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TORAL AUTOMORPHISMS AND ANTIAUTOMORPHISMS
OF ROTATION ALGEBRAS

Hu YAOHUA AND P.J. STACEY

If U,V are the generators of a rational or irrational rotation C*-algebra then an
automorphism ¢ of the algebra is determined by ¢(U) = AU®V® and ¢(V) = pUtV4
where A, 4 are complex numbers of modulus 1 and a, b, ¢, d are integers with ad—bc =
1. If ad—bc = —1, then these formulae determine an antiautomorphsm of the algebra.
The classification of such automorphisms and antiautomorphisms up to conjugacy by
arbitrary automorphisms is studied and an almost complete classification is obtained.

1. INTRODUCTION

Let A, be the universal C*-algebra generated by a pair U, V of unitaries satisfying
VU = pUV where p = €™ and 0 < < 1. Brenken [2] and Watatani [8] introduced an
SL(2,Z) action on Ag, which can be described in the following way. If A € SL(2,Z) and
A, i € S! then an automorphism ¢4 5, of Ay is determined, using the universal prop-
erty, by ¢aru(U) = AU®V® and ¢4 ,(V) = pUVY, where A = ( z Z ) Following
Watatani, such automorphisms of Ay will be called toral. The particular choice A = e™¢
and p = €™ gives an SL(2, Z) action by toral automorphisms.

A series of papers by Farsi and Watling, including {3} and [4], obtained properties of
the fixed point algebras and cross product algebras associated with toral automorphisms.
The purpose of the present paper is to include a study of antiautomorphisms and to study
the conjugacy problem for both toral automorphisms and antiautomorphisms.

2. CONJUGACY OF TORAL AUTOMORPHISMS

The description of toral automorphisms up to conjugacy was mostly completed in
the paper [4]. The following propositions make those results explicit as well as completing
the description. Under the isomorphism of K;(A4,) with Z? given by [U"V™] + (n,m)
the map (¢4, ,). corresponds to multiplication by A and hence a necessary condition
for ¢ and ¢ar v to be conjugate automorphisms is that A and A’ are conjugate in
SL(2,Z). The following results specify the extra conditions needed to ensure conjugacy
of the automorphisms.
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PROPOSITION 1. (Farsi and Watling). If trace(A) # 2 then ¢4, is conjugate
to ¢a,1,1. Furthermore ¢4, is conjugate to ¢p 1, if and only if A is conjugate to B in
SL(2,Z).

PRroOOF: This is established in the course of the proofs of [4, Proposition 3 and
Lemma 4]. 0

1 m
01
for some m € Z and that m is uniquely determined. The following explicit description of

1- b
the conjugacy when m # 0 is needed for Proposition 2. Let A = a4 1+ with
c a

a? = —bc. If ¢ = 0 then A is already of the required form (with a = 0), if 5 = 0 then

0 1 l—a 0 0 -1 = l+a —c is of the required form
-1 0 c 1+a 1 0 0 l-a

(with @ = 0) and otherwise each of a, b, ¢ are non-zero. In the latter case let |m| = (b, c)

with bm > 0. From the condition a? = —bc it follows that b = 7?m and ¢ = —t*>m for

If trace(A) = 2 then it is well-known that A is conjugate in SL(2,Z) to M =

some 77t € Z with (r,t) = 1. Furthermore the signs of r, ¢ can be chosen so that a = mrt.

If u,v are chosen to satisfy ru — tv = 1 then A = v 1 m v
t u 0 1 -t r

2

This last equation and hence the equations a = mrt, b = r?m and ¢ = —t>m hold even

when b=0orc=0.

c 1l+a
mrt, b = r?m and ¢ = —t?>m with (r,t) = 1 and m # 0 then ¢4, is conjugate to

Orm,1 where M = (

PROPOSITION 2. (i) (Farsi and Watling). If A= ( l-a 0 ), a =

1 m
01
(ii) Pas,1 is conjugate to dasy 1 if and only if y =+ or y=~~1.

) and v = )\rutpr[—c—ac—a—az]/2_

ProovF: (i) This is shown in the proof of [4, Lemma 16].

