A REMARK ON BASES IN HARDY SPACES

BY
PETER SJÖGREN

Abstract

The Franklin spline system in $[0,1]$ has been generalized by Strömberg to a system in \mathbb{R}^{n} which is an unconditional basis in $H^{p}\left(\mathbb{R}^{n}\right)$ for $p>n /(n+m+1)$. Here the natural number m is the order of the system. For some of these values of p, it was known that the H^{p} quasi-norm is equivalent to a certain expression containing the coefficients of the function with respect to this basis. We prove this equivalence for all $p>n /(n+m+1)$.

1. Introduction. In [4] J.-O. Strömberg constructs on orthonormal basis $\left(f_{\nu}^{\omega}\right)_{\nu, \omega}$ in $L^{2}\left(\mathbb{R}^{n}\right)$ which generalizes the Franklin system in $L^{2}[0,1]$. Here $\nu=(j, k)=\left(j, k_{1}, \ldots, k_{n}\right)$ ranges over \mathbb{Z}^{n+1} and ω over a finite set. Each f_{ν}^{ω} is a tensor product of one-dimensional spline functions of order m and takes its largest values near the cube

$$
Q_{\nu}=\left\{x: 2^{-i} k_{i} \leq x_{i} \leq 2^{-i}\left(k_{i}+1\right), \quad i=1, \ldots, n\right\}
$$

whose characteristic function is denoted by χ_{ν}.
Strömberg proves that this system is an unconditional basis in the Hardy space $H^{p}\left(\mathbb{R}^{n}\right), p>n /(n+m+1)$, and compares the quasinorm of f in H^{p} to its coefficients $c_{\nu}^{\omega}=\left(f, f_{\nu}^{\omega}\right)$. For all $p>n /(n+m+1)$ he shows that

$$
\begin{equation*}
\left\|\left(\sum_{\nu, \omega}\left|c_{\nu}^{\omega}\right|^{2} 2^{n j} \chi_{\nu}\right)^{1 / 2}\right\|_{L^{p}} \leq C\|f\|_{H^{p}} . \tag{1.1}
\end{equation*}
$$

Here and in the sequel, C denotes various constants. At least in one dimension, (1.1) holds only for these values of p, see [3]. The converse inequality

$$
\begin{equation*}
\|f\|_{\boldsymbol{H}^{p}} \leq C\left\|\left(\sum_{\nu, \omega}\left|c_{\nu}^{\omega}\right|^{2} 2^{n j} \chi_{\nu}\right)^{1 / 2}\right\|_{L^{p}} \tag{1.2}
\end{equation*}
$$

is proved only for $p>n /(n / 2+m+2)$. We shall prove (1.2) for all $p>$ $n /(n+m+1)$, by modifying Strömberg's proof. This answers a question asked at the end of [4]. It is enough to prove the following.

Theorem. Let $n /(n+m+1)<p \leq 1$. There is a constant $C=C(n, m, p)$ such that for any finite set of numbers c_{ν}^{ω}

$$
\begin{equation*}
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{p}} \leq C\left\|\left(\sum_{\nu, \omega}\left|c_{\nu}^{\omega}\right|^{2} 2^{n j} \chi_{\nu}\right)^{1 / 2}\right\|_{L^{p}} . \tag{1.3}
\end{equation*}
$$

Received by the editors June 11, 1983.
AMS(MOS) Subject Classifications. Primary 42C10; Secondary 42B30.
(C) Canadian Mathematical Society, 1984.

We shall need some properties of f_{v}^{ω}. Strömberg's definition reads

$$
\begin{equation*}
f_{v}^{\omega}(x)=2^{n i / 2} \tau^{\omega}\left(2^{j} x-k\right) \tag{1.4}
\end{equation*}
$$

with $\nu=(j, k) \in \mathbb{Z} \times \mathbb{Z}^{n}$, where τ^{ω} is a tensor product

$$
\tau^{\omega}(x)=\prod_{i=1}^{n} \omega_{i}\left(x_{i}\right) .
$$

Here each ω_{i} is either of two fixed spline functions τ and ρ in \mathbb{R}, and at least one is τ. These two functions are in $C^{m}(\mathbb{R})$ and they are polynomials in the complementary intervals of a countable discrete set. Moreover,

$$
\begin{equation*}
\left|D^{k} \tau(t)\right| \leq C r^{|t|}, \quad k=0, \ldots, m+1 \tag{1.5}
\end{equation*}
$$

and similarly for ρ, for some $r<1$. The moments $\int \tau(t) t^{\alpha} d t$ vanish for $\alpha=$ $0, \ldots, m+1$.
2. Proof of the theorem. Choose a radial nonzero $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ with support in $|x| \leq 1$ and vanishing moments up to order m. Writing $\psi_{s}(x)=s^{-n} \psi(x / s)$ and $G(x, s)=\psi_{s} * f(x)$ for $f \in \mathscr{P}^{\prime}$, we define a Lusin function

$$
A_{\gamma} G(z)=\left(\int_{|x-\gamma|<\gamma s}|G(x, s)|^{2} \frac{d x d s}{s^{n+1}}\right)^{1 / 2} .
$$

Here $z, x \in \mathbb{R}^{n}$ and $s>0$. Then

$$
\begin{equation*}
\left\|A_{\gamma} G\right\|_{L^{p}} \sim\|f\|_{H^{p}}, \tag{2.1}
\end{equation*}
$$

in the sense that the quotient between these two quantities stays away from 0 and ∞, see [1 , Theorems 6.6 and 6.9].

