Cl-object if given any Cayley object Y of G
such that X isisomorphicto Y, then X and Y are isomorphic by some o € Aut(G). Babai
characterized this property in the following way:

LEMMA 8 (BaBAI, [3]). For a Cayley object X of G the following are equivalent.
(i) XisaCl-object,
(i) given a permutation ¢ € S® such that ¢~1G ¢ < Aut(X), G_ and ¢"1G_¢ are
conjugatein Aut(X).
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Letp>q,q|p— 1, anda € Z; suchthat |« = g. Then up to isomorphism, (p,7) is
one of two groups of order pqg, the other being Zy.

THEOREM 9. Let X bea Cayley object of G with |G| = pg, p > qand q dividesp — 1,
suchthat p? } | Aut(X)|. If G = Zyq then X isa Cl-object for G. If G = (p,7), for some o
as above, then either X is a Cl-object for G or X is also a Cayley object of Z .

PrROOF. If G = Z,yq, then the result follows from the proof of Theorem 1, Case 1 [1].

If G = (p.,7), for some o with || = g, we will show that if ¢ € S such that
o Yp,7)¢ < Aut(X), then either o=2(p,7)¢ and (p,7) are conjugatein Aut(X), or that
X is also a Cayley object for Zp,. For brevity, let ¢1 = ¢~1r¢. By hypothesis, (p) and
(¢ 1pg) are Sylow p-subgroups of Aut(X) and are thus conjugate. Let §; € Aut(X)
such that 5Il<¢_lp¢>51 = <p> ThUS(SIl<d)_1p¢, ¢1>51 = <p. 5I1¢151>. Let g, = 5I1¢151.
Clearly (p) <t {p, ¢2) and so (p, T, ) admits a complete block system of g blocks each
of sizep. Thusthe map 71: (p. 7. p2) — S iswell defined. Hence (1) /p and (¢2) /p are
Sylow g-subgroups of (p. 7. é2) /p. Let € (p.7. ¢) suchthat (5 /p)((62) /P)(62/P) =
(1) /p. Let ¢3 = 65 p20,. Let Q be a Sylow g-subgroup of (p, 7, ¢3). If |Q| = g then
(r) and {¢3) are Sylow g-subgroups of {p. . ¢3) and so there exists 3 € {p, 7, ¢3) such
that 651($3)63 = (7). Let § = 536,61. Then (5¢)~(p.7)6¢ = (p.7). Thusby Lemma 8, if
|Q| = g, then X isaCl-object for (p, 7).

If |Q| = ¢f,a> 1, wewill show that X isaCayley object for Zpq. As(¢3)/p = (1) /P,
there exist 3 € Ker(ry) such that |8] = o, b > 1. Without loss of generality we may
assumethat b = 1. As (p) < (p. 7. ¢2), B(V]) = Vi, .y, Where o5 € Zj and by € Zp,. As
p? J | Aut(X)|, oi = a for all i, and as | 3] = g, we must have |ao| = g. Now, Z; iscyclic
of order p — 1 so there exists r € Z;, such that oy = o *. Hence 8’7 € (p. . ¢2) and
B'7(v}) = ViiZ, whereeach ¢ € Z,,.

Let K = Ker(m1). Asthe Sylow p-subgroups of Aut(X) have order p, by a previous
argument Ker(m) = 1. As 3 € K, Stabk (V3) # 1 and, again by a previous argument, we
havethat the equivalenceclasses Eg, E, . . . , E,—1 of = havecardinality g. We must then

j. We concludethat ¢; = ¢; for al i, j. Hence X is a Cayley object for Z . ]

COROLLARY 10. Let X = X(p.q, ) and X' = X/(p. g, o) be metacirculant combi-
natorial objects such that X and X’ are Cayley objects and p? } | Aut(X)|. Then X is
isomorphic to X’ if and only if

(i) if Xiscirculant then there existsd € Aut(Zq) such that 6(X) = X'

(ii) if X is not circulant then there exists & € Aut({p,7)) and 7:V — V, where
YM) =V, 1 € Z; and ¥8(X) = X'
Further if X and X’ areisomorphic, then X is circulant if and only if X’ is circulant.

