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TORAL AUTOMORPHISMS AND ANTIAUTOMORPHISMS
OF ROTATION ALGEBRAS

Hu YAOHUA AND P.J . STACEY

If U, V are the generators of a rational or irrational rotation C*-algebra then an
automorphism <j> of the algebra is determined by <j>{U) = \U"VC and <fi[V) = nUbVd

where A, (j, are complex numbers of modulus 1 and a,b,c,d are integers with ad — bc =
1. If ad—be = — 1, then these formulae determine an antiautomorphsm of the algebra.
The classification of such automorphisms and antiautomorphisms up to conjugacy by
arbitrary automorphisms is studied and an almost complete classification is obtained.

1. INTRODUCTION

Let Ag be the universal C*-algebra generated by a pair U, V of unitaries satisfying

VU = pUV where p — e2nie and 0 ^ 6 < 1. Brenken [2] and Watatani [8] introduced an

SL(2, Z) action on Ae, which can be described in the following way. If A € SL(2, Z) and

A, /i g Sl then an automorphism <PA,\,H °f ^ *s determined, using the universal prop-

erty, by (j>A,xAU) = WaVc and 4>A*AV) = »UbVd, where A = ( a M . Following

Watatani, such automorphisms of Ag will be called toral. The particular choice A = emac

and fi = e*lbd gives an SL(2, Z) action by toral automorphisms.

A series of papers by Farsi and Watling, including [3] and [4], obtained properties of
the fixed point algebras and cross product algebras associated with toral automorphisms.
The purpose of the present paper is to include a study of antiautomorphisms and to study
the conjugacy problem for both toral automorphisms and antiautomorphisms.

2. CONJUGACY OF TORAL AUTOMORPHISMS

The description of toral automorphisms up to conjugacy was mostly completed in
the paper [4]. The following propositions make those results explicit as well as completing
the description. Under the isomorphism of Kx{Ae) with Z2 given by [C/nKm] •-» (n,m)
the map (4>A,X,^)* corresponds to multiplication by A and hence a necessary condition
for <J>A,\,H

 anc* <f>A',x',ii' to be conjugate automorphisms is that A and A' are conjugate in
SL(2, Z). The following results specify the extra conditions needed to ensure conjugacy
of the automorphisms.
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248 Y. Hu and P.J. Stacey [2]

PROPOSITION 1 . (Farsi and Watling). If trace(A) ^ 2 then <J>AXII J S conjugate
to 0/i,i,i. Furthermore <J>A,I,I is conjugate to (J>B,I,I if and only if A is conjugate to B in
SL(2,Z).

P R O O F : This is established in the course of the proofs of [4, Proposition 3 and
Lemma 4]. D

If trace(A) = 2 then it is well-known that A is conjugate in SL(2, Z) to M = I j

for some m 6 Z and that m is uniquely determined. The following explicit description of

the conjugacy when m ^ 0 is needed for Proposition 2. Let A = I I with

I c 1 + a J
a2 = —be. If c = 0 then A is already of the required form (with a — 0), if b = 0 then

( if I I 1 = 1 I is of the required form

- 1 0 J \ c 1 + a J \ 1 0 J \ 0 1 - a J
(with a = 0) and otherwise each of a, b, c are non-zero. In the latter case let \m\ = (b, c)
with bm > 0. From the condition a2 = -be it follows that b = r2m and c = -t2m for
some r;t € Z with (r, t) — 1. Furthermore the signs of r, i can be chosen so that a = mrt.

I I I I
If u, v are chosen to satisfy ru - tv = 1 then /I = I I I „ I I

\ t u J \ Q 1 ) \ - t r

This last equation and hence the equations o = mrt, b = r2m and c = — t2m hold even
when b = 0 or c = 0.

PROPOSITION 2 . (i) (Farsi and Watiingj. 7f A = I ° I, a =
V c 1 + a J

mrt, b — r2m and c = — t2m with (r, t) = 1 and m ^ 0 then 0/I,A,^ is conjugate to

4>M,Jtl where M=(1
Q ^ j a n d 7 = A ^ ' / f — ™ 2 ! / 2 .