(ii) Suppose that ¢ar,18 = Pém,y1 for some automorphism S of Ag. Then
dm418{U) = ¥B(U). Following the proof of [3, Theorem 1], let c,, be the Fourier
coefficient of B(U) corresponding to UPVY, defined to be the usual Fourier coefficient
of E(B(U)V*9) corresponding to UP, where F is the canonical conditional expectation
from Ay onto C*(U). Then Y 7'cpUPV = Y APc, JUP(U™V)? = Y 4Py op*UPHImV e
for some s, 0 |cp,q| = |Cptqm,q| for each p,q and thus, since |cp ol 2> 0asp = 00, ¢ =0
unless ¢ = 0. It follows that B(U) has Fourier series 3 ¢,U? and that ¢,¥ = ¢,7? for each
p. If v has infinite order then ¢, is non-zero for only one value of p and thus S(U) = ¢,U”.
If v has order k then B(U) = UP f(U*) for some f : S* — S! and some p such that v/ = *.
If B, : K1(Ag) — K;(Ay) corresponds to B then, when K;(Ap) is identified with Z? in the
usual way, it follows that 8,(1,0) = (p+ k¢,0) for some £ € Z (or 8.(1,0) = (p,0) when «
has infinite order). On the other hand, from ¢pr18 = Béar,y 1 it follows that M B = BM
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a b 1 m 1 m a b
A i . if =
where §, has matrix B. However i ( c d ) ( 01 ) ( 01 ) ( c d ) then

¢=0and ¢ = d and so, from ad—bc=1, B==% é ll, for some b € Z. Hence
B:(1,0) = £(1,0) and so (p + k£,0) = £(1,0). If £ # 1 (that is, -y # 1) then £ = 0 and
p = +1 whereas if £ = 1 then 4/ = 4 = 1. Thus in all cases ¥ = v'*!. Conversely, if
v = v~ and B is defined by B(U) = p™U* and B(V) = V* then ¢p,18 = Bdrmy,1, as

required. 0

The final case to be considered is when A is conjugate to, and hence equal to, I5.
The behaviour of ¢4 5 , depends on the nature of the subgroup G of S generated by A, p.
Thils vau vitlier Le a Cyullc subgloup Ul vtder 116 (Whele e 1s Vg 1vast Lol wulbipic
of the orders of A, 1), an infinite cyclic group (when X or p has infinite order and AF = pf
for some k, £ not both zero), a group Z,, x Z where 1 < m (when A*u~¢ is of finite order
for some k, £, not both zero, but either A or x has infinite order) or Z x Z (when A\*u~*
is of infinite order unless k = £ = 0).

ProrPOsSITION 3. (i) (Farsi and Watling). If A, ;1 generate a cyclic subgroup of
order m in S* then ¢y, is conjugate to ¢r,,1 where w = 2"/™.

(ii) If A, p generate an infinite cyclic subgroup in S* then ¢y, , is conjugate to ¢,
for some vy of infinite order in S*. Furthermore ¢, , is conjugate to ¢y, if and only if
Y=+ ory=9""

(iii) If A, u generate a subgroup of S isomorphic to Z,, x Z then ¢, is conjugate
to @y o for some n with 1 < n < m and (n,m) =1 and some vy of infinite order, where
w = e2™/™_ Furthermore ¢y is conjugate to ¢ . if and only if either w™ = w™ and
v =w*y for some s € Z or w™ = w™ and ¥ = w®y ! for some s € Z.

(iv) If A\, 1 generate a subgroup of S' isomorphic to Z x Z then the toral automor-
phisms conjugate to ¢; » , are those of the form ¢ yaup rye Where sa — b= 1.

PROOF: (i) From the proof of [4, Theorem 20] there exists A = (Z Z) € SL(2,Z)
such that A%u® = w and A°u? = 1. Then ¢y ,Pa1,1 = Pa,1,101w,1, aS required.

(i), (iii). Let A*u~¢ be a generator of {1,...,w™ '} (where m = 1 in case (ii)),
let k' = k/(k,£) and let ¢ = ¢/(k,£). Then in case (ii) A*u~% = 1 and in case (jii)
M=t = ™ for some 1 € n < m with (n,m) = 1. There exist b,d € Z with dk’ +b¢' = 1