PROOF. (i) Inview of Theorem 9, if a = || and & = |o/|, we may assume without
lossof generalitythata=1anda’ = 1ora’ =q.If @ = 1, then X and X’ are circulant and
the result follows from Theorem 9. Hence we assumethat @’ = q, i.e., that X is circulant
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and X’ is not necessarily circulant. We will show that if X and X’ areisomorphic, then X’
iscirculant implying (i) and by symmetry, that X iscirculant if and only if X’ iscirculant.

Assume X =~ X'. Then Aut(X) =~ Aut(X') and so Aut(X’) contains a pg-cycle wg.
Asp? f | Aut(X)|, (w]) is a Sylow p-subgroup of Aut(X") and Naux)({wg)) contains
the pqg cycle wo. Further (p) is also a Sylow p-subgroup of Aut(X’) and so there exist
Bo € Aut(X') such that 35 (wg)Bo = (p) and 85 Naupe)((wg))Bo™ = Naue)((p))- Let
w1 = BolwoBo and R = Nawpey((p)). Then (w1) < R (w]) = (p), and (wy) is cyclic
of order pg. As (p) <R, R admits a complete block system of q blocks each of size p,
where the blocks are formed by the orbits of (p). Hence the map ;1 iswell defined, and
(r)/p and (!)/p are Sylow g-subgroups of R/p. Thus there exist 3, € R such that
B /P(Wh) /P)(B1/P) = (7)/p. Let w = Brrwif1. As (wP) /p = (1) /P, w(Vi) = Visw

for somew € Zg. As (p) < (w), w(v}) = Vit Where ¢ € Z;, and bi € Zp. Trivialy,
either the Sylow g-subgroups of R are either of order q or of order ¢, i > 1. In either
case, the result follows with arguments analogousto those in Theorem 5.

(i) If p> J/ |Aut(X)| and X is not circulant, then X is a Cayley graph for (p, 7).
Further, there existsr € Z suchthat v~1(X’) isalso a Cayley graph for (p. ). Hence by
Theorem 9, X and Y~1(X’) areisomorphic if and only if there existsé € Aut((p, 7)) such
that 5(X) = v~1(X’). Hence X and X’ are isomorphic if and only if 76(X) = X'. "

We now investigate the casewhere I” can be written asthe wreath product of an order
g-circulant over an order p-circulant.

LEMMA 11, LetT =T(9,p,1. S, ...,S,) beametacirculant graph with ' =12,
where "1 is an order q circulant graph and I'; an order p circulant graph. Let "' =
ro.poS...., S,) be ametacirculant graph such that I' 2 I'" but ' is not circulant.

Thenl =T (Q,p. a9 S.....S).

PrROOF. Let§ € S/ suchthat §(M) =T'. AsT =15, Aut(l") and Aut("™’) admit
a complete block system B of q blocks of size p, formed by the orbits of (p). Also,
asl =T, (plg : B € B) isaSylow p-subgroup of Aut(l") and Aut("’). Hence
6 Ypls : B € B)s isalso a Sylow p-subgroup of Aut(I’), so there exists w € Aut(I™")
such that w™26(p|s : B € B)éw = (p|s : B € B). Replacing § by éw, we assume that
5 Hplg : B € B)s = (p|g : B € B). Define m1: Aut(T") — S by m1(v) =v/B. Then
(my(7)) and (r1(6~176)) are Sylow g-subgroups of Im(r1) so there exists w € Aut(I”’)
such that (m1 (w16~ 1réw)) = (m(7)). As before, by replacing 5w by &, we assume that
(mi(67176)) = (m1(r)). Hence §(v)) = V12, 1 € Zg, b € Zg, Bi € Z;, and i € Zp. As
p € Aut(l) NAut(l'’), we assume without loss of generality that co = 0. Asl and ™’ are
both metacirculant, we also assumethat b = 0.