(ii) (f>M,j,i is conjugate to <j>M,-f,i if and only ifj — 7' or 7 = 7'"1.
PROOF: (i) This is shown in the proof of [4, Lemma 16].

(ii) Suppose that 0M,7,I/? = /?0M,y,i for some automorphism /? of AB. Then
(j>M,-r,iP(U) = i@{U). Following the proof of [3, Theorem 1], let Cp,, be the Fourier
coefficient of fi{U) corresponding to VV, defined to be the usual Fourier coefficient
of E(f3(U)V*9) corresponding to Up, where E is the canonical conditional expectation
from Ae onto C*(U). Then Tll'cp,qU

pVi =
 1£jpcp,qU

p(UmV)'' = E7pCp,,pst/p+«mV«
for some s, so |cp,9| = |cp+,mi?| for each p, q and thus, since |cp,,| —> 0 as p -* 00, Cpi9 = 0
unless q = 0. It follows that P(U) has Fourier series ^JcvU

p and that CpV = Cp7p for each
p. If 7 has infinite order then Cp is non-zero for only one value of p and thus ft{U) = cvll

p.
If 7 has order k then /?([/) = Upf(Uk) for some / : S1 -»• 5 1 and some p such that 7' = 7P.
If /?» : i^i (Ag) —> -ftTi (j4g) corresponds to /? then, when K\ (Ag) is identified with Z2 in the
usual way, it follows that /?„( 1,0) = (p+kt,0) for some le Z (or/3,(l,0) = (p,0) when 7
has infinite order). On the other hand, from 0M,7,I/? = 0<t>M,Y,\ it follows that MB = BM
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where /3» has matrix B. However if [ " ", | [ | = ( "n '[" ) ( " " ) then

c = 0 and a — d and so, from ad — be = 1, B = ± I I for some b € Z. Hence

&(1,0) = ±(1 ,0 ) and so (p + k£, 0) = ±(1 ,0 ) . If k ± 1 ( that is, 7 ̂  1) then I = 0 and

p = ± 1 whereas if A; = 1 then 7* = 7 = 1. Thus in all cases 7 = 7 ± 1 . Conversely, if

T7 = 7 - 1 and /? is defined by /?(£/) = p m t / ' and £(V) = V* then </>Mn,i0 = /fyW,i> as

required. D

The final case to be considered is when A is conjugate to, and hence equal to, 72.

The behaviour of 4>A,\,» depends on the nature of the subgroup G of S 1 generated by A, \i.

Tins Uiui eiuiiei uc a (̂ yuni; suugiuup ui uiuu ill, ^wiicic nv la tiic icaou wuuuuu UJUJUIJJIC

of the orders of A, /x), an infinite cyclic group (when A or /x has infinite order and A* = / /

for some /c, £ not both zero), a group Z m x Z where 1 < TO (when Xkfi~l is of finite order

for some k, £, not both zero, but either A o r / i has infinite order) or Z x Z (when Xkfi~l

is of infinite order unless k = £ = 0).

PROPOSITION 3 . (i) (Farsi and Watling). If A, /i generate a cyclic subgroup of

order m in S1 then 4>i,\tli is conjugate to 0/,w,i where w = e2n'/m.

(ii) If A, fi generate an infinite cyclic subgroup in Sl then 4>it\,^ is conjugate to <f>Itin

for some 7 of infinite order in S 1 . Furthermore 0/,i,7 is conjugate to 4>i,i,-y> if and only if

7 = 7' or 7 = 7 -1.
(iii) If A, /x generate a subgroup of S 1 isomorphic to Z m x Z then 0/,A,/J is conjugate

to 0/,o>",7 for some n with 1 ^ n < TO and (n, m) = 1 and some 7 of infinite order, where

u = e
2%ilm. Furthermore 0/,w»,7 is conjugate to ^/>w«',y if and oniy if either un — ujn> and

7 = o)57; for some s e Z o r u " = tu""' and 7 = wSry'~l for some s € Z.
(iv) If A,/i generate a subgroup of Sl isomorphic toZ x Z tien tie torai automor-

phisms conjugate to 0/,A,/J are those of the form (f>ii\alii>t\'-fi. where sa — rb — 1.

