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LANDAU-KOLMOGOROV INEQUALITY ON A FINITE INTERVAL

W. CHEN

A sharp Landau-Kolmogorov inequality on a finite interval is proved. The proof
yields the known Landau-Kolmogorov inequality on A as a limiting case, and thus
provides a new proof for that result.

1. INTRODUCTION

In 1913, Landau [11] proved that

(1.1) \\fi% ^ Cn,t | | / | i r ( / / n ) | | / ( n ) | | ? / n \ l * l * n - l

for n = 2, I = R oi I = R+ with the sharp constants \/2 and 2, respectively. (Here
I and n are integers, and the norm is the sup norm: | | / | | j = sup|/(a;)|.) In 1939,

Kolmogorov [10] solved (1.1) on R for all n and I and determined the best constants.
There are several alternate proofs of (1.1) for / = R of which we mention those by
Bang [1], Cavaretta [3], and de Boor and Schoenberg [2].

Hadamard [7], Gorny [6] and Matorin [12] were concerned with (1.1) for I = R+,
but their constants were not optimal when n ^ 4. In 1970, Schoenberg and Cavaretta
[14] gave a procedure to find the best constant for the inequality for / = R+, and all
n and 1. The constants were given as limits of some sequences and are not explicit.

Several papers have dealt with inequalities similar to (1.1) on a finite interval. Of
these, we mention Gorny [6], Kallioniemi [8], Pinkus [13] and Fabry [5]. In the present
work, Chebyshev-Euler splines are used to prove the inequality generalising the Landau-
Kolmogorov-Gorny inequality with the best constant in some sense. These results are
generalisations of works by Fabry [5] and Kallioniemi [8]. We shall prove that
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where Tn,k(x) is the Chebyshev-Euler spline of degree n with fc knots, pn>k =

l i r ^ U ^ , and 6 = [(2n-1-n!| |/ | | [_l i l ))/(^,fc | | /(«)| | [_11])]1 /n. The constant

(\TLl}(°)\)/(pli'k"^i2"'1 • "O^") can n o t b e ^placed by any smaller one.
If we use a sequence of intervals [—At, At] such that At —> oo, we can derive a

new proof of Kolmogorov's theorem for R. Therefore, one obtains a uniform approach
to the Landau-Kolmogorov problem by using the Chebyshev-Euler splines (see also
Schoenberg and Cavaretta [14] for I = R+).

2. PROPERTIES OF THE CHEBYSHEV-EULER SPLINES

In order to solve the Landau problem on a finite interval, we consider the following
perfect splines defined on the interval / = [—1,1] :

(2.1) T(x) = 2n~1xn + J2 (-1)' 2n(x - d)l + J2 ajX*
i=l j=0

where a,j, 0 ^ j < n and &, 1 ̂  i ^ k are free parameters, and

(2.2) - K 6 < 6 < • • • < & < ! •

Let T be the collection of all perfect splines of the form (2.1).

DEFINITION 2.1: We define the perfect spline Tn)j.(x) as the function of form (2.1)
such that

(2-3) ||rn,t||,= infill,.

We call Tn>k{x) the Chebyshev-Euler spline of degree n with k knots (see [4] and

[14])-
If for T(x) e T there are m points - 1 ^ t\ ^ t2 < . . . < tm < 1 such that

for some fixed io (0 or 1), we say that T(x) has m points of equioscillation.

Now, we cite an important theorem from [4], yielding some basic properties of the

Chebyshev-Euler splines. In the next section, we shall use these properties to prove our

main results. This theorem guarantees the existence and uniqueness of Tn>k(x).

THEOREM 2 . 2 . (Cavaretta [4].) There is a unique perfect spline Tn,jt(x) of

degree n with k simple knots satisfying (2.3). Tn<k(x) has precisely n + k + 1 points

of equioscillation, and is in fact the Chebyshev-Euler spline.