Now, 79 € Ker(r1) and 679~ € Aut("). Furthermore,
B 0f) = By,

AsAut(") = Aut(l"1) : Aut(l"2), the function c:V — V by L(V}) = Vioij isin Aut(") so that
r=r@poaos..... S,) asrequired. .
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COROLLARY 12. LetT =T (p.¢, o, S, ..., §)and " =T'(p,q, . ..., S,) be
metacirculant graphsthat are Cayley graphs. Then I' isisomorphic to I'" if and only if
(i) if [ and " arecirculant then there exists § € Aut(Zq) such that 6(I) =T,
(i) if [ isnot circulantand ' 2 M2 L, [, an order g-circulant and I, an order
p-circulant, then there exists 6 € Aut((p.)) and v:V — V where Y(V)) = V',
r € Zg,ando(r) =T
(iii) If I isnot circulant and I' =~ My 2 ,, then define 71, 72:V — V by “/1(\/}) = \/aij
and (V) = Vi ;- Thenv2671(") =T, for somes € Aut(T).

ProoF. (i) and (ii) follow from [2] and Corollary 12. (iii) If T ~ Tl and T is
not circulant, then " >~ I, where "™ isacirculant graph. By Lemmall, if 1:V — V by
L(v}) = v‘aqj, then . € Aut("). As Aut(") = Aut(l1) 2 Aut("2), the function 7*:V — V
by 7%(V)) = Vi'th), where 8q-1(j) = a9 and §i(j) =}, 0 < i < q— 2isalso contained
in Aut(r™). Then v7*y; % (V) = vzt if i # g — 1 and 717*7I1(V?_1) = \j,. Clearly
{p) < v1Aut(r )7t so that y71(*) is a (q. p, a)-metacirculant graph. Thus v1(I") is
a circulant graph. Analogous arguments will show that v,(I'’) is a circulant graph, in
which case the result follows from [1]. ]

o')j

4. 1somor phisms of non-Cayley metacirculant graphs. Let X and X’ be (q. p)-
metacirculant combinatorial objects that are not Cayley objects. Initially, determining
necessary and sufficient conditions for X and X’ to be isomorphic is hampered by no
result corresponding to Babai’s characterization of the Cl-property for Cayley objects
(Lemma 8). Sabidussi proved [9] that some ‘multiple’ nI" of I' is a Cayley graph. We
first generalize Sabidussi’s result to vertex-transitive hypergraphs, and then use Babai’s
characterization of the Cl-property for Cayley objects to characterize an analogous
isomorphism result for non-Cayley hypergraphs.

LEMMA 13. A combinatorial object X is isomorphic to a Cayley object of G if and
only if Aut(X) containsa regular subgroup isomorphicto G.

PrROCF. If X isa Cayley object then G, is aregular subgroup for some group G. If
Aut(X) containsaregular subgroup S, then by Schur’s method [10] we may relabel V(X)
with elements of Ssothat S < Aut(X). Hence X isa Cayley object. ]

If there existsavertex-transitive hypergraph Yand aninteger n > 1 suchthat X >~ Y:E"
then we say that X is reducible. Otherwise, X will be said to beirreducible.

LEMMA 14. Let X be a reducible vertex-transitive hypergraph, Y an irreducible
vertex-transitive hypergraph and n an integer such that X = Y E". Then Aut(X) =
Aut(Y) S, and the orbits of 12 S' form a complete block system for Aut(X).

ProOF. Clearly Aut(Y): S' < Aut(X), and the orbits of 1: S' form acomplete block
system for Aut(Y) @ S'. Denote the blocks of size n by By, By, ..., Bx. We note that it

suffices to show that By, .. ., Bc are blocks of Aut(X). Assume not. Then there exists

a € Aut(X) such that a(B;) N B; # 0 and a(B;) # B;, for some 0 < i < k. Then there
exists x € By andy ¢ B; such that «(x) € Bj and X' € B; such that a(X) = y. If
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there exists an edge (x1, . . - %) € E(X) such that a(X) = X,, Y = X, for some a, b then

a (xg.....%) € E(X), contradicting the fact that X = Y E".

