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Some Convexity Features Associated
with Unitary Orbits

Man-Duen Choi, Chi-Kwong Li and Yiu-Tung Poon

Abstract. LetHn be the real linear space of n×n complex Hermitian matrices. The unitary (similarity)

orbit U(C) of C ∈ Hn is the collection of all matrices unitarily similar to C . We characterize those

C ∈ Hn such that every matrix in the convex hull of U(C) can be written as the average of two

matrices in U(C). The result is used to study spectral properties of submatrices of matrices in U(C),

the convexity of images ofU(C) under linear transformations, and some related questions concerning

the joint C-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are

also discussed.

1 Introduction

Let Hn be the real linear space of n×n complex Hermitian matrices and Un the n×n

unitary matrices. The unitary (similarity) orbit U(C) of C ∈ Hn is the collection of
all matrices unitarily similar to C , i.e.,

U(C) = {U ∗CU : U ∈ Cn×n,U ∈ Un}.

Evidently, U(C) can be viewed as the orbit of C ∈ Hn under the action of the unitary
group Un via similarity, and hence U(C) is a real homogeneous manifold with nice

geometrical property (see e.g. [36]). In fact, U(C) is an interesting geometrical object
even under the usual geometry. For instance, since all the matrices in U(C) has the
same Frobenius norm as C , the set U(C) is part of the boundary of a strictly convex
set. As a result, any three different points in U(C) are not collinear as noted in [35],

and every point in U(C) is an extreme point of conv U(C), the convex hull of U(C).
Suppose C ∈ Hn is not a scalar matrix. Then the affine span of U(C) is the set

of matrices with trace equal to that of C (see e.g., [33]). Hence, conv U(C) has (real)
affine dimension n2 − 1. It is known that every element in a convex set with (real)

affine dimension n2 − 1 can be written as the convex combination of n2 extreme
points. By a result in [3], every matrix X in conv U(C) can be written as the average

of n matrices in U(C). For some special C ∈ Hn, the value n can be further reduced.

For example, if C is a rank k orthogonal projection with 1 ≤ k < n, then every matrix
X ∈ conv U(C) can be written as an average of max{k + 1, n − k + 1} matrices in
U(C) (see [9, Theorem 3.5]). Such results have interesting applications including the
proofs of many matrix and norm inequalities.

In Section 2, we characterize those matrices C ∈ Hn with the following special
geometrical feature: every matrix X ∈ conv U(C) can be written as the average of
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two matrices in U(C). Recall that U(C) is the set of extreme points of conv U(C).
In general, we say that a convex set is mid-point convex if every element in it is the

mid-point of two extreme points. Clearly, every mid-point convex set is a convex set,
and singletons are mid-point convex sets. In R2, it is not hard to see that a compact
convex set S is mid-point convex if and only if every boundary point of S is an extreme
point. For higher dimensional linear spaces, characterizing mid-point convex sets is

more difficult. In matrix spaces, an interesting example of mid-point convex set is
the set S of n × n complex matrices with norm at most one; it is known that if X is
such a matrix and if X = PU for a positive semi-definite matrix P and U ∈ Un, then
X = (X1 + X2)/2, where X1 = (P + i

√
I − P2)U and X2 = (P − i

√
I − P2)U are

extreme points of S.
For conv U(C), if n = 2 then every conv U(C) is mid-point convex. To see this,

observe that if C has eigenvalues c1 ≥ c2, then every X ∈ conv U(C) has eigenvalues
d1 ≥ d2 such that c1 ≥ d1 ≥ d2 ≥ c2 and c1 + c2 = d1 + d2; see Proposition 1.1 below.

Thus, there exists U ∈ Un such that X = U ∗DU , where D is the diagonal matrix with
diagonal entries d1 and d2. Let d =

√

(c2
1 + c2

2 − d2
1 − d2

2)/2,

C1 = U∗
(

d1 d

d d2

)

U and C2 = U∗
(

d1 −d

−d d2

)

U .

Then C1,C2 ∈ U(C) and X = (C1 + C2)/2.

In general, we show in Theorem 2.1 that conv U(C) is mid-point convex if and
only if the eigenvalues of C form an arithmetic progression, i.e.,

C has eigenvalues a, a + b, . . . , a + (n− 1)b, for some a, b ∈ R.(1)

Of course, this includes the trivial case when C is a scalar matrix, equivalently,
U(C) = conv U(C) is a singleton. It is interesting to see that Hermitian matrices C

satisfying (1) can be characterized by the mid-point convexity on conv U(C), which
is such a simple geometrical property. On the contrary, there does not seem to be
simple algebraic ways to characterize such matrices.