!
and then A = ( ké’ Z) € SL(2,Z) and é;,3 uba1,1 = $4,1,101.m 04¢ (With n =0 in case
(ii)).
Suppose that there exists an automorphism 8 with 8¢; v ., = @r.n,8 (with n =
n' = 0 in case (ii)). If the Fourier coefficient of S(U) corresponding to UTV* is ¢,

then w"'c,,, = w"y’c,, and so, since v is of infinite order, ¢;, = 0 unless s = 0. Thus
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BU) € C*(U). Similarly, if the Fourier coeflicient of 8(V) corresponding to U°V* is
ds, then v'd,; = w*™v'd,, and, since v is of infinite order, there exists a unique ¢ such
that ds ¢ # 0. Thus B(V) = WV for some W € C*(U). The matrix corresponding to

B. : Ki(As) = K,(Ag) is therefore of the form (; :) and, since . is invertible, it

follows that t = 1. Hence v = v or v ='~! in case (ii) and v = w*y' for some s € Z
or v = w*y ~! for some s € Z in case (iii).

By reversing the roles of n,vy and n',v/, it follows that not only g(U) € C*(U)
but also 8~}(U) € C*(U). Hence the automorphism g restricts to an automorphism of
C*(U) implementing a conjugacy between the restrictions of ¢; , ., and ¢r .. However
unless w™ = w*" | the associated rational rotation algebras are non-isomorphic. The case
w™ = w" corresponds to B,[U] = [U] and hence to t = 1, whereas w™ = w™™ corresponds
to B.[U] = —[U] and hence to ¢t = —1. Thus either w™ = w™ and v = w*y’ for some s € Z
or w" = w™ and y = w*y'~! for some s € Z.

Conversely, in case (iii) let B(U) = U and B(V) = U*V where ns' = s (modm),
which exists because (n,m) = 1. Then ¢;yn 40 = BPrun w4 Similarly let S(U) = U*
and B(V) = V* in case (ii) to obtain ¢ 1,8 = Bér1,-1 or B({U) = U* and B(V) = U*'V*
in case (iii) to obtain @run 4B = Bry-n weqy-1.

(iv) Let ¢ranB = Bbrwyw- Then ¢rp,B(U) = NBU) and dia,B(V) = wh(V)
so if the Fourier coefficient of B(U) corresponding to U%V® is ¢, and that of G(V)
corresponding to UTV*® is d,,, then Nc,p = \ubc,p and p'd, s = A" p*d, . Since no two
distinct pairs A°u® are equal it follows that B(U) = ¢,U°V? for some a,b and similarly
B(V) = d,,U"V*. Hence N = A%ub, i’ = A"u® and, from the invertibility of 8, on
K,(Ay), sa — b = 1. Conversely, if a,b,r,s satisfy the condition sa — rb = 1 then
b1 758 = Bbr rous arys When B(U) = UV and B(V) = UV 0

3. ANTIAUTOMORPHISMS

In order to establish the existence of an antiautomorphism of A4, observe that
the opposite algebra Ag” is generated by the elements U,V but subject to the rela-
tion VU = pUV rather than VU = pUV. Hence Ay’ is isomorphic to A;_y and, by
the universal property, there exists an isomorphism a from A, onto Ay’ with a(V) =U
and a(U) = V. Composing this with the identity antiautomorphism from AT to A

1
gives an antiautomorphism of Ay, denoted by ¢p,1,; where B = (2 0) € GL(2,Z). 1If

A= (a Z) € GL(2,Z) with ad — bc = —1 then the composite ¢4p,2¢p,1,1 is an anti-
c

automorphism ¢, With ¢4 .(U) = AUV and ¢4 (V) = pUVE.
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ProPosITION 4. (i) If A, A' € GL(2,Z) with det(A) = 1 then

DappuPar s w = Pan 16
where

= NAY € 0 (¢ ~1)/24(aca' (@' ~1)/240'bec  apg 5 gAY ol (@ =1)) /2 e oY ~1) 24t et
(if) If A, A' € GL(2,Z) with det(A) = —1 then
ParpPa vy = daarys

where

(bdc’ (¢ ~1))/2+(aa’ c{a’ ~1))/2+aa’dd (bdd! (d' —1))/2+(ab’ c(b' ~1))/2+ab/ dd’

v=XX"pp and § = '\ p p

(iii) The map from A = t0 Y4 = P A exp(miac)exp(nibd) IS 8 GL(2,Z) action by

b
d
toral automorphisms and antiautomorphisms.

b

, th
d en
Prapu¥a = Yadr e, and hence (A, pu, A) — Yadra, is an action of the semidirect
product T? x GL(2,Z).