Hence we assume that no such edge exists. Let s = max{r : (y1,¥2,-..,¥%) € E(Y)}.
Define Y to be the hypergraph with vertex set V(Y) = V(Y) and

EM ={(y1.....y) 1 2<r <sand (y1.....y) £ EM)}.

Let X = Y2 E". We will show that Aut(X) = Aut(X). Note that this will imply the result
asthereexistse = (X1, %o, . . . , %) € E(X) such that x, = ar(x) and x, = .

Let 8 € Aut(X). If = (2. %, . .., %) € E(X), then 3(e) ¢ E(X). Hence 3(e) € E(X).
Thus 3 € Aut(X) and so Aut(X) < Aut(X). Conversely, let 3 € Aut(X) and e be an edge
of X. Then 3(e) ¢ E(X) so 3(e) € E(X). Thus Aut(X) = Aut(X). .

If X,Y, and n satisfy the hypothesis of Lemma 14, then Y will be denoted by X.
and By, . . ., B¢ will be denoted by X..y.. etc., wherex € B;, y € Bj, etc. Observe that
Lemma 14 implies that if X and X’ are isomorphic vertex-transitive hypergraphs and
6 : X — X' isanisomorphism, then é, : X, — X/ is an isomorphism where §..(x.) = Y
if and only if 5(X) € y.. Further né : V(X2 E") — V(X' E") where ns((x. @) = (6(x). a)
is also anisomorphism. Finally, if X and X’ are irreducible, then (né). = 6.

THEOREM 15. Let X bean irreduciblevertex-transitive hypergraph,and G < Aut(X)
be transitive. Let n = | Stabg(X)|, X € V(G). Then X E" is isomorphic to a Cayley
hypergraph of G.

ProOF. By Lemma13it sufficesto show that Aut(X2 E") containsaregular subgroup
isomorphic to G. Clearly Aut(X) S' < Aut(X? E,). We will show that G S' contains
a regular subgroup isomorphic to G. For the moment, assume that X is a graph. Then
by Theorems 4 and 7 of [9], the result is true and Aut(X E") = Aut(X) : S. Observe
that Aut(X) S admits a complete block system of |V(X)| blocks of size n, where the
blocks are formed by the orbits of 12 S', and hence the map 71: Aut(X) : S' — Aut(X) is
surjective. By Theorem 2 of [9], we may label V(X E") with elements of G so that the
blocks of size n are the left cosetsin G of Stabg(X), for fixed x € V(X), and the vertices
of X may be labeled with left cosets in G of Stabg(x). With this labeling, m1(g.) = g
for al g € G. Hence G < 771(G) = G S Now, let X be an arbitrary irreducible
vertex-transitive hypergraph and n = | Stabg(x)|, for some x € V(X). By Lemma 14,
Aut(X EM = Aut(X) 1 S' > G S". AsAut(K") = S, the result follows. n

Let X be a vertex-transitive hypergraph, and G a transitive subgroup of Aut(X). Let
n = | Stabg(X)|, x € V(X). Then X E" is a Cayley hypergraph of G. We will refer
to X as an n-Cayley hypergraph of G. Assume that X is irreducible, and that if X’ is
another n-Cayley hypergraph of G then X and X’ are isomorphic by a., o € Aut(G).
We then say that X is an (n, G)-Cl-hypergraph. If whenever G < Aut(X) then X is an
(n, G)-Cl-hypergraph, we say that G is an (n, G)-Cl-group with respect to hypergraphs.
Of course, if n = 1, then X isisomorphic to a Cayley hypergraph and we revert to our
earlier notation.
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THEOREM 16. The following are equivalent:
() Xisan (n, G)-Cl-hypergraph,
(i) givenapermutation ¢ € S*, whenever ¢~1G¢ < Aut(X), then $~G¢ and G are
conjugatein Aut(X).