The following proposition was stated in [14] but no proof was given there. For the
sake of completeness, we shall prove it here.
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PROPOSITION 2 . 3 . For Tnik(x) given in Definition 2.1,

PROOF: Suppose —1 < £1 < £2 < • • < £ * < 1 are the A; simple knots of Tntk(x),

and

k n - l

t= l £=0

Since (—z — £,•)" = (—l)n(x + ^,-)n — (—l)n(x + £i)+>

we have
k n-i , x

• ^c—^ •" x—^ I 7t\ » g

2 (—1) x + > (—1) > I A iCi x
t = l t"=l 1=0 V '

x-1

/=o

where j = k - i + 1, & = -»7i_,+i = -*/,-, and

is a polynomial of degree n — 1. Thus Tnijfe(x) is a perfect spline of the form (2.1), and

\\Tn,k\\i = \\T»Ar T h e refore, by the uniqueness of Tn>k(x), we have

T»,*(») = Tn<k(x),

and ti = -tk-i+i, 1 = 1,2,...,*:.

This completes the proof of Proposition 2.3. U

PROPOSITION 2.4: (Karlin [9]). Suppose pn<k = \\Tn<k\\j with Tn>k(x) satisfying
(2.3). Then pn,k is strictly decreasing in k and

lim pnk = 0
k—+ao

[9, p.409, Lemma 5.7.]
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3. THE MAIN RESULTS

In this section we discuss the main results of the paper. First we prove (1.2) and
give another version of the Landau-Kohnogorov inequahty on the finite interval. Then
we derive a new proof of Kolmogorov's theorem on the real hne R.

In order to prove (1.2), we need the following key result, which was proved in [8]
for k = 0. In that case, Tntk(x) is exactly the Chebyshev polynomial of degree n.

THEOREM 3 . 1 . Let f{x) G Cn~x{-\, 1] and f^'^x) be absolutely continuous
such that

Then, for even n + k +1 and 1 ̂  £ ^.n — 1, we have

(3.1) |/«>(0)| < |2$(0) | .

The constant |T^ £(0)| on the right hand side of (3.1) cannot be replaced by any smaller

one.
PROOF: Without loss of generality, we assume that n + k and £ are both odd.

(The case where both n + k and £ are even can be treated in a similar manner.) Set

F(x) = ( / ( * ) - / ( -*) ) /2 .

Then F(x) and Tn,k(x) are both odd functions, and

Hence

and

We now have only to show that

Assuming this is not so, there exists a constant a, a > 1, or a < —1, such that

F<«(0) = aliJ(O).

We assume a > 1 and the case a < —1 can be treated in a similar manner. Define
h(x):[-l,l]^Rby

h{x) = aTn,fc(x) - F{x),
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then h(x) is an odd function.

Since | |F | | ^ pn,k and Tni»(x) has n+k+1 points of equioscillation by Theorem 2.2,
h{x) must have at least n + k zeros in [—1,1]. By Rolle's theorem, ^ ' " ^ ( x ) must
then have at least n + Jb + 1 — / zeros in (—1,1). Observing also that / ^ ' " ^ ( x ) is
an odd function, /»^~1^(0) = 0. Thus, by Rolle's theorem again, h^\x) must have
at least n + k — t zeros in (—1,0) U (0,1). On the other hand, by the definition of
h(x), fe(*>(0) = 0. Therefore, h^\x) has at least n + k - i + l zeros in ( -1 ,1 ) and
ft(«-1)(x) vrill have at least Jfc + 2 zeros in (—1,1). This implies that there exists an
integer i0, 1 < io < k — 1, such that h^n~x\x) has at least two zeros in [&o,&o+i]. We
select two of these zeros, say r/i and 772, and assume rji < T72. Thus,

0 = |fcl—i;(i»)| = \»r

^ a(j/2 — 'JijS™"1 • n! — (J/2 — Vi)^n~1 • n\ > 0,

which is a contradiction. If we let /(z) be Tnik(x), then (3.1) becomes an equality. D

THEOREM 3 . 2 . Let f(x) e C""^-! , ! ] and/(n"^(x) beabsoiuteiycontinuous,
then tor an even integer n + k + £,

where i = ( ( 2 " - 1 • n! | | / | | ) /(A>n,fc||/(")||))1 " a n d l ^ £ ^ n - l . Furthermore, the

constant on the right hand side of (3.2) cannot be replaced by any smaller one.

