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ON THE DUALITY OF OPERATOR SPACES 

CHRISTIAN LE MERDY 

ABSTRACT. We prove that given an operator space structure on a dual Banach space 
y*, it is not necessarily the dual one of some operator space structure on Y. This allows 
us to show that Sakai's theorem providing the identification between C*-algebras having 
a predual and von Neumann algebras does not extend to the category of operator spaces. 
We also include a related result about completely bounded operators from B^Y into 
the operator Hilbert space OH. 

1. Introduction. Given a Hilbert space //, we denote by B(H) (resp. K(H)) the C*-
algebra of all bounded (resp. compact) operators on H. We let S\ (H) be the Banach space 
of all trace class operators on H and recall that K{Hf = S\ (H) = #(//)*. Let Y be a Ba
nach space and let A = Y* be its dual space. Assume that A is a C*-algebra. A celebrated 
theorem of Sakai [SI, S2 (Theorem 1.16.7); see also T, Theorem III.3.5] leading to the 
identification between C*-algebras having a predual and von Neumann algebras asserts 
that there exist a Hilbert space H and a one-one C*-algebraic representation TT: A —+ B(H) 
which is continuous with respect to the cr-weak topologies a(A, Y) and cr(jB(H), S\ (//)). 

The theory of operator spaces which was recently developed by Blecher-Paulsen and 
Effros-Ruan (see [B1, B2, BP, ER1, ER2, ER3]) naturally leads to the problem of whether 
we may replace the C*-algebra by an operator space and the faithful C* -algebraic repre
sentation by a complete isometry in Sakai's theorem. Note that this problem makes sense 
even though a dual Banach space can have several non isomorphic preduals. The main 
purpose of this paper is the study of a problem posed by D. Blecher about the duality of 
operator spaces, from which we will deduce that Sakai's theorem does not extend to the 
category of operator spaces. 

Before stating this problem, let us recall a few definitions. By an operator space we 
mean a closed subspace of B{H) for some Hilbert space H. Given an operator space 
E C B(H), we denote by Mn,m(E) the vector space of all n x m matrices with entries in E 
and equip it with the norm induced by the embedding Mn/n(E) C B(l™(H), ln

2(HJ). The 
notation Mn(E) stands for Mn,n{E). Let E and F be operator spaces and let u: E —-> F be a 
bounded linear map. We set || w||Cb = supw>1 ||u ® IM„ || where U®IM„-Mn(E) —> Mn(F) 
is defined by w([jt//]) = [w(x//)] for all [XJJ] G Mn(E). We say that u is completely bounded 
(c.b. in short) provided that || w||cb < +oo. We denote by CB(£", F) the set of all c.b. maps 
from E into F. It is easily checked that || ||ct>is a norm on CB(is, F) with which this space 
is complete. Furthermore, we say that u.E —> F is a complete isometry provided that 
u (g) IM„ is an isometry for all n > 1 and that u is a c.b. isomorphism provided that u is an 
isomorphism such that w, u~l are both c.b. maps. Given a Banach space E, an operator 

Received by the editors March 22, 1994; revised December 6, 1994. 
AMS subject classification: Primary: 47C15; secondary: 46A20, 46B28. 
© Canadian Mathematical Society 1995. 

334 

https://doi.org/10.4153/CMB-1995-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-049-9


ON THE DUALITY OF OPERATOR SPACES 335 

space structure (o.s.s. for short) on E will be a sequence of norms, the w-th norm defined 
on Mn(E), such that there exists an embedding J: E —» B(H) for which all the J<S)IM„ are 
isometries. We refer the reader to [R] for the fundamental characterization of operator 
space structures. 

We will be mainly concerned with duality of operator spaces. Let E be an operator 
space. Let (p = [(py] £ Mn(E*). We can regard ^ as a map from E into Mn by letting 
<p(x) = [<Pij(x)] for all x E E. The resulting identification: 

(1.1) Mn(E*) = CB(E,Mn) 

defines a norm on Mn(E*). It turns out that these matrix norms define an o.s.s. on E* (see 
[B2, BP, ER1]) with which E* is called the dual operator space ofE. This duality has 
many nice properties. There were studied and developed in the papers [B2, BP, BS, ER1, 
ER2, ER4]. We will recall some of them in Section 2 below. 