Proor. Let X and X’ be irreducible vertex-transitive hypergraphs such that X =~ X’
and X and X’ are n-Cayley hypergraphsof G. As X and X’ areirreducible, by Lemma 14,
if nisany integer then Aut(X: E") = Aut(X): S". Let n = | Stabg(Xo)|, Xo € V(X) = V(X).
By Theorem 15, X E" and X’ : E" are both Cayley hypergraphs for G and so if X E"
and X' E" areisomorphic, then by Lemma 8 they are isomorphic by o € Aut(G) if and
only if whenever §-1Gs < Aut(X: E") then §-1G¢ and G are conjugate in Aut(X : EM).
Observe that as X and X’ are irreducible, that if (x,a) € V(X E") = V(X E"), then
(x.a@). = {x} x N, where N isa set of cardinality n, and that by Lemma 14, these sets
together form a complete block system of Aut(X?: E") and Aut(X’ 2 E").

Assume that whenever §71G§ < Aut(X E") then §~1G§ and G are conjugate in
AUt(XXE"). Lets’ € S suchthat (5")*G8" < Aut(X). Then (n(") ™) G(ns’) < Aut(X:E")
andso (n(6)~*)G(n’) and G are conjugatein Aut(X:E"). Then (n'). =§'. We conclude
that (5")~*G&’ and G are conjugate in Aut(X).

Now assume that whenever 6-1G§ < Aut(X) then §~1Gs and G are conjugate in
Aut(X). Let§’ € S° suchthat (5) 1G5’ < Aut(X2 EM). By reversing the argument above
we conclude that (§")~*G¢’ is conjugate to 5~1Gj3 where 5, = 1. Hence 31 € 1. S,
6 € Aut(X E") and so 5~1GpA~1 = G. We conclude that (§')~1G¢’ is conjugate to
Gin Aut(X E"). Thusif ¢ € S* suchthat $~1G¢ < Aut(X), then ¢~1G¢ and G are
conjugateif and only if whenever ¢’ € S° and (¢')"1G¢’ < Aut(X2 E"), then (¢')1G¢’
and G are conjugate in Aut(X E"). Thus the result follows by Lemma 8. ]

Define the deviation, dev(X), of a vertex-transitive hypergraph X, to be the smallest
integer n such that X E" is a Cayley hypergraph.

For the time being, we restrict our attention to (g, p)-metacirculant hypergraphs X
suchthat g < p and X is not Cayley.

LEMMA 17. 1f p? J | Aut(X)|, then dev(X) = ¢, where ¢* is the smallest power of
g that divides |«|, for any choice of « such that 7 € Aut(X).

PROCF. It suffices to show that if H < Aut(l") and H is transitive, then there exists
H’ such that |H'| <H and (p, ) < |H’| for some choice of «. Thisfollows with a proof

similar to that of Theorem 5. n
We remark that if T is a (g, p)-metacirculant graph that is not Cayley, then p?
| Aut(l)|.

THEOREM 18. Let X = X(q, p, &) be an irreducible metacirculant hypergraphthat is
not a Cayley hypergraphsuch that p? / | Aut(X)|. Assumewithout loss of generality that
|| = <. Then Xisan (g2, {p, 7))-Cl-hypergraph.
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PrOOF. Wewill show that whenever 3~1(p. )3 < Aut(X) then 3~1(p,7)3 and (p,T)
areconjugatein Aut(X). Let 3 € S suchthat 3~1(p, 7)3 < Aut(X). By argumentssimilar
tothosein Theorem9, thereexistso € Aut(X) suchthat (03)~*(p.7)(c8) = (p,7'), where

TI(V}) = Vioj',jc, C€Zy o €Zyand|d| = |af. Let N = Nawex((p))- Clearly 7.7 € N.
If the Sylow g-subgroups of N have cardinality g*®®** then (r) and (r’) are Sylow
g-subgroupsof N and are thus conjugatein N. Hence 3~1(p, 7)3 and (p. 7) are conjugate
in Aut(X). Hence we assume that the Sylow g-subgroups of N have cardinality at least
q?*2, Let m1:N — S, Then there exist ¢y € Ker(r1) such that || = q®™*1, Hence
by an argument similar to an argument in Theorem 5, we conclude that X is circulant

and so X is Cayley, a contradiction. ]