PROOF: For any x0 G [-1 + S, 1 - 6], define F(x) : [-1,1] -* R by

F(x) = Pn,kf(x0 + Sx)l 11/11.

Then 11*11 </>»,*, ||F(">||^2n-1-n!,

and |FW(*)| = Pn,k6
lfW(x0 + Sx)/ \\f\\ .

Applying Theorem 3.1, we have

If we let /(x) be Tnijfc(x), then 6 — 1 and we have equality in (3.2). This completes

the proof. U

For the general finite interval [a,b], using a linear transformation, we have
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COROLLARY 3 . 3 . Let f(x) e C^-^fab] and / ( n " 1 } (x) be absolutely contin-
uous, then for even n + k + £,

(3.3) ||/(')|| _f ^ \TnA°)\ H/H 1 , -^^ H / ^ l l ^ "
p U ( / / n ) ( 2 n " X - n ! ) / / n IO>6) M1

where 6 = ( 2 - 1 • n! l l / l l M ] ) / (pn ,* | | / ( n ) | | [ O ) f c ] )
1 / n and 1 < £< n - 1.

In Theorem 3.1 we use T^k(0) to estimate | / ( / ) ( 0 ) | . Actually, using the same

argument, we can estimate | / O ( ± 1 ) | by | T £ j t(±l) | . This is a generalisation of Theo-
rem 1 in [5] (that theorem was proved only for Chebyshev polynomials).

THEOREM 3 . 4 . Suppose f(x) satisfies the conditions in Theorem 3.1. Then, for

1 < £ < n — 1, we have

(3-4) |/<

T i e constant |7^ j ( ± l ) | cannot be replaced by any smaller one.

REMARK. A stronger result than Theorem 3.4 was obtained by Schoenberg and
Cavaretta in [14]. In fact, the interval can be a little smaller, but the proof there
is quite complicated and only a sketch of the proof is given.

Using Theorem 3.4, we can also estimate the two parts of the interval [—1,1]
adjacent to ± 1 . Thus, combining with Theorem 3.1, we shall obtain another version
of the Landau-Kolmogorov inequality on the finite interval. This improves the result of
Theorem 2 in [5], in particular, for the middle part of the interval.

THEOREM 3 . 5 . Let / ( z ) e C ^ f - l , 1] and / ( n - 1 ) ( x ) be absolutely continuous,
then for n + k + £ even and 1 ^ £ ^ n — 1,

where Ii = [-1 + 2(i + l ) / 3 , - 1 + 2(* +2)/3] , i = - 1 , 0 , 1 .

PROOF: For i = - 1 , 0 , 1 , let x0 £ I{ and define Fi{x) : [-1,1] -> R by

*i(*)=P».*/(*o + (*-O/O/ 11/11

where /x = min{2/3, [2"-1 • n! | | / | | /(pnik | | / ( n ) | | ) ] 1 / n } . Then, Fi(x) is well defined, and

Pn,», | | ^ n ) | U 2 " - 1 - n ! , i = - 1 , 0 , 1 .
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Applying Theorem 3.4 or Theorem 3.1 and observing that

we have

This completes the proof of Theorem 3.5. D

REMARK. Since n + Jfe + 1 can be any integer (even or odd) in Theorem 3.4, n + k +1

can be odd in the inequality (3.5) for t = ± 1 . It is also unnecessary to divide [—1,1]
into three equal parts, but in this case, the constant (3/2)n in front of | | / | | /pn,k will
be replaced by a different constant.