When dealing with operator spaces, it often happens that an o.s.s. is given on a dual 
Banach space 7* and one wishes to know whether or not it "comes from" an o.s.s. on Y. 
This leads to the following problem, which was first raised by Blecher. 

PROBLEM 1.1. Let F be a Banach space and let X = Y* be its dual space. Assume 
that we are given an o.s.s. onX. Does there exist an o.s.s. on Y for which the dual operator 
space Y* coincides (completely isometrically or completely isomorphically) with X? 

In Section 3, we shall give necessary and sufficient conditions under which the com
pletely isometric form of Problem 1.1 has a positive answer. We shall then construct an 
operator space structure o n J = #(^2)* f° r which the completely isomorphic form of 
Problem 1.1 has a negative answer. We will then deduce that Sakai's theorem cannot be 
generalized to operator spaces by proving: 

THEOREM 1.2. There exists a Banach space Y and an operator space structure on 
its dual space X = Y* such that: 

Whenever J: X—^ B(H) is a complete isometry, J is not continuous with respect to the 
topologies a(X9 Y) and CT(B(H), S\ (//)). 

We mention that the problem of whether Sakai's theorem extends to the category 
of unital operator algebras remains open. Given a unital operator algebra A = Y*, the 
question is now: does there exist a unital completely isometric homomorphism J: A —> 
B(H) continuous w.r.t. a(A, Y) and G(B(H), S\ (//))? The only fact we know on this subject 
is that for any unital operator algebra B, the bidual operator space A = B** (equipped 
with the Arens product) is a unital operator algebra which can be represented (in the 
above sense) by a a-weak J:A—> B(H). 

In order to construct an o.s.s. on B(£i)* for which Problem 1.1 has a negative an
swer (see Theorem 3.2), we will take advantage of ideas from Pisier's paper [PI]. We 
will appeal to some of the properties of the operator Hilbert space OH and will use 
the lack of local reflexivity of operator spaces in the following form: the identity map 
Id: OH (g)£(£2)** —» (OH ®B(£2))** is not bounded, when the tensor products are both 
endowed with the spatial tensor norms. Section 2 below is devoted to the necessary pre
liminaries about OH. We will also give some background about the duality of operator 
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spaces. In Section 4, we will apply some of the ideas of Section 3 to the study of c.b. maps 
from B(l2)* into OH. We will especially prove that there exist c.b. maps T: B(£2)* —• OH 
which are not (2, oh)-summing in the sense of [PI]. This is a first step in the research of 
possible analogues of Grothendieck's inequalities in the framework of operator spaces. 

2. Preliminaries. We start this section by recalling a few facts about the duality of 
operator spaces. 

Let E, F be two operator spaces. We denote by E ® F the spatial (or minimal) tensor 
product of E and F. Unless otherwise specified, the norms of elements of a tensor product 
of operator spaces will always be defined with respect to this spatial tensor norm. Duality 
and 0 are related by the isometric embedding [BP]: 

(2.1) £*(g)FcCB(£,F) 

under the canonical identification of E* ® F as the space of finite rank operators from E 
into F. 

The two following relations, which were first established in [B2], will play an im
portant role below. Let E be an operator space. Then under natural identification, we 
have: 

(2.2) Mn,m(E)** = Mn,m(E**). 

Furthermore, let F be another operator space and let u G CB(E,F). Then the transposed 
map u*: F* —» E* is c.b. and 

(2.3) l lw l |cb \U cb-

We now state a very useful formula about column matrices. We denote by C the opera
tor space B(C, £2) and by Cn = B(C, £") i*s «-dimensional version. For any operator space 
E, we let Cn(E) = Mn^(E) = Cn ® E. Similarly we will use the notations R = B(l2, C) 
andi?„ = B(i%9C). In the case of column matrices, formula (1.1) becomes: 

(2.4) £,(£*) = CB(£,C„). 

Thus the norm on C„(E*) can be computed by a very simple formula. For any tp\,. 
inF": 

,<Pn 

(2.5) 
' ¥ > i ' 

^n> 

1/2 
= sap\( E I (w.*;}I2) /xjeE, 

C„(£*) 

Kl<i<n 

/xr 

\Xn* 

< 1 

Cn(E) 

See [L, Proposition 2.5] for example. 
We now come to the operator Hilbert space OH. It is a very important o.s.s. on £2 

which was introduced and investigated in [PI, P2]. We wish to point out some of the 
main features of this operator space that will be used in the sequel. Let us denote by 
(e/)/>i the canonical basis of l2. The two fundamental properties of OH to be used later 
on are: 
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(i) The canonical linear identification between OH and OH* is a complete isometry. 
We write: 

(2.6) OH* = OH 

(ii) For any operator space E and any finite sequence (x\,..., JC#) in E: 

(2.7) 
N 

i=\ 
Y,ei®xâ = E*/®*i-

N H1/2 

/=! 