COROLLARY 19. Let X = X(q, p, o) and X' = X(q, p. ') beirreducible metacirculant
hypergraphsthat are not Cayley hypergraphs such that p? does not divide | Aut(X)| or
| Aut(X’)|. Then X and X’ areisomorphicif and only if there exist 5 € Aut({p, 1)), where
m1(M) = Vit e | = dev(X) = dev(X)), and v:V — V by Y(v}) = VI, r € Zg, such that
5:7(X) = X',

PrROCF. It follows from arguments similar to arguments in Corollary 12 that there
existsy € $,(v)) = VI, r € Z;, such that if n = dev(X) then X2 E" and X' : E" are
both Cayley hypergraphsfor the group (p, 71), wherer (V) = vir 1. Henceby Theorem 18
Y(X) and X’ areisomorphic by 4., 6 € Aut({p, 1)) "

COROLLARY 20. Let T = T(g,p, . S,...,§) and " = T'(q,p. . S, ..., S,) be
metacirculant graphsthat are not Cayley graphs. Then I' and I'" are isomorphic if and
only if there exists 6 € Aut({p,71)), where 11(V}) = Vi/, || = dev(T") = dev(I”) and

v:V—Vbyy(M) =V r € 7y suchthat §.7(") = "

PROOF. If p? | |Aut(l)|, or p? | | Aut(™’)|, then T or I’ isa Cayley graph. Hence the
result follows from Corollary 19. m

Let G and G’ be transitive permutation groupson Q, m = | Stabg(X)|, n = | Stabg (X)],
x € Q. We say that G’ is a weak (n, G)-Cl-group via G with respect to some class of
hypergraphsif and only if whenever X is an n-Cayley hypergraph of G’ but X is not an
(n, G)-Cl-hypergraph, then X isisomorphic to an m-Cayley hypergraph of G and X isan
(m, G)-Cl-hypergraph. It follows by [1] that Z» is aweak Cl-group via Zg with respect
to graphs.

In [3], Babai proved that if |G| = 2p, then G is a Cl-group with respect to graphs.
It would seem natural to ask for what values of q dividing p— 1, is G = (p,7) a
(g, G)-Cl-group, for k > 0?

THEOREM 21. Let qlp — 1, € Z such that |a| = ¢, and 7(v}) = Vi1 Then
G = (p,7) isa weak (q*, G)-Cl-group via Zy, with respect to graphs, and is a (¢, G)-
Cl-group with respect to graphsif and only if g < 3.
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PrROOF. Let I' be a gt-Cayley graph for G. By Theorems 9 and 18, G is a weak
(g, G)-Cl-group via Zpq With respect to graphs. Hence we need only show that G is a
(g, G)-Cl-group with respect to graphsif and only if q < 3. AsG isawesak (¢*. G)-Cl-
group via Zpq with respect to graphs, we need only consider the case when I is also a
Cayley graph for Zpy. Definer;:V — V by 71(V}) = vi*1. Hence; € Aut(r).

If q> 3, let o’ € Z; suchthat |o'| = ¢***. Definer’: V — V by 7/(V}) = vi;1. Denote
theorbitsof (7)1, of lengthg“* by O1, O,. ....Os. Let1 <t < sbesuchthatO; C V2.
LetT = Ow{v] : Vi € O}. Defineametacirculant graph I by E(T) = {V§v§ : V3§ € T}.
ThenT iscirculant, 7 € Aut(l"), and, by Theorem 3.3 of [7] Aut(T) = (71, p,7'7,¢). Let
721V — V by (V) = Vi, Then 2 € Aut(r), (p.72) = (p,7), and it is not difficult to
seethat (p, 2) isnot conjugateto {p, 7) in Aut(I"). HenceT isnot a(g*, G)-Cl-graph and
s0 G is not a (. G)-Cl-group with respect to graphs.