PROOF: (i) From the proof of [4, Theorem 20] there exists A = I ° 1 6 SL(2,Z)

such t h a t Xafic — u> a n d Xb(id = 1. T h e n (j>i,xtli<j>A,i,i — <l>A,i,i<f>i,<j,i, as required .
(ii), (iii). Let Xkn~l be a generator of { l , . . . , w m ~ x } (where TO = 1 in case (ii)),

let k! = k/(k,i) and let £' = £/(k,£). Then in case (ii) Xk> fi~e = 1 and in case (iii)

Xk'n~e = un for some 1 ^ n < TO with (n, m) = 1. There exist 6, d 6 Z with dfc' + b£' = 1

and then >1 = , € SL(2, Z) and <£/ A U0X I 1 = 4>A I i< /̂*;» A ' ^ (with n = 0 in case

(ii))-

Suppose that there exists an automorphism /? with p<f>j^,n' y = <t>ijj*.-,(i (with n =

n' = 0 in case (ii)). If the Fourier coefficient of /?(£/) corresponding to UrV is (v,,

then u)n'crt, = ujnTjsCrtt and so, since 7 is of infinite order, c^, = 0 unless s = 0. Thus
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0(U) € C*(U). Similarly, if the Fourier coefficient of /3(V) corresponding to U'V1 is
dStt then j'd^t - u)m'fda<t and, since 7 is of infinite order, there exists a unique t such
that da<t 4- 0. Thus 0(V) = WVl for some W <E C*(U). The matrix corresponding to

/?, : Ki(Ae) —> Kx{Ag) is therefore of the form I 1 and, since /?. is invertible, it
V° V

follows that t = ± 1 . Hence 7 = V or 7 = 7 " 1 in case (ii) and 7 = 0/7' for some s € Z
or 7 = u /V" 1 for some s € Z in case (iii).

By reversing the roles of n, 7 and n',7', it follows that not only 0(U) € C*(U)
but also (5~1{U) € C*(U). Hence the automorphism /3 restricts to an automorphism of
C*(U) implementing a conjugacy between the restrictions of 0 / u n- y and <A/,W»,7. However
unless wn = w±n', the associated rational rotation algebras are non-isomorphic. The case
u)n = wn> corresponds to 0,[U] — [U] and hence to t — 1, whereas u" = w~n' corresponds
to P»[U] — —[U] and hence to * = — 1. Thus either wn — u)n> and 7 = w3V for some s € Z
or w" = w~"' and 7 = w'V"1 for some s € Z.

Conversely, in case (iii) let /?(£/) = [/ and /3(V) = U"'V where ns' = s (modm),
which exists because (n,m) = 1. Then (/>;,u»,7/? = P^i^^-y- Similarly let @(U) = (7*
and ^(V) = K* in case (ii) to obtain 0/jli7/? = /?0/jli7-i or /?([/) = [/• and 0{V) = US'V
in case (iii) to obtain 4>i^ny0 = /30/,w-nw»7-i.

(iv) Let <!>IX^ = Mij,*,. Then ^ , A ,^ ( t / ) = A'/?(I/) and <t>i^P(V) = n'0(V)
so if the Fourier coefficient of f3(U) corresponding to UaVb is cO)6 and that of (3(V)
corresponding to UrVs is rfr,s, then A'cOi(, = Xafj,bca}t, and //dr,s = XTnsdr^3. Since no two
distinct pairs Aa/i6 are equal it follows that /?(£/) = caibU

aVb for some a, b and similarly
= dr,sU

rV". Hence A' = Aa/i6, fi' = Ar/is and, from the invertibility of 0, on
g), sa - rb = 1. Conversely, if a,b,r,s satisfy the condition sa - rb — 1 then