(with E-Li ei®xt G OH ® £, EJLi *,- ® 3cJ G £ ® £). 
Actually OH is the only o.s.s. on £2 for which (2.6) holds but we won't make use 

of this uniqueness property. Note that the identity (2.7) contains the definition of OH. 
Indeed if we apply (2.7) with E = Mn, we obtain an explicit description of M„(OH). For 
any n > 1, the notation OH„ will stand for the subspace Span{ei, ...,en} C OH. 

Let E be an operator space. As a straightforward consequence of (2.1 ), (2.6) and (2.7), 
we have: 

1/2 
(2.8) Wu E CB(OH„,£), \\u\\cb = £u(e t ) ® u(et) 

"1=1 

All this can be found in [PI]. The reader is referred to this publication for further details 
and information. 

We now introduce a new definition which is convenient for our purpose. In order to 
motivate it, note that when E, F are operator spaces with F finite dimensional, the identity 
map CB(F,E)** —-* CB(F,E**) is always a contraction. However, it was discovered in 
[EH] that the converse map CB(F, E**) —> CB(F, £)** can have a norm > 1. This striking 
phenomenon (in view of the Banach space case [D]) gave rise to the problem of local 
reflexivity of operator spaces [EH, ER3, ER4]. In the definition below, we focus on the 
case when F runs over the spaces OH„. 

DEFINITION 2.1. Let E be an operator space. We will say that E is OH-locally reflex
ive provided that there exists a constant C > 1 such that: 
(2.9) 
For all n > 1, the identity map CB(OH„,£**) —• CB(OH„,£)** has norm less than C. 

The following result is implicit in [P1, Problem 10.4]. It was brought to our attention 
by G. Pisier. 

LEMMA 2.2. B(l2) is not OH-locally reflexive. 

PROOF. Assume that B(£2) satisfies (2.9). We wish to show that B(£2T* satisfies 
the condition (v) of [PI, Theorem 2.9]. Since #(£2)** is not injective, this will yield the 
desired contradiction. 

Let JCI, . . . ,xn in B(l2)** with || £?=1 xt ®xi\\ < 1. Let u: OH„ —• B(l2)** be de
fined by u(et) = xt. From (2.8) we obtain that ||i/||Cb < 1 hence by (2.9) the norm 
of u in C B ( O H W , 5 ( £ 2 ) ) is less than C Therefore there exists a net ua 
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in C B ( O H W , # ( £ 2 ) ) with ||wa||Cb < C such that ua converges to u in the topology 

a(cB(OHw,5(£2))**,CB(OHw,5(£2))*). Letting xf = ua{et) and applying (2.8) once 
more, we thus obtain a net of «-tuples (x^,. ..,x%) valued in B(£2) such that 
|| E?=i x? ® xf\\1/2 < C and xf converges to xt in the a;*-topology of B(l2f*. By [PI, 
(2.11)] we then obtain af, bf in B(l2) such that 

v /= i y » " v /= i y 
< C and xf = af + bf. 

Refining the net we can assume that each af has a limit at G #(£2)** in the c/-topology 
of B(£2y* and, similarly, 6" —» &/. Hence we have 

v / = l 

Since x, = a, + &,-, this completes the proof. 

/ " -v 1/21| || / " \ l/2u 

(z^n \\<c, few <C 

V;_1 / II II \;_i / II 

3. The predual operator space structure. This section is devoted to Problem 1.1 
and Theorem 1.2. Let 7 be a Banach space and let X = 7* be its dual space. We give 
ourselves an o.s.s. on X and endow X* with the associated dual o.s.s. The canonical 
inclusion Y C X* induces an o.s.s. on Y and it is clear from (2.2) that this o.s.s. is the 
only one on Y for which we could haveX = 7* completely isometrically. This o.s.s. will 
be called the predual operator space structure of 7. 

In the following, the notation #z stands for the closed unit ball of some Banach 
space Z. 