If g < 3, wefirst consider when p? / | Aut(")|. Let " be ag*-Cayley graph of (p,7)
such that '’ isisomorphicto ', and ¢: I — I’ an isomorphism. By Corollary 10, I’ is
circulant and as Z,yq is a Cl-group with respect to graphs, there exists§ € Aut(I") such
that 620 "1(p,71)p6 = (p.71), and @5(\/}) = VSJ' (as b € Aut(Zy)). Let p1 = 6.
Then ¢1Xp)p1 = (p) and (,DI]‘T(,D]_(V}) = Viozr. If g = 2, then p7rp1 = 7 so that
e1Hp.T)p1={p,7). 1fq=3, thenr =1orr =2.1fr = 1, then o7 Xp.7)p1 = (p, 7). If
r=2,then . tprlror =7, sothat . o7 p, 1)1 = (p, 7).

If p? | | Aut(")], then I is isomorphic to the wreath product of an order g-circulant
over an order p-circulant, so it sufficesto show that if g = 2, 3, then (p. 7) is a Cl-group
with respect to graphs. First observethat if ' = 1 2 2, then I'; is complete or trivial.
Let " =~ I suchthat I’ isa(g¥. G)-Cayley graph.

If I iscirculant, then " is circulant. As Zq isaCl-group with respect to graphs, there
exists§ € Aut(Zpy) such that 5(T) = I''. Furthermore, §(V) = vjj. As "1 is complete or
trivial and ™ = 127>, wemay takex = 1. Itisthen easy to verify that 6=2(p, 7)6 = (p, 7).

If T is not circulant, then I’ is also not circulant. By Corollary 12, 72671() = I,
where 71,72, and 6 are asin Corollary 12. As above, we may assume that if 5(vi) = Vi,
then k = 1. Then 7,671 = & and as above, 6 1(p, 7)6 = (p. 7). "

5. Isomorphism classes of circulant graphs. We first prove a lemma in more
generality than is necessary for our purposes, characterizing the isomorphism class of a
vertex-transitive combinatorial object in some circumstances.

Let X be avertex-transitive combinatorial object of order m, G a transitive subgroup
of Aut(X), Cc = {¢71G¢ : ¢ € 9}, and Xg = {¢71Go : ¢ 1Gop < Aut(X)}. Let
S act on Cg by conjugation and denote the permutation group induced by this action
as Q. Let ap = 1, the identity permutation in S, and o1, ..., am € S' be such that
G < Aut(ai(X)), 0 < i < m a(X) # o5(X) for any i # j, and if @ € S such that
G < aX), then a(X) = ¢;(X) for some0 <i <m.

Assume that Xg is a (possibly trivial) block of Q. Let X§ = Xg, and denote by
X2, X&, .... X5 al blocks conjugateto X2 in Q. Let 5 € S be suchthat 37 1X36; = X,
1<i<randf@o=1.
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LEMMA 22. If Xg isa (possibly trivial) block of Q, then the isomor phism class of X
isUl_o Uy Bic(X), andif a # b or ¢ # d, then aae(X) # Booa(X).

Proor. Fix 8i, 0 <i <rand qj, 0 <j < masabove. Clearly Gij(X) = X for
alo<i<r,0<j<m Conversely, let Y be a combinatorial object isomorphic to
X, with 3 : X — Y an isomorphism. If G < Aut(Y), then G < Aut(3;%(Y)) and there
exists 0 < j < msuch that o *35(Y) = X. Thus Y = Booj(X). If G £ Aut(Y), then
B1(XQ)B = X for some 1 <i <r.ThenG < §7(Y) and so there exists 0 < j < m
such that of *371(Y) = X. Thus Biej(X) = Y as required. Finally, the last statement
follows immediately from the definitions of 3, ¢. ]

THEOREM 23. If X is an (n, G)-Cl-object and Aut(G). < Ny (Aut(X)), then Xg is a
block of Q.