^ ' w h e n Z3^) = f7^6 a n d ^(v) = t r i^ . D

3. ANTIAUTOMORPHISMS

In order to establish the existence of an antiautomorphism of Ae, observe that
the opposite algebra A0^ is generated by the elements U, V but subject to the rela-
tion VU = ~pUV rather than VU = pUV. Hence A°£ is isomorphic to A\-o and, by
the universal property, there exists an isomorphism a from Ag onto A°g with a(V) = U
and a(U) — V. Composing this with the identity antiautomorphism from A0^ to Ag

gives an antiautomorphism of Ae, denoted by (J>B,I,\ where B = I I S GL(2, Z). If

A = [ I € GL(2, It) with ad — be = - 1 then the composite 4>AB » \4>B 11 is an anti-
\c dj "

automorphism 4>A,x,n with <j>Ax»(U) = \UaVc and <J>A,\AV) =
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PROPOSITION 4 . (i) IfA,A' e GL(2,Z) with det{A) = 1 then

<t>A,\,ii<t>A',\',ii' = <l>AA',y,S

where

7 = A'A°'/ic'/3('"ic'(c'~1))/2+(aca'(o'~1))/2+a'1><:c' and 8 = fi'X"f/

(ii) If A, A' e GL(2,Z) with det(A) = - 1 then

where

7 = A'Ao'/ic'p(6dc'(c'"1))/2+(ao'c(a'~1))/2+oa'<:'d and 8 = / / A 6 ' / /

(iii) Tiie map from A = I ° I to T/U = ^4,exp(«ac),exp0riM) is a GL{2, Z) action by
\c aJ

toral automorphisms and antiautomorphisms.

(iv) Wien GL(2, Z) acts on T2 by (A, / x ) ^ = (A>c, A 6 / ) , ^ ie re >1 = ( ° & ), then
V V

^IXI^A = IPA<I>I,{\,IJL)8A and hence (A,/x, A) i-+ ipA<t>i,\,» JS a n action of the semidirect
product T2 » GL(2,Z).

P R O O F : These are all straightforward calculations. D

A major component of the classification of the toral antiautomorphisms up to conju-
gacy is the classification up to conjugacy of elements in GL(2, Z) with negative determi-
nant. If two such elements A, B satisfy A = QBQ~l with Q € GL(2, Z) then, replacing
Q by QB if necessary, they are conjugate by some Q € SL(2, Z).

The following result shows that, as for automorphisms when trace(j4) ^ 2, the
conjugacy problem for toral antiautomorphisms (via automorphisms) when trace(-A) ^ 0
reduces to the conjugacy problem in GL(2,Z).

PROPOSITION 5 . If trace(A) ^ 0 and det(4) = - 1 then <f>AtXill is conjugate to
4>A,I,I- Furthermore </>/t,i,i is conjugate to 4>B,I,I if and only if A is conjugate to B in
GL(2,Z).

P R O O F : Let A = Ia b ) , let 7 = \V-d)l(*+d)^Ka+d) a n d l e t 6 = Xb/(a+d)^i-ayia+d)

V v
Then <j>A,x,n<i>i,-r,s = <t>i,if<t>AM- UA = QBQ'1 with Q e SL(2, Z) then ^QXI^B^Q)^ =
<J>A,\,I* f°r s o m e A,/x € 5 1 and hence, by the first part, is conjugate to 4>A,I,I- 0

If A € GL{2,Z) with det(4) = - 1 and trace(yl) = 0 then A2 = I. Hence, from [5,

Lemma 5.5, p. 166], A is conjugate to either M = I 1 or N — j I (which are

not conjugate to one another).
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PROPOSITION 6 . If t r aced ) = 0 then either (J>AXI*
 is conjugate to <£M,7,I for

some 7 € Sl or to <j>N,y,i for some 7 € 5 1 .