PROPOSITION 3.1. Let Y be a Banach space. Assume that its dual space X — 7* 
is equipped with an o.s.s. We endow Y with its predual o.s.s. Then the following are 
equivalent. 

(i) X = 7* completely isometrically. 
(ii) For alln> 1, &M„{X) is cr(X, Y)-closed. 

(Hi) For all n > 1, $A/„(y) is cr(X*,X)-dense in ^BM^X*)-

(iv) For all n > 1, Mn(Y)** = MnÇX*). 

h 

PROOF. We will use the Haagerup tensor product (g) for which the reader is referred 
to [BP, Bl, BS, ER1, ER2] and will appeal to the formulae (3.2) and (3.3). Before stating 
them, note that we define a duality pairing between Mn®X and Mn <g> X* by letting 

for any JC = [jt,y] G Mn ® X and ip = [<̂ ,y] G Mn ® X*. By restriction to the subspace 
Y C X*, (3.1) also defines a pairing between M„ <8> 7 and M„ (8) X Of course, in the 
assertion (ii) (resp. (iii)), the notation a(X, 7) (resp. a(X*,X)) stands for the topology 
a{Mn(X)Mn ® F) (resp. a(M„(JT),M„ ® Jf)) induced by (3.1). 
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In the following we linearly identity M „ ® 7 with Rn ® Y ® Cn by letting [y,y] = 
Ei</v<« et <S>ytj ® ej. Then we have: 

(3.2) (Rn®Y®Cn)* =Mn(T) 

under the duality (3.1). Similarly we have: 

(3.3) MnÇg)*=Rn®X*®Cn. 

We first prove (i) ^ (ii). Note that the injectivity of the Haagerup tensor product yields 
h h h h 

an isometric embeddingRn ® Y (g) Cn C Rn ® X* (g) Cn. Therefore it follows from (3.3) 
h h 

that the polar in Mn ® Y of the convex set ®M„(X) is the closed unit ball of Rn ® Y (g) Cn. 
Hence the bipolar theorem and (3.2) imply that: 

m °UW _ nt 

whence the result. 
Let us now check that (iii) & (iv). For all n > 1, the Banach space equality X* = F** 

induces an isomorphic identification between Mn(X*) and Mn(Y**). Moreover Mn(Y) C 
Mn{X*) isometrically. Therefore Goldstine's theorem implies that: 

#M„(Y)** ~ #M„(Y) 

whence the result. 
The implication (i) =$> (iv) is an obvious consequence of (2.2). Thus it remains to show 

that (iv) => (i). Assume (iv). It follows from (2.2) that Y** = X* completely isometrically 
hence F*** = X** completely isometrically. Since the canonical embeddings X C X** 
and 7* C F*** are complete isometries (see [BP, ER1]), we obtain (i). • 

We now turn to a counterexample. 

THEOREM 3.2. Let Y = B(l2) and let X = T = B(£2)*. There exists an o.s.s. 
on X such that for any o.s.s. on Y, the canonical identity map j : Y* —> X is not a c.b. 
isomorphism. 

It will be clear from its proof that Theorem 3.2 remains valid when Y is any injec-
tive von Neumann algebra whose bidual 7** is not injective. However we do not know 
whether Theorem 3.2 is true for any non-reflexive Banach space Y. 

We should notice here that the natural o.s.s. on B{ti) induces via (1.1) a natural o.s.s. 
on #(£2)* • Of course this structure does not satisfy our Theorem 3.2 so we warn the reader 
that we will have to use different operator space structures on the Banach space B^T 
or on B((,2)- In order to avoid confusion we shall denote by Y,Xthç new structures (to 
be defined later) on ^(£2)^(^2)* and we shall use the notation 

(3.4) Y0=B(l2\ X0=B(t2T 

for the natural operator space structures. The key idea in proving Theorem 3.2 is to con
struct an o.s.s. XonB(l2)* for which Cn(X*) = CB(OHw,JQ under natural identification. 
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Then if Y is the predual o.s.s. on #(£2) associated to X, Lemma 2.2 shows that Cn(X
¥) 

and Cn(Y**) are different for large n. Hence X and Y* are not completely isometric. Al
though we cannot restrict ourselves to the study of the predual o.s.s. of Y in studying the 
completely isomorphic form of Problem 1.1, we will see that the idea above still works. 