PROOF. Let § € S’ be such that there exists a transitive subgroup G’ of Aut(X)
isomorphicto G and G' < 5~ Aut(X)5. We will show that § € Ngs (Aut(X)). As X isan
(n. G)-Cl-object, there exists ¢ € Aut(X) such that $*G'¢ = G. Now G’ < Aut(5(X)),
0 G < Aut(¢6(X)). Hence there exists « € Aut(G). such that e, (X) = ¢6(X), and as
AUt(G). < Ngs. (Aut(X)), Aut(ar(X)) = Aut(¢6(X)). As ¢ € Aut(X), 6> Aut(X)¢ =
Aut(X), and 6~ Aut(X)¢ = Aut(5(X)). Hence Aut(5(X)) = Aut(X) and so5~* Aut(X)s =
Aut(X). Thusé € Nes. (Aut(X)). .

COROLLARY 24. Let [ be a circulant graph of order pg, and G = Zpq. Theng isa
block of Q.

Proor. By Theorem 2 of [1], I' isa Cl-graph of Z,,. Thusby Theorem 23 it suffices
to show that Aut(Zp) < Nes(Aut(r')). By Theorem 3.3 of [7], Aut(") = 9, & x &,
P xA S xB, Aut(l) < Ax B, A < AGL(1,qg), B < AGL(L,p), or Aut(l) =
Aut(l;) » Aut(l,), where 'y and I are circulant graphs of order p and g respectively.
Note that Aut(G) < AGL(1,q) x AGL(1,p), and that Ngu(S¥) = §9,  x S <
Nga(SP x ), S x AGL(L. g) < Ngu(S x A), ' x AGL(L, p) < Ngx(S¥ x B), and
AGL(1,9) x AGL(1, p) < Ngu(A x B). Hencetheresult followsin the preceeding cases.

If " isacirculant graph of prime order r, then Aut("’) = S or Aut(l"’) < N(r). Hence
if Aut(l") = Aut(M1)Aut(l), then Aut(lN) = S S, 1A, B S, or BxAwhere Aand B
are as above. In all of the these cases, we have that N(p) : N(q) < Ngx (Aut(r)). Then,
asN(p) x N(a) < N(p) tN(q), Aut(G) < Ngx(Aut(")), and the corollary follows. =

REFERENCES

1. B.Alspachand T. D. Parsons, | somorphisms of circulant graphs and digraphs. Discrete Math. 24(1979),
97-108.

, A construction for vertex-transitive graphs. Canad. J. Math. 24(1982), 307-318.

L. Babai, I somorphism problem for a class of point-symmetric structures. Acta Math. Sci. Acad. Hung.

29(1977), 329-336.

B. Bollobas, Graph Theory. Springer-Verlag, New York, 1979.

H. S. M. Coxeter and W. O. T. Moser, Generators and Relations for Discrete Groups. Springer-Verlag,

New York, 1965.

w N

(S

https://doi.org/10.4153/CJM-1998-057-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-057-5

1188 EDWARD DOBSON

6. T.Hungerford, Algebra. Holt, Rinehart and Winston, 1974.

7. M. Ch. Klin and R. Poschel, The Konig problem, the isomorphism problem for cyclic graphs and the
method of Schur. Proceedings of the Inter. Coll. on Algebraic methods in graph theory, Szeged, 1978.
Coll. Mat. Soc. Janos Bolyai 27.

8. D. Marusic, On vertex—transtive graphs of order gp. J. Combin. Math. Combin. Comput. 4(1988),
97-114.

9. G. O. Sabidussi, \ertex-transitive graphs. Monatsh. Math. 68(1964), 426-438.

10. H. Wielandt, Finite Permutation Groups. Academic Press, New York, 1964.

Department of Mathematics Current address:
Louisiana Sate University 401 Math Sciences
Baton Rouge, LA 70808 Oklahoma State University
USA Stillwater, OK 74078

USA

email: edobson@math.okstate.edu

https://doi.org/10.4153/CJM-1998-057-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-057-5