Let a be an atom in H^{p} with vanishing moments up to order m. The arguments on p. 492 of [4] show that $\sum \pm\left(a, f_{\nu}^{\omega}\right) f_{v}^{\omega}$ belongs to H^{p} with quasi-norm at most C, for any sign combination. Here molecules could also be used. Hence, the operator which maps $f \in H^{p}$ onto $\sum \pm\left(f, f_{\nu}^{\omega}\right) f_{\nu}^{\omega}$ is bounded in H^{p}, uniformly over all sign choices, and the H^{p} quasi-norms of all these sums are comparable.

We consider the probability measure on the set of all sign choices making the signs independent and each sign of probability $1 / 2$. Let E denote the corresponding expectation. We conclude from (2.1) with $\gamma=1$ that

$$
\begin{aligned}
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\mathrm{p}}}^{p} \sim E\left\|\sum \pm c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\mathrm{p}}}^{\mathrm{p}} & \sim E \int d z\left(\iint_{|x-z|<s}\left|\psi_{\mathrm{s}} * \sum \pm c_{\nu}^{\omega} f_{\nu}^{\omega}(x)\right|^{2} \frac{d x d s}{s^{n+1}}\right)^{\mathrm{p} / 2} \\
& \leq \int d z\left(\iint_{|x-z|<s} E\left|\sum \pm c_{\nu}^{\omega} \psi_{s} * f_{\nu}^{\omega}(x)\right|^{2} \frac{d x d s}{s^{n+1}}\right)^{\mathrm{p} / 2}
\end{aligned}
$$

by Hölder's inequality. But $E\left|\sum \pm a_{j}\right|^{2}=\sum\left|a_{j}\right|^{2}$, so

$$
\begin{equation*}
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\mathrm{D}}}^{p} \leq C \int d z\left(\iint_{|x-z|<s} \sum\left|c_{\nu}^{\omega}\right|^{2}\left|\psi_{s} * f_{\nu}^{\omega}(x)\right|^{2} \frac{d x d s}{s^{n+1}}\right)^{p / 2} \tag{2.2}
\end{equation*}
$$

We must thus estimate $\psi_{s} * f_{\nu}^{\omega}$. Our inequalities are similar to those of [4, p. 488-9].

Lemma. For each $N>0$ there exists $C=C(N)$ such that for $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
&\left|\psi_{s} * f_{\nu}^{\omega}(x)\right| \leq C 2^{n j / 2}\left(2^{i} s\right)^{m+1}\left(1+2^{j}\left|x-2^{-i} k\right|\right)^{-N}, s \leq 2^{-j} \\
& \leq C 2^{n j / 2}\left(2^{i} s\right)^{-n-m-2}\left(1+s^{-1}\left|x-2^{-i} k\right|\right)^{-N}, s>2^{-j}
\end{aligned}
$$

Proof. We let $t>0$ and estimate $\psi_{s} * \tau_{t}^{\omega}$. Denote by P_{x} the Taylor polynomial of τ^{ω} at x of degree m. For $s \leq t$ we use the vanishing moments of ψ to get

$$
\left|\psi_{s} * \tau_{t}^{\omega}(x)\right|=\left|\int_{y \mid \leqslant s} \psi_{s}(y) t^{-n}\left(\tau^{\omega}\left(\frac{x-y}{t}\right)-P_{x / t}\left(-\frac{y}{t}\right)\right) d y\right| .
$$

Because of (1.5), the parenthesis here is dominated by $C(|y| / t)^{m+1}(1+$ $\left.t^{-1}|x|\right)^{-N}$. Thus,

$$
\left|\psi_{s} * \tau_{t}^{\omega}(x)\right| \leq C t^{-n}\left(\frac{s}{t}\right)^{m+1}\left(1+\frac{|x|}{t}\right)^{-N}
$$

For $s>t$, we use instead the Taylor polynomial Q_{x} of ψ at x of degree $m+1$. Since $\tau^{\omega}(x)$ contains at least one factor $\omega_{i}\left(x_{i}\right)=\tau\left(x_{i}\right)$, its moments of order up to $m+1$ vanish. Hence,

$$
\psi_{s} * \tau_{t}(x)=s^{-n} \int\left(\psi\left(\frac{x-y}{s}\right)-Q_{x / s}\left(-\frac{y}{s}\right)\right) \tau_{t}^{\omega}(y) d y
$$