PROOF: These are all straightforward calculations. 0

(iv) When GL(2, Z) acts on T? by (A, )04 = (A°u¢, \ou?), where A = [ ©
c

A major component of the classification of the toral antiautomorphisms up to conju-
gacy is the classification up to conjugacy of elements in GL(2,Z) with negative determi-
nant. If two such elements A, B satisfy A = QBQ™! with Q € GL(2,Z) then, replacing
Q by @B if necessary, they are conjugate by some Q € SL(2,Z).

The following result shows that, as for automorphisms when trace(A) # 2, the
conjugacy problem for toral antiautomorphisms (via automorphisms) when trace(A4) # 0
reduces to the conjugacy problem in GL(2, Z).

PropPosSITION §5. Iftrace(A) # 0 and det(A) = —1 then ¢4, is conjugate to
®a1,1- Furthermore ¢4, is conjugate to ¢g,, if and only if A is conjugate to B in
GL{(2,Z).

PROOF: Let A = (a Z) ,let y = A(1=d/(a+d) yc/(atd) 3 Jet § = Ab/(atd) ,(1-a)/(a+d)

c

Then ¢apubrrs = 146041 If A=QBQ™! with Q € SL(2,Z) then ¢g,1168,1105,; =
$an, for some A, € S* and hence, by the first part, is conjugate to ¢4,1,. 0

If A € GL(2,Z) with det(A) = —1 and trace(A) = 0 then A% = I. Hence, from [5,
Lemma 5.5, p.166], A is conjugate to either M = ((1) 01) or N = <(1) (1)) (which are
not conjugate to one another).
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PROPOSITION 6. If trace(A) = 0 then either 4, is conjugate to ., for
some v € S! or to ¢n,, for some v € S'.

PRrROOF: Let Q@ € SL(2,Z) with QAQ™' = M (or QAQ™! = N). Then
$0,11942uPgh 1 = dmxw for some X, u' € S (or ¢y for some X, p' € S*). However
11PN a1 = ON APl and, if 62 = p, then @11 50mau = Pma101,16- 0

PROPOSITION 7. ¢y, is conjugate to ¢y, if and only if y =y ory =41

PROOF: Let fpn 4,1 = ¢ny1B. Then By, = B, = Ox .y 1B = b1y 0. Thus
when 7 has infinite order then, by Proposition 3(ii), either y = ' or v = v'~1. When 7
has finite order m then, by Proposition 3(i), 7 = 7™ for some 1 < n < m with (n,m) = 1.
Then ¢, (UTBU)) = v U1,y BU) = v 1U™B14,(U) = UB(U) and simi-
larly ¢y (V*"ﬂ(V)) = V**3(V), from which it follows that U**8(U) € Fiz(¢; .y y) =
C*(U™,UV*) and V*"B(V) € C*(U™,UV"). Hence the induced map 8. on K,(Ag) = Z?
satisfies 8,(1,0) = (n + ¢m + k, —k) for some ¢,k € Z and 8.(0,1) = (¥’ + ¢'m,n — k')
for some £, k' € Z that is,

b — <n+em+k k'+e'm)

—k n—k
01 . .
However BN = Nf,, where N = 1 o) from which it follows that
10 01 .
B. et 01 ,E Lol (- If B, = I, it follows that ¥ = 0 and n + fm = %1

and hence n = 1 or m — 1, as required. Similarly, if 8, = £N then ¥’ + ¢m = 41 and
n=k,son=1orm~- 1, as required. Conversely, ¢_;1,10n,y1 = On-110-1,1, for each
v e S 0

PROPOSITION 8. (i) If pur,y,1 is conjugate to dusy, then v2 = 7% or y2 = 4'~2

(ii) If y = 7 or 7= 74'~! then ¢pr,, is conjugate to Pasy1-

PROOF: (i) Let Sy = dry 18- Then Bdr 2y = B, = By 1B = ;02,0
Thus, when v has infinite order then, by Proposition 3(ii), either 42 = 42 or 42 = 7' ~2.
When 7?2 has finite order m > 1 then, by Proposition 3(i), 7 = 7'?" for some 1 < n <
m with (n,m) = 1. Then ¢, .,(U™BU)) = U™BU) and ¢, ,8(V) = B(V) so
UmpU) € C*{U™ V) and B(V) € C* (U™, V). Hence G, : K1(Ag) = Ki(Ap) equals

'
n+ km mfc for some k,£,k',¢' € Z. However, the condition 8,M = Mf, implies

14 ¢
10 1 0 . 2
B. €L 0 1) + 0 -1 and hence n =1 or m — 1. Finally, when y* = 1 then
4'? =1, so the condition also holds in this case.
(ii) This is immediate since ¢_;110my1 = Pm4-1,10-11,1- 0
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The sole remaining question is therefore whether or not ¢xy,,,1 is conjugate to ¢ar, 1.