Before going through the proof of Theorem 3.2, we need to recall the definition of 
(2, oh)-summing maps which was introduced in [PI, Chapter 5]. Let E be an operator 
space. Let F be a Banach space and let T: E —> F be a linear map. We say that T is 
(2, oh)-summing provided that there exists a constant C > 0 such that for any x\,...,x„ 
in E, we have: 

(3.5) (èll^)||2)1/2<c|É 
V=i J "7=1 

1/2 

We denote by 7T2,0h(7) the smallest C > 0 for which (3.5) holds and by TÏ2,oh(E,F) the 
space of all (2, oh)-summing maps T:E —> F. It is easy to see that 7T2,0h is a norm on 
ÏÏ2,oh(E,F) with which this space is a Banach space. 

We will make use of the following ideal property of (2, oh)-summing maps. Given 
two operator spaces E, E\ and two Banach spaces F, Fi, if T: F —> F is (2, oh)-summing, 
if R: F —> F\ is bounded and if S:E\ —-* E is completely bounded, then RTS is (2, oh)-
summing and: 

(3.6) 7r2y0h(RTS) < ||iî||7r2,dh(r)||S||cb. 

Indeed, for all xj G Eu the inequality || T,S(xj) <g> S(xj)\\ < \\S\\lb\\ £*/ ® xj\\ holds (see 
e.g. [BP, Proposition 5.11]). 

In the proof of the lemma below, we will use the following notation. Given any Hilbert 
space H, and/? G [1, +oo[, we denote by SP{H) the Schatten space of all compact opera
tors T.H^H such that tr\ Tf < +00 equipped with the norm T \—> (tr\ TfflP. 

LEMMA 3.3. Let E be an operator space. Let n>\ and let(ip\,...9 tpn) be a finite 
sequence in the dual operator space E*. Then we have: 

11 n 111/2 r / n ^\ ! / 2 Ï 

(3.7) £<*»?* =sup (EIN^)II2) 
II1/2

 U n ^ l / 2 l 

W=l 

where the supremum runs over all uf -continuous u:E* —> l\for which 7T2,0h(w) < 1. 

PROOF. Let US denote by Cthe right hand side of (3.7). Applying [B2, Corollary 3.2], 
we obtain that there exist a Hilbert space H and a complete quotient map Q: S\ (H) —» E. 
This means that all the Q 0 IM„ are quotient maps. The dual map Q*: E* —> B(H) is then 
a complete isometry hence we have: 

(3.8) E <Pi ® wll = S UP{ ( é \\aQ\^i)b\\2s2{m) 
1=1 " l vi=i y 

where the supremum runs over all a, b in S*(H) such that II^Hs^//), H&llŝ //) < 1 (see [PI, 
(5.9)]). Now fix a, b in the unit ball of S4(H). The linear map 0: B(H) -* S2(H) defined by 
6(c) = ac& is (2, oh)-summing with 7T2,oh(0) < 1 (see [PI, Corollary 5.8]). Moreover, 0 is 
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a;*-continuous. Let/?: S2(H) —• ^(/Z) be an orthogonal projection onto an w-dimensional 
subspace K C Si(H) containing all the 0((?*(^/)). Then the map u = p0Q* is a uf-
continuous map from E* into an «-dimensional Hilbert space and it satisfies 

(3.9) EN^)ll2 = EII«e*(^llftw 
1=1 1=1 

Furthermore, the ideal property (3.6) ensures that 7T2,0h(w) < 1. Therefore, (3.9) and (3.8) 
imply that || £"=1 </?,- ® lp}\\l/2 < C. The converse inequality is obvious. • 

PROOF OF THEOREM 3.2. We use the notation (3.4). First we claim that there exists 
an o.s.s. X on B^T such that for any finite sequence (x\ , . . . ,xn) in X, we have: 

(3.10) : = s u p { ( è | | S ( ^ 

\\\xn/\\cn(X) 

Indeed, if we denote by ®OT the closed unit ball of C B ^ , OHm), the map 

J: B(l2)* - © 0 Cm, J(x) = (S(x)) 
"teWm 

m>\,S£%n 

is an isometry. Therefore the natural o.s.s. on ®™>x © ^ Cm induces via J an o.s.s. X 
on B(l2)* and this structure clearly satisfies (3.10). We refer the reader to [PI, Proposi
tion 4.8] or [BP, pp. 279-281] for more about such constructions. 