P R O O F : Let Q g SL(2,Z) with QAQ-1 = M (or QAQ"1 = N). Then

0O,i,i0>i,A,/»^oa,i =
 0M,A>' for some A',/*' £ S1 (or ^ i ( 1 i for some A',/z' € S1). However

4>I,iLA<i>N,\n,l = 0Ar,A,/.0/,/»,l a n c l i if <̂ 2 = A*. t n e n <i>I,l,64>M,\,ii = <l>M,\,l<f>I,l,6- D

PROPOSITION 7 . 0jv,7,i is conjugate to <J>N,T>,\ if and only if 7 = 7' or 7 = 7 '" ' .

P R O O F : Let /?0jv,7,i = ^jv.y.ift Then /ty/,7l7 = ft^.-y.i = $v,y,i/* = ^.V.v/3- T h u s

when 7 has infinite order then, by Proposition 3(ii), either 7 = 7' or 7 = 7 " 1 . When 7
has finite order m then, by Proposition 3(i), 7 = 7'" for some 1 ^ n < m with (n, m) = 1.
Then <j>1>ll}1,{Utnj3{U)) = V ^ t / " 1 (£/,y,y/?([/) = 7-1t/"l/?</>/,7,7(£/) = [/'"/?([/) and simi-
larly </./iy,y(V

r*n/3(V)) = V*n;9(y), from which it follows that U*n0(U) € Fix(4>,n,ty) =
C'(Um, UV*) and V*n/3(y) e C*(Um, UV). Hence the induced map 0t on AT^^) = 1?
satisfies /3»(1,0) = (n + ^m + fc, -/c) for some £, k e Z and ft(0,1) = (/c' + f m, n - k')
for some d, fc' € Z that is,

n-k' ) •

However ptN — N(3t, where Af = I I, from which it follows that

If ft = ±1, it follows that k = 0 and n + ^m = ±1

and hence n = 1 or m — 1, as required. Similarly, if ft = ±N then /c' + I'm = ±1 and
n = A;', so n — 1 or m— 1, as required. Conversely, <£_/,i,i0yv,7,i = ^Af,7->,i<^-/,i,i for each
7SS1. D

P R O P O S I T I O N 8 . (i) Jf $M,7,I is conjugate to <̂ M,y,i t^en 72 = 7<2 or 72 = 7'"2

(ii) If 7 = 7' or 7 = j ' ~ l then <^M,7,I is conjugate to 0M,Y,I-

P R O O F : (i) Let /tyM,7,i = 0M,y,i/9- Then ^ / ^ . j = /?0M,7J1 = ^M.y.i/3 = <£/,7'M0-

Thus, when 7 has infinite order then, by Proposition 3(ii), either j 2 = j " 2 or 72 = 7~2.
When 72 has finite order m > 1 then, by Proposition 3(i), 72 = 7<2n for some 1 ^ n <
m with {n,m) = 1. Then ^/i7'2,1([/*

Tl/3([/)) = U*nP{U) and <t>,n>2tlP(V) = 0{V) so
U'n/3{U) G C*(t/m,V) and 0(V) G C' ({ / m ,^) . Hence ft : / f j ^ ) ' - * ^ i ( / l 9 ) equals

I , I for some k,£,k',£' € Z. However, the condition ftM = Mft implies

and hence n = 1 or m — 1. Finally, when 72 = 1 then

7'2 = 1, so the condition also holds in this case.

(ii) This is immediate since <£-/,I,I0M,7,I = ^Af,7-',i0-/,i,i- "
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The sole remaining question is therefore whether or not 0M,7,I is conjugate to (f>M,—,,i-

PROPOSITION 9 . (i) Let 7 be of infinite order in S1. If<j>M,y,i is conjugate to

</>M,—r,i then <J>M,X,I is conjugate to 4>M,-\,\ for all A G S1.