PROPOSITION 9. (i) Let v be of infinite order in S*. If ¢p,1 is conjugate to
@M, then dpraq is conjugate to ¢a,—x; for all X € S*.

(ii) Let y be either of odd order k or of order 2k where k is odd. If ¢, is conjugate
to ¢ar,—,1 then dar1 is conjugate to dar,—1,1-

PRrRoOF: (i) Suppose that ¢pr4,18 = Boar,—,1, Where (§ is an automorphism. Then
drm1BU) = —yB(U) and ¢1.2,8(U) = ¥*B(U) and hence, if cnm is the Fourier co-
efficient of B(U) corresponding to U"V™ then Y%cam = 7 Cam, SO Cnm = 0 unless
n = 1, and —yep mUV™ = Y*p™cn VU™, 50 C1n = —p™C1—m. It follows that
BU) =UY cuV™ where Y ¢, V™ is a unitary for which ¢, = —p™c_p, for each m € Z.

N tln cdbine Lawd £ acalh a vinmitanmer avinéa +h
A/l ULIU UULIUL LICkiANy 1L DUl W Wiisvies g C“‘.S.,S valn 1"" A "‘" ““n onfr\mr\rnl'ncm AF A., r‘aﬁnor‘

by B(U) = UY. emV™ and B(V) = V. Then, for any A € S*, dua1 = OPm,—x,1, a8
required.

(ii) If & is odd and 7 is of order k, then ¢M7 . = ¢um,1,1 whereas ¢k, g1 = Or,10- I
v is of order 2k where k is odd then ¥* = —1 and hence ¢}, ., = ém,~1, and &%, 1=
(JYSRE

PROPOSITION 10. (i) The real algebra {a € Ag : ¢um,1,1(a) = a*} is isomorphic
to the crossed product C(S!,R) xqa, Z where oy is the irrational rotation on C(S*,R),
defined by (csf)(t) = f(pt).

(ii) The real algebra {a € Ag : du,—1,1(a) = a*} is isomorphic to the crossed product
{feC(S): f(t)=F(—t) forallt € S'} Xq, Z

PROOF: When A is viewed as C(S') X4, Z via the identification of C*(U) with
C(S'), then @p1,1 restricts to the identity on C(S!) whereas @1, restricts to the
automorphism ¢ given by (¢f)(t) = f(—t). The results are therefore immediate. 0

PROPOSITION 11. Let R_; be the real algebra associated with ¢ps,—1,1 and let
R, be the real algebra associated with ¢as1;. Then Ko(R,) is isomorphic to Z? x Z,
whereas Ko(R_,) is isomorphic to Z2.

ProOF: The K-theory of R; = C(S!,R) x, Z is calculated in [7, Corollary 1.5.7].
The K-theory of A X, Z, where A = {f € C(S") : f(t) = f(~t) for all t € S}, can
be calculated using the Pimsner-Voiculescu sequence for real C*-algebras, described in
[7, 1.4.2]. Note firstly that the involution t — —t on S* gives rise to the real K-theory
K R(S%*%) of Atiyah [1] and that, by [1, (3.6)], there is an exact sequence

..—= KR*(pt) = KR 9(pt) - KR™9(S*") - KR*(pt) - ...