If $|x| \leq 2 s$, this is easily estimated by $C s^{-n}(t / s)^{m+2}$. If $|x|>2 s$, then $Q_{x / s}=0$ and we may assume $|y|>|x| / 2$ since otherwise $|x-y|>s$ and the integrand vanishes. Then (1.5) implies

$$
\left|\psi_{s} * \tau_{t}^{\omega}(x)\right| \leq C s^{-n} \int_{|y|>|x| / 2}\left|\tau_{t}^{\omega}(y)\right| d y \leq C s^{-n}\left(\frac{|x|}{t}\right)^{-N} .
$$

So for $s>t$ and $N>m+2$,

$$
\left|\psi_{s} * \tau_{t}^{\omega}(x)\right| \leq C s^{-n}\left(\frac{t}{S}\right)^{m+2}\left(1+\frac{|x|}{s}\right)^{-N} .
$$

The estimates obtained imply the lemma, as seen from (1.4).
Because of this lemma, (2.2) implies

$$
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\nu}}^{p} \leq C \int d z\left(\sum\left|c_{\nu}^{\omega}\right|^{2} 2^{n i}\left(I_{1}+I_{2}\right)\right)^{p / 2}
$$

where

$$
I_{1}=\iint_{|x-z|<s \leq 2^{-i}}\left(2^{j} s\right)^{2(m+1)}\left(1+\frac{\left|x-2^{-j} k\right|}{2^{-j}}\right)^{-2 N} \frac{d x d s}{s^{n+1}}
$$

and

$$
I_{2}=\iint_{\substack{|x-z|<s \\ s>2^{-i}}}\left(2^{j} s\right)^{-2(n+m+2)}\left(1+\frac{\left|x-2^{-j} k\right|}{s}\right)^{-2 N} \frac{d x d s}{s^{n+1}} .
$$

It is easily seen that

$$
I_{1} \leq C \int_{0}^{2-i}\left(2^{i} s\right)^{2(m+1)} \frac{d s}{s}\left(1+\frac{\left|z-2^{-i} k\right|}{2^{-i}}\right)^{-2 N} \leq C\left(1+\frac{\left|z-2^{-i} k\right|}{2^{-j}}\right)^{-2 N}
$$

and

$$
I_{2} \leq C \int_{2^{-i}}^{\infty}\left(2^{j} s\right)^{-2(n+m+2)}\left(1+\frac{\left|z-2^{-i} k\right|}{s}\right)^{-2 N} \frac{d s}{s} \leq C\left(1+\frac{\left|z-2^{-i} k\right|}{2^{-i}}\right)^{-2(n+m+2)}
$$

if N is large. Thus,

$$
\begin{equation*}
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\nu}}^{p} \leq C \int d z\left(\sum\left|c_{\nu}^{\omega}\right|^{2} 2^{n j}\left(1+\frac{\left|z-2^{-i} k\right|}{2^{-j}}\right)^{-2(n+m+2)}\right)^{p / 2} . \tag{2.3}
\end{equation*}
$$

Now define a function F in \mathbb{R}_{+}^{n+1} as in [2, p. 118], setting $F=c_{\nu}^{\omega} 2^{n i / 2}$ on $\frac{1}{2} Q_{\nu} \times\left[2^{-i}, 2^{-j+1}\right]$ for each ν and $F=0$ elsewhere. Here $\frac{1}{2}$ of course means concentric scaling of the cube in \mathbb{R}^{n+1}. Then (2.3) implies

$$
\left\|\sum c_{\nu}^{\omega} f_{\nu}^{\omega}\right\|_{H^{\mathrm{p}}} \leq C\left\|g_{\lambda}^{*}(F)\right\|_{L^{p}}, \quad \lambda=n+m+2,
$$

where

$$
g_{\lambda}^{*}(F)(z)=\left(\iint\left(1+\frac{|x-z|}{s}\right)^{-2 N}|F(x, s)|^{2} \frac{d x d s}{s^{n+1}}\right)^{1 / 2}
$$

is a Littlewood-Paley function. Further,

$$
\left\|g_{\lambda}^{*}(F)\right\|_{L^{p}} \leq C\left\|A_{\gamma} F\right\|_{L^{p}}, \quad \gamma>0
$$

by [1, Theorem 3.5], since $\lambda>n / p$ here. But $A_{\gamma} F$ is dominated by $C\left(\sum\left|c_{\nu}^{\omega}\right|^{2} 2^{n j} \chi_{\nu}\right)^{1 / 2}$ if γ is small enough, and (1.3) and the theorem follow.

References

1. A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. Adv. in Math. 16 (1975), 1-64.
2. P. Sjölin and J.-O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125.
3. P. Sjölin and J.-O. Strömberg, Spline systems as bases in Hardy spaces, Israel J. Math., 45 (1983), 147-156.
4. J.-O. Strömberg, A modified Franklin system and higher spline systems on \mathbb{R}^{n} as unconditional bases of Hardy spaces, in Conference on Harmonic Analysis in honour of Antoni Zygmund. Beckner (ed.) Wadsworth 1982, 475-494.

Department of Mathematics
Chalmers University of Technology
University of Göteborg
S-412 96 Göteborg
SwEdEN