(ii) Let 7 be eifcier of odd order k or of order 2k where k is odd. If 0M,7 , I is conjugate

to (pM,-7,i then </>M,I,I is conjugate to </>M,-I,I-

P R O O F : (i) Suppose that <J>M,-I,\P — /3^Af,-7,ij where @ is an automorphism. Then
<j>M,-y,iP{U) = —7/?(J7) and 0/,72,i/?(£/) = i2p(U) and hence, if Cn,m is the Fourier co-
efficient of /?({/) corresponding to UnVm then 72Cnim = 72nCn,m, so c > m = 0 unless
n = 1, and - 7 c n , m f / n y m = -ynpmncn-mVmUn, so ci,m = - p m c ! _ m . It follows that
P(1J) = U^2 CmVm where £ cmv"1 i s a unitary for which c™ = - p m c _ m for each m e Z.

by /3(I/) = [ / E c m ^ m and p{V) = V. Then, for any A € S1, <1>M,X,IP = P4>M,-\,U ™
required.

(ii) If k is odd and 7 is of order A;, then $Jfi7)i = 0M,I,I whereas 0$fi_7il = 0M,-I , I - If
7 is of order 2/J where k is odd then 7* = —1 and hence <^M,7,I ~ <AM,-I,I and <^Af,-7,i

 =

PROPOSITION 1 0 . (i) Tie real algebra {a € Ag : (J>M,I,I{O) = a*} is isomorphic
to the crossed product CiS1,^.) xag Z where a$ is the irrational rotation on C(51,R),
defined by (agf)(t)=f(pt).

(ii) Tie real algebra {a € A9 : <£M,-I,I(O) = a*} is isomorphic to the crossed product

{f e CiS1) : f{t) = 7 H ) for all t e S1} xa, Z.
PROOF: When AB is viewed as CiS1) xat Z via the identification of C*(U) with

CiS1), then <f>M,i,i restricts to the identity on CiS1) whereas </>M,-I,I restricts to the
automorphism <p given by (<£/)(t) = f{—t). The results are therefore immediate. D

PROPOSITION 1 1 . Let i?_i be the reai algebra associated with 0M,-I , I and Jet
i?i be the real algebra associated with 0M,I,I- Tien .ft'o(.Ri) is isomorphic to 1? x Z2

wiereas KoiR-i) is isomorphic to 1?.

P R O O F : The /C-theory of Ri - C ( S \ R ) x a Z is calculated in [7, Corollary 1.5.7].
The ^-theory of A x o Z, where A = {/ € (^(S1) : / ( t ) = f(-t) for all t e S 1 } , can
be calculated using the Pimsner-Voiculescu sequence for real C*-algebras, described in
[7, 1.4.2]. Note firstly that the involution t >-> — t on S1 gives rise to the real if-theory
KRiS2fi) of Atiyah [1] and that, by [1, (3.6)], there is an exact sequence

. . . -> KR2~qipt) -+ KR-"(pt) ->• KR-"iS2fi) -4 KR3-q(pt) -> • . . .

Using the values for KR~nipt) from [6, Chapter III, Theorem 5.19], yields the values
KA(A) = KoiA) = Z, K5iA) = Kt{A) - Z2, /if6(A) = K2(A) = 0 and K7(A) =
K$iA) = Z. From the real Pimsner-Voiculescu sequence,
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where 9 = a, - id. Since a»[l] = [1] it is immediate that, on K0(A), a, = id. From
the identification of K\ classes with winding numbers, it follows that, on K7(C{SX^) =
/<'i(C(51)), a, = id. However the action of a, on K7(A) commutes with the complex-
ification map c : K7(A) —> Ar

7(C(51)), from which it follows, using K7(A) = Z and
K7(C(S1)) = Z, that a , - id on K7{A). Hence,

0 -* K0(A) -> K0{A xa Z) -> K7(A) ->• 0

from which it follows that Ko(R-i) = Z2, as claimed. D

PROPOSITION 1 2 . 4>M,-,,I J S not conjugate to 4>M,—I,\ when 7 is either of infinite
order, odd order or of order 2k where k is odd.