Using the values for K R~™(pt) from [6, Chapter III, Theorem 5.19], yields the values
K4(A) = Ko(A) = Z, Ks(A) = Kl(A) = Zg, KG(A) = KQ(A) = 0 and K7(A) =
K3(A) = Z. From the real Pimsner-Voiculescu sequence,

. = Ko(A) 5 Ko(A) = Ko(A x4 Z) > K1(A) D K (4) > ...

https://doi.org/10.1017/5000497270003286X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003286X

254 Y. Hu and P.J. Stacey (8]

where § = o, — id. Since a.[1] = [1] it is immediate that, on Ky(A), ., = id. From
the identification of K; classes with winding numbers, it follows that, on K7(C(S")) =
K, (C(S 1)), o, = id. However the action of o, on K7(A) commutes with the complex-
ification map ¢ : K7(A) = K;(C(S')), from which it follows, using K7(A) = Z and
K;(C(S")) = Z, that o, = id on K7(A). Hence,

0 — Ko(A) = Ko(A Xq Z) = K7(A) > 0
from which it follows that Ko(R_-;) = Z?, as claimed. 0

PROPOSITION 12. ¢, is not conjugate to ¢u,—,1 when v is either of infinite
order, odd order or of order 2k where k is odd.

ProoF: It follows from Proposition 9 that if ¢ar,,1 is conjugate to @as,—,,1 then
@11 is conjugate to ¢ar,_1,;. Hence, in the notation of Proposition 11, R, is isomorphic
to R_;, which contradicts that Proposition. 0

The final remaining problem is to determine whether or not ¢a ., is conjugate
to ¢ar,—4,1 When the order of v is a multiple of 4. The following proposition describes
how the problem can be resolved in certain cases when @ is rational. Recall that, when
6 = p/q with (p,q) =1 and 0 £ p < g, then the algebra A, can be identified with the
C*-subalgebra of Cy(R?, M,) generated by U, V where U(), ) = €2™*/9Uj and V(A p) =
e2™/9V, with

4 O I,
U = d Vo= -1
o and Yo (1 0)

pit

If v = ™™/ with (m,n) = 1, then the antiautomorphism ¢, is given, in this
description, by (@amy1 /)N ) = f(A + (mg/n), —u)", where tr denotes the transpose.
To see this, note that this formula defines an antiautomorphism of C,(R?, M,) mapping
U to~«U and V to V*.

The algebra Ay can be explicitly described as {f € C(R?, M,) : f(A+m,pu+n) =
WrWE f(A, w)Wsm™W;n}, where W, = U and W, = V" with pp’ = —1 (modq) and
pp”" =1 [mod gq), from which it follows that, for each f € Ay, (A, ) — det f(), p) gives a
well-defined function on T2. When restricted to unitary elements it gives a mapping from
T? to.S*. The winding numbers w; (f), ws(f) of the associated maps A — det f(), 0) and
p =+ det f(0, u) are homotopy invariants and hence (recalling that K;(Ay) is isomorphic
to Z?% with generators [U] and [V]) the K, element [f] corresponding to the unitary
element f of Agis (w1(f), w2(f))-

PROPOSITION 13. Let 8 = p/q where (p,q) =1 and let v have order n where
(g,mn) = 1. Then, for each unitary f in Ag with ¢umq,1(f) = 7" f, the K; class [f] belongs
to (r +nZ) x L.
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PROOF: Let y = e?™™/™ where (m,n) = 1. As described above, f(A+(mq/n), —p)tr
= " f(A, p) for each A, € R and hence det f(A + (mg/n),0) = y™9det f(),0). Let
m'm = 1 (modn), so that det f(A+ (g/n),0) = v det f(},0) = e?™r9/™ det f(),0) and
then det f (X + (1/n),0) = e?™/mdet f(),0) using (g,n) = 1. The winding number of
{det £(A,0) : Ao < A < Ao+ 1/n} followed by {e~2m"t/n : 0 < t < 1} is a continuous
function of A and hence constant, say N. Then the winding number of A +— det f(},0)
isr+nN,so[f]l € (r+nZ)xZ. 0

COROLLARY. ¢y, is not conjugate to ¢p,—,1 when +y is of order 4k and 6 = p/q
with (p,q) =1 and (g,4k) = 1, unless k = 1.

PROOF: If ¢pry18 = Bdu,—y,1 then dpq18(U) = —yB(U) = vy*+1B(U) and hence,

Ly tlie prupusiiiog, {/S(U)] S5 ((2:‘»-%— ij -i-4r's,Z) A Z. 1luwevel, Uy ble proul uf ©1upusitivn
8(i), [B(U)] = £(1,0). Hence k =1 (and A(U) = (-1,0)). 0

The situation k£ = 1 occurring in the last corollary always gives ¢us,1 conjugate to
@M, 1, for then v = i and so —y = y~!. We conjecture that this is the only situation
in which ¢p,1 is conjugate to das,—1-
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