In Corollary 3.3, one can obtain the inequality (3.5) by a linear transformation for a
general finite interval [a, b]. Now we can derive a new proof of the Landau-Kolmogorov
inequality on R.

For convenience, we normalise Tn<k(x) first, writing

(3-6) Sn,k(x) = P^kTn

Clearly Sn,k(x) is defined on [-/>~(
t
1/B),p~i

(
t
1/n)], ^d satisfies

C , | | _ 1 II c(™)|| — o n - l . n\

LEMMA 3 . 6 . For Sn,k(x) defined in (3.6), we have

(3-7) | s S + i ( ° ) l ^ \S{
n%(0)\ > . > Si%+i(0)\ 2 , i = 0 o r l

where 1 < £ < n — 1 and n + l + i is even.

PROOF: Without loss of generality, assume that » = 0 and n + I is even. Set

l/n
Pn,2k+2 \

I
Pn,2k )

X I.
)

Since pn,2k+2/pn,2k ^ 1, Fni2k+2(x) is well defined on [-1,1], and

Pn,2k, \\fi%+a\
By Theorem 3.1,
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or

Thus

n,2
7n,2i+2 (0)

D
THEOREM 3 . 7 . Let f(x) e Cn-1(-oo,oo) and / ^ " ^ ( x ) be absolutely contin-

uous, then

(3.8) l(—ootoo)

Cn,/ = lim 5n,2*+t(°)| /C2""1 • n!) / / n , and i = 0 or 1 such that n + £ + i is
even. Moreover, Cn,i is Kolmogorov's constant for R.

PROOF: Suppose that t = 0 and n + £ is even. Applying Corollary 3.3, we have

| < llfll ||f()||

Since k is arbitrary, and by Lemma 3.6,

<c .\\f\\W l l f ( ) | |
(-oo.oo) ^ °n./l^ll(-oo,oo) II-* ll(-oo,oo)-

Now, consider the function sequence {Sni2k(x)}tLo • "̂e* ^
Proposition 2.4, there exists an integer K such that

anJr integer. By

Using the definition of Sn,2fc(x) and applying Theorem 3.4, we now have

Hence, for any xi, X2 G [~-^>-^]) w e have

- x 2 | , 0 ^ £ < n - 1, fc ̂  K.
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Therefore the functions {5^ 2*(z)}*^=o (0 ^ £ ^ n — 1) are uniformly bounded and

equicontinuous on [—N, N].

Using the Arzela-Ascoli theorem, we can find a subsequence {•?n,2*j(a;)}iSi of

{Sn,2k{x)}kLK> s u c h t h a t {Snjki(*)}." i (0 < * < n - 1) are all uniformly convergent

on [—N,N]. By the diagonalisation process, we pick a subsequence {&»,2*y(aO}J^i of

{Sn,2ki(x)}i^i, such that {S^2k.(
x)}J^i (0 < £ ^ » - 1) are all uniformly convergent

on any finite interval.

The limit function of the above process, En(x), satisfies En(x) € Cn~1(—00,00),

En~ \x) is absolutely continuous,

and 0<£<n-l.

Therefore, En(x) is an extremal function of (3.8), and Cn<i should be Kolmogorov's

constant for R. This completes the proof. D

By Kolmogorov's theorem, we know Cn,t explicitly, but it is difficult to calculate

^ i 2i+i(") ^Or l a r 6 e n a n < i ^- However, Theorem 3.7 established the relation between

Kolmogorov's constant Cn,t and {S^ 2fc+i(0)}jbLo • •^'or 1 = 2 or 3, we can calculate

^n 2*+»> w^Jcl1 J^ields exactly Kohnogorov's constants Cn,t- Actually all terms in (3.7)

have the same value for n — 2 and n = 3 .
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