We wish to show that the o.s.s. defined above (in fact, any o.s.s. on #(£2)* for which 
(3.10) holds) satisfies Theorem 3.2. For we assume that there exists an o.s.s. Y on #(^2) 
for which the canonical map j : Y* —> X is a c.b. isomorphism. Our aim is to prove that 
CB(OH„, Y0) and Cn(Y) are uniformly isomorphic, see (3.16). We let K\ = \\j\\Cb and 

K2 = \rx\w 
From (2.3), we have ̂ 1 = |[/*||cb hence for all n > 1 , / ®/c„:C„(.Y*) — C„(y**) has 

norm less than A^. Since C„(Y)** = Cn(Y**) isometrically (see (2.2)) we obtain that: 
(3.11) The inclusion maps Cn(T) —• Cn(Y)** have norm < Kx. 

We now need a few computations on the norms. First let us considérai,... ,xn inX We 
can form the map u = £"=1 Xj 

(f G X*0. Then we have: 

(3.12) 

l\ by letting u(tp) = {<p(xjj) for all 

7T2,oh(w). 

Cn{X) 

Indeed, given m > 1, let S:X0 —> OHm be a linear map. It can be written as S = 
EJli <Pi ® ex with (ft = S*(et) G X?0 and it then follows from (2.3), (2.6) and (2.8) 
that H l̂lcb = || E^ i <fi <8)^7||1/2. Therefore the equality (3.10) becomes: 

^Xl\ll wo 
1 / / \ 1 /2 II _ _ II \ 

= suP £ \(vi,xj)\2) M , . . . , ^*GA; , £w®?* <i 
1 V \<j<n J " i= l » ' 

"C„(X) \<i<m 

K m o \ Xl2 II m II 

Ell"(̂ «)ll2) lvu-..^meroAYJiPi®Yi\ 
i=\ J " l = l » ' 

U „ / 

< 1 ) 
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whence (3.12). Note that the latter equality establishes an isometry from Cn(X) onto the 
closed subspace of Y\2^(X*0, ^2) °f aU CJ*-continuous maps. 

Now let (f 1 ,...,(fn in X* and let v: OH„ —-> J£ = 1^* be defined by v(e,-) = 99/ for all 
1 <i <n. We claim that: 

(3.13) 
'<pr 

v ^ « > 

= HVllcb. 

C(**) 

It should be noticed that this equality gives rise to the isometric identification: 

(3.14) C „ ( r ) = C B ( 0 H * , O 

To check (3.13), we apply the duality formula (2.5) with E — X. Then by (3.12), 

'<Pi\ 
1/2 

Cn(X*) 

= S UP{(1E \(^XJ)\2) /xjZK,*2*$:xj®ej:X*0^lî)<iy 

tn
2 are exactly those which can be written as 

i</<« 
!</'<" 

However the w*-continuous maps u\X*Q 

u = ^2xjr ® ej hence: 

fV\' 

<ip„t 

= suP{(gik^)ii2) } 
Cn(X*) 

where the supremum runs over all ^-continuous u\X*0 —+ i\iox which 7T2,0h(w) < 1. 
Applying Lemma 3.3 with E — X0 together with (2.8), we obtain (3.13). 

We are now ready to conclude the proof. Since the mapy*-1: Y** —* X* satisfies 
II/*-1 ||cb = K2, we deduce from (3.13) that: 

(3.15) The inclusion maps Cn(Y**) 

Note that we have commutative diagrams 

cn(r*) — 

Cn(Y) —> 

^CB(OHw,y^*) have norm <K2. 

CB(OHw,^*) 

CB(OH„,70) 

with isometric maps a, (3. Therefore (3.15) implies that: 

(3.16) The inclusion maps Cn(Y) —> CB(OH„, Y0) have norm < K2. 

Combining (3.11), (3.14) and (3.16), we obtain that the inclusion maps CB(OH„, 1̂ *) —• 
CB(OHn, Y0)** have norm less than K\K2 and this contradicts Lemma 2.2. • 

PROOF OF THEOREM 1.2. Let Y = B(£2). We equip X = Y* with an o.s.s. which 
satisfies Theorem 3.2. We give ourselves a complete isometry J:X—> B(H) and assume 
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that J is (a(X, Y), a(B(H), Si(//)))-continuous. To reach a contradiction, it then suffices 
to define an o.s.s. on Y for which X = Y* completely isometrically. 

