ponents of the velocity at any point due to such a system can be at once obtained from the principles laid down.

Before leaving the subject, I would remark that our thenry asserts that a cyclone could travel from east to west only if a strong anti-cyclone were to the north of it, or a second cyclone to the south of it.

On the expression of a symmetric function in terms of the elementary symmetrio functions.

By R. E. Allardice, M.A.

The theorem that any rational symmetric function of n variables $x_{1}, x_{2}, \ldots x_{n}$ is expressible as a rational function of the n elementary symmetric functions, $\Sigma x_{1}, \sum x_{1} x_{2}, \sum x_{1} x_{2} x_{3}$, ete., is usually proved by means of the properties of the roots of an equation. It is obvious, however, that the theorem has no necessary connection with the properties of equations; and the object of this paper is to give an elementary proof of the theorem, based solely on the definition of a symmetric function.

It is obvious that only integral symmetric functions need be considered.

Let ${ }_{n} p_{1},{ }_{n} p_{i 2},{ }_{n} p_{3,} \ldots$ stand for $\Sigma x_{1}, \Sigma x_{1} x_{2}, \sum x_{1} x_{i} x_{3} \ldots$, when there are n variables. If x_{n} vanishes, ${ }_{n} p_{1},{ }_{n} p_{2},{ }_{n} p_{3} \ldots$ evidently become ${ }_{n-1} p_{1}, n-1 p_{2,}{ }_{n-1} p_{3}, \ldots$

Now assume that all integral symmetric functions involving not more than ($n-1$) variables can be expressed rationally in terms of the elementary symmetric functions.

Let $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be any integral symmetric function of n variables. Then $f\left(x_{1}, x_{2}, \ldots x_{n-1}, 0\right)$ is a symmetric function of ($n-1$) variubles, and, by supposition, may be expressed in terms of ${ }_{n-2} p_{1},{ }_{n-1} p_{3} \ldots$. Let its expression be $\phi\left({ }_{n-1} p_{1,} n_{n-1} p_{2}, \ldots{ }_{i-1} p_{n-1}\right)$.

Assume now

$$
f\left(x_{1}, x_{2}, \ldots x_{n}\right)=\phi\left({ }_{n} p_{1},{ }_{n} p_{2} \ldots{ }_{n} p_{n-1}\right)+\psi\left(x_{1}, x_{2}, \ldots x_{n}\right),
$$

where ψ is obviously a symmetric function.
Put $x_{n}=0$, on both sides of this identity; then
$f\left(x_{1}, x_{2}, \ldots x_{n-1} 0\right)=\phi\left({ }_{n-1} p_{1},{ }_{n-1} p_{2}, \ldots{ }_{n-1} p_{n-1}\right)+\psi\left(x_{1}, x_{2}, \ldots x_{n-1}, 0\right)$; and hence $\quad \psi\left(x_{3}, x_{2}, \ldots x_{n-1}, 0\right)=0$,
and therefore x_{n} is a factor in $\psi\left(x_{1}, x_{2 z} \ldots x_{n-1}, x_{n}\right)$. Since ψ is a symmetric function, $x_{1}, x_{n}, \ldots x_{n-1}$, must also be factors; and therefore $x_{1} x_{2} \ldots x_{n}$, which is equal to ${ }_{n} p_{n}$, is a factor. If this factor be divided out, the quotient will be a symmetric function, the degree of which will be less by n that of the given function. The above process may then be repeated with this quotient; and so on, till the degree is reduced to zero.

Since every (symmetric) function of a single x_{1} is a function of ${ }_{1} p_{1}\left(=x_{1}\right)$, it follows by induction that every symmetric function of n variables is expressible in terms of the n elementary symmetric functions.

The ordinary propositions about the weight and order of symmetric functions may easily be obtained from the above.

On laboratory work in electricity in large clasess.

By Messrs A. Y. Fraser, J. T. Morrison, and W. Wallace.

Seventh Meeting, May 10th, 1889.

Grorge A. Gibson, Esq., M.A., President, in the Chair.

Solutions of two geometrical problems.
By J. S. Mackay, Ll.D.
The two problems are :-

1. To divide a given straight line internally and externally so that the ratio between its segments may be squal to a given ratio.