P R O O F : It follows from Proposition 9 that if 0M,7,I is conjugate to <PM,—,,I then
0M,I,I is conjugate to <J>M,-I,I- Hence, in the notation of Proposition 11, Ri is isomorphic
to R-i, which contradicts that Proposition. D

The final remaining problem is to determine whether or not 4>M,-y,i is conjugate
to (f>M,--y,i when the order of 7 is a multiple of 4. The following proposition describes
how the problem can be resolved in certain cases when 9 is rational. Recall that, when
9 — p/q with (p, q) = 1 and 0 ^ p < q, then the algebra AB can be identified with the
C'-subalgebra of Cb(R

2, Mq) generated by U, V where [/(A, /x) = e2"A/«£/0 and V(\, /i) =
Vo with

Uo = and Vn =

\ p

If 7 = e2T«Wn with (m,ri) = 1, then the antiautomorphism 4>M,I,\ is given, in this
description, by [</>M,-,,if)(\ p) — f(X + {m(i/'n),—}i) '', where tr denotes the transpose.
To see this, note that this formula defines an antiautomorphism of C(,(R2, Mq) mapping
U tojU and V to V*.

The algebra Ag can be explicitly described as {/ 6 C(R2, Mq) : f(X + m,fi + n) =
W/

1
nW£"/(A,^)W2*

mW<7n}, where W\ = C/J and W2 = Vf with pp' = - 1 (mod?) and
pp" = 1 (modg), from which it follows that, for each / £ Ag, (A, /z) i-4 det/(A,/z) gives a
well-defined function on T2. When restricted to unitary elements it gives a mapping from
T2 to S1. The winding numbers wi(f), w2(f) of the associated maps A i-4 det /(A, 0) and
/j. »-»• det/(0,/x) are homotopy invariants and hence (recalling that K1(Ae) is isomorphic
to Z2 with generators [U] and [V]) the if] element [/] corresponding to the unitary
element / of Ag is (wi(f),w2(f)).

PROPOSITION 1 3 . Let 9 = p/q where (p, q) = 1 and let 7 have order n where
(q, n) = 1. Tien, for each unitary / in Ag with 0M,7,I(/) = Yf, the K\ class [f] belongs
to (r + nZ) x Z.
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P R O O F : Let 7 = e
2irim/n where (m, n) = 1. As described above, f(\+(mq/n), -fif

= 7r/(A,/x) for each A,/x € R and hence d e t / ( A + (mq/n),0) = 7 r «de t / (A ,0 ) . Let

m'm = 1 (modn), so that det / ( A + {q/n), 0) = j T 9 m > det / (A,0) = e
2 j r i r« / ndet /(A, 0) and

then d e t / ( A + ( l / n ) , 0 ) = e 2 7 r i r / n de t / (A,0) using (q,n) = 1. The winding number of

{ d e t / ( A , 0 ) : Ao ̂  A ^ Ao + 1/n} followed by {e~
2l!iTtln : 0 ^ t ^ l } is a continuous

function of Ao and hence constant, say N. Then the winding number of A *-¥ de t / (A ,0 )

is r + nN, so [/] € (r + raZ) x Z. D

COROLLARY. 0M, 7 , I is not conjugate to 0 M , - 7 , I when 7 is of order 4k and 9 = p/q

with (p, q) = 1 and (q, 4k) — 1, unless k — 1.

P R O O F : If (/>M,7,I/? = / ¥ M , - 7 , I then <t>M,7tiP(U) = -j/3(U) - j2k+1P(U) and hence,

by ulie piupusiuiuu, I^^UJI c ^2n,-j- 1) -rirvtuj *. S. Iluwevei, \jy Luc piuui ui Fiupuaiuiun

8(i), [P(U)} - ± (1 ,0 ) . Hence k = 1 (and 0{U) = ( - 1 , 0 ) ) . D

The situation A; = 1 occurring in the last corollary always gives <AM,7,I conjugate to

<f>M,-i,i, for then 7 = ± i and so - 7 = 7" 1 . We conjecture that this is the only situation

in which </>M,7,I is conjugate to ^ M , - 7 , I -
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