Let E = J(X), N = E± C Si(H) and let J: X —> E be the onto map induced by J. Then 
the <j-weak continuity of/ implies that E is a(B(H), S\ (//))-closed. Hence 

(3.17) (Si(H)/N)*=E 

and moreover J is the adjoint map of an isometry 

(3.18) Q:Sx(H)lN->Y 

Let us equip S\(H)/N with the quotient o.s.s. of S\(H). This means that once S\(H) 
is equipped with its natural o.s.s., we let Mn(S\(H)/N) be the quotient space 
Mn(Sx{H)) JMn(N). As is well-known (see e.g. [B2, Corollary 2.4]), (3.17) then holds 
completely isometrically. Via (3.18), the quotient o.s.s. on S\(H)/N defines an o.s.s. on 
Y. By the complete isometry (3.17), we thus have X = Y* completely isometrically, 
whence the result. • 

4. Completely bounded maps from B(l2)* into OH. The aim of this section is to 
give one more application of the lack of OH-local reflexivity of #(^2)- Namely we will 
prove that c.b. maps from #(£2)* into OH are not necessarily (2, oh)-summing. In order 
to explain the relevance of this result, we recall that the notion of (2, oh)-summing op
erators is a generalization to the framework of operator spaces of the classical notion of 
2-summing operators between Banach spaces. We refer the reader to [P3] for the defi
nition and the most classical results about 2-summing operators. We merely recall that 
whenever E is a minimal operator space (see [BP] for example), then for any operator 
w.E —• F from E into a Banach space F, u is 2-summing iff u is (2, oh)-summing and 
(in this case), 7T2,0h(w) is the 2-summing norm of u [PI, (9.3)]. The little Grothendieck 
Theorem (see e.g. [P3, Theorem 5.4]) states that for all compact sets K, any bounded 
map from C(K) into a Hilbert space in 2-summing. Equivalently (see [P3, th. 5.10]) any 
bounded map from a Ll -space into a Hilbert space is 2-summing. We are thus led to study 
what are the operator spaces X for which we have: 

(4.1) CB(X,OH) = n2,0h(X,£2). 

Note that by [PI, Corollary 7.5], the inclusion "D" is always achieved. Because of the 
little Grothendieck Theorem, the question of whether (4.1) holds is especially interesting 
when X is a C*-algebra or a non-commutative Ll -space, i.e. the predual of a von Neu
mann algebra. This problem is raised in [PI, Problem 10.2]. Let us mention a simple 
counterexample. 

EXAMPLE 4.1. Let FQO be the free group with infinitely many generators (fn)n>\ and 
let C (̂Foo) be the reduced C*-algebra of FQO, le. the C*-algebra generated by the left 
regular representation A:FQO —* #(^2,^ )• Then X — CJ(Foo) does not satisfy (4.1). To 
show this, let us denote by F the closed subspace of X spanned by the sequence (\(fn )) 
and let R H C be the o.s.s. defined on £2 by letting 

||[%]|k(*nQ = maxdl^l lM^JIt^l lM^C)} 
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for ail [xtj] E Mn® l2- Then Haagerup and Pisier [HP, Section 1] proved that the linear 
transformation which maps et to X(fi) for all / > 1 is a c.b. isomorphism between RHC 
and F and that the natural projection P:X^> F & RHC is completely bounded. Since 
|| ld:R D C —• OH ||cb < 1 (see [PI, (2.11)]), P becomes a c.b. map from X into OH. 
However for any n > 2,iy=1||P(A(/J))||2 = E?=1 \\\(fi)\\

2 = n and by [AO] we have 
II E?=i A(/5) (8) A(//)|| = 2y/n- 1. Therefore P is not (2, oh)-summing. 

The result to be proved now is the following 

THEOREM 4.2. B(l2T does not satisfy (4.1), i.e. 

CB(£(£2)*,OH) ^ n2,oh(i?(£2)*,£2). 

The proof of the latter theorem is based on two lemmas. 

LEMMA 4.3. Let X be an operator space. If the dual operator space X" satisfies (4.1), 
then X satisfies (4.1). 

PROOF. We assume that CB(.Y*, OH) = Tl2,0h(X*, ti). Clearly this implies that there 
exists a constant C > 0 such that: 

(4.2) \/n > 1, VS:T — OH„, 7r2,oh(S) < C||S||cb. 

Let u.X —-» OH be a c.b. map. We give ourselves a finite family (JCI, . . . ,xw) in X and 
denote by T: OH„ —-> X the operator defined by T{et) = xt. Then we have: 

(ÊIK*,)II2)I/2 = \WT\\HS= \\r«*\\ns= (El|r(«^)||2)1/2 

N=l 

< 7r2,oh(r)||«*||cb by (2.8) 

<C||7l|cb|M|cb by (4.2) and (2.3) 
1/2 

by (2.8). 

Consequently, the map u is (2, oh)-summing, which concludes the proof. • 

LEMMA 4.4. Let X be an operator space. For all n > 1, the identity map 

n2,oh(^**, #|) -* n2,oh(^, ^2)**is a contraction. 

PROOF. We claim that there is an o.s.s. on X (which we denote by X\ ) such that for 
all n > 1 and for all x\,... ,xn inXwe have: 

(4.3) PI \\xn/ 
= 

'era 

i w I 

/ — i 

1/2 

Indeed using (3.7) for example, we can write that for all x\,..., xm 

II1/2 (fJU„ ,^\1/2 

U2xi®Xi 
111=1 

= sup{ ( E | |H(*/)| |2) I m > 1, i/ G n2,oh(X, £?), 7r2,oh(W) < 1}. 
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1 n 

i=\ 

| '/2 
- id l\^/l 

Hence the claim (4.3) has the same proof as the claim (3.10). Together with (2.8), the 
above formula (4.3) yield CB(OH„,X) = Cn(Xx). Passing to the bidual via (2.2), we then 
obtain Cn(X\*) = CB(OHw,X)**. Since the identity map CB(OH„, JO** -> CB(OH„,.Y**) 
is a contraction, we thus deduce from (2.8) that for any 771,..., rjn in X** : 

(4.4) 

Now let us apply the duality formula (2.5) with E = X\. This yields I\2o^{X, ^>) = 

Cn{X\) and consequently we have by (2.2): 

(4.5) Il2,oh(XJn
2r = W**)-

Now let T\F* —> l\ be a linear map. From (2.5) and (4.4), we have | | r | | cxr r ) < 
K2,oh{T). Taking into account the identification (4.5), this completes the proof. • 

PROOF OF THEOREM 4.2. Assume that B{l2f satisfies (4.1). Then Lemma 4.3 im
plies that Si (£2) satisfies (4.1) as well. Therefore applying Lemma 4.4 withX = Si (£2), 
we obtain a constant C > 0 for which: 

The identity maps CB(B(£2)\ OH„) -> CB(Si(l2), OH„)** have norm < C. 

But applying (2.3) and the self-duality of OH (2.6), this means that the maps 
CB(OH„,£(£2)**) —> CB(OH„,£(£2))** have norm less than C and this contradicts 
Lemma 2.2. • 

REMARK 4.5. Clearly the above proof works as well if we replace £(£2) by any 
injective von Neumann algebra M whose bidual is non-injective. We thus obtain: 

CB(Af*,OH)^n2,0h(M*,£2). 

Moreover, applying Lemma 4.3, we obtain the same negative result for duals of any 
order of such M. On the other hand, the problem of whether (4.1) is true for the spaces 
B(H), Si (H) and K(H) remains open. 

It should be noticed here that the converse of Lemma 4.3 is not available. Actually, 
it seems likely that this is false. The obstacle to proving the converse of Lemma 4.3 is 
the fact that in general, the equality 7r2,0h(w) = 7T2,0h(w**) does not hold. This feature is 
related to the lack of OH-local reflexivity. In order to emphasize this, we state a last result 
whose proof is left to the reader. 

Let E be an operator space and let O 0 be a constant. The following are equivalent. 
(i) Xis OH-locally reflexive and (2.9) holds. 

(ii) For any finite dimensional Banach space F and any u G U.2t0h(X9F) we have 
w** e Il2,oh(X*\F) and 7r2,0h(«**) < C7r2,0h(w). 

(iii) For all n > 1, the identity map 

n2,oh(XJn
2y*->Yl2,oh(r*Jn

2) has norm < C . 
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(iv) The identification n2 ) 0h(^ ^2)** = n2,0h(^*5 h) is a C-isomorphism. 
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