In Section 3, we study the spectral properties (such as the possible eigenvalues or

singular values) of submatrices of a given matrix in C ∈ Hn with prescribed eigen-
values. Such problems have been studied by other researchers; see [12, 27] and their
references. Our approach is to consider the whole collection of submatrices of ma-

trices in U(C) lying in certain rows and columns. For example, we consider the set
Pk(C) of k × k (leading) principal submatrices of matrices in U(C), where k ≤ n.
We give a complete description of Pk(C) and conv Pk(C). Moreover, we characterize
those C ∈ Hn for which Pk(C) is convex. Also, we use the main result (Theorem 2.1)

in Section 2 to study the set

Sk(C) =

{

X ∈ Ck×(n−k) :

(

P X

X∗ Q

)

∈ U(C) for some P ∈ Hk,Q ∈ Hn−k

}

.

It turns out that a complete description of Sk(C) is quite intricate.1 We obtain com-
plete description of conv Sk(C), and characterize those C ∈ Hn for which Sk(C)

1A complete description of Sk(C) has been obtained in [25] recently.
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is convex. It is shown in Theorem 3.3 that for a given C ∈ Hn with eigenval-
ues c1 ≥ · · · ≥ cn, Sk(C) is convex if and only if the sequences (c1, . . . , cp) and

(cn−p+1, . . . , cn) are arithmetic progressions with the same common difference, where
p = min{k, n− k}. We note that the study of Pk(C) and Sk(C) is related to the prob-
lem of completing a partial matrix of the form

(

D ?
? ?

)

or

(

? X

X∗ ?

)

to a matrix in U(C).

In Section 4, we study the C-numerical range of A = (A1, . . . ,Am) ∈ H
m
n defined

by
WC (A) =

{(

tr(A1U∗CU ), . . . , tr(AmU∗CU )
)

: U ∈ Un

}

,

which can be viewed as the image of U(C) under the linear map φ : Hn → Rm defined
by

φ(X) = (tr A1X, . . . , tr AmX).

If C is a rank one orthogonal projection, WC (A) reduces to the usual (joint) nu-
merical range of A = (A1, . . . ,Am), which has been studied extensively, see [1, 5,
6, 8, 10, 13, 19, 31] and their references. We will identify certain classes of A =

(A1, . . . ,Am) so that WC (A) is convex. It will be shown that WC (A) is convex if and
only if WD(A) ⊆WC(A) whenever D ∈ conv U(C). These extend the results of many
other authors [1, 13, 15, 24, 26, 30, 37].

In Section 5, we discuss results for symmetric matrices analogous to those on com-

plex Hermitian matrices in Sections 2–4. In particular, using a result of Fulton [14],
we can transfer results on complex Hermitian matrices to real symmetric matrices.

In our discussion, we let {E11, E12, . . . , Enn} be the standard basis for the algebra
of n × n complex matrices. Denote by λ(X) the vector of eigenvalues of X ∈ Hn

with entries arranged in descending order. For C ∈ Hn, diag(C) ∈ Rn denotes the
diagonal of C . If c = (c1, . . . , cn) ∈ Rn, then [c] denotes the diagonal matrix with
c1, . . . , cn along the diagonal. Given two vectors x and y in Rn, we say that x is weakly

majorized by y, denoted by x ≺w y, if the sum of the k largest entries of x is not larger

than that of y for k = 1, . . . , n. If in addition that the sum of the entries of x is the
same as that of y, we say that x is majorized by y, denoted by x ≺ y; see [28] for
the general background and basic properties of majorization. The following result is
useful in our discussion.

Proposition 1.1 ([17, 29, 30, 32, 34]) Let C ∈ Hn and d1, . . . , dn ∈ R. The follow-

ing conditions are equivalent.

(a) There is a matrix in U(C) with diagonal entries d1, . . . , dn.

(b) There is a matrix in conv U(C) with diagonal entries d1, . . . , dn.

(c) There is a matrix in conv U(C) with eigenvalues d1, . . . , dn.

(d) (d1, . . . , dn) ≺ λ(C).

Moreover, the set of vectors (d1, . . . , dn) satisfying any one (and hence all) of the above

conditions is the convex hull of vectors of the form (ci1
, . . . , cin

), where (i1, . . . , in) is a

permutation of (1, . . . , n).
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Proposition 1.1 has many applications in the study of inequalities and convexity
problems. Note that if C ∈ Hn and A j = E j j for j ∈ {1, . . . , n}, then (d1, . . . , dn) ∈
WC(A1, . . . ,An) if and only if d1, . . . , dn are the diagonal entries of a matrix in U(C);
so Proposition 1.1 gives a complete description of WC (A1, . . . ,An). Also, Proposi-
tion 1.1 gives the answer to the problem of completing a partial matrix of the form







d1 ? ?

?
. . . ?

? ? dn







to a matrix in U(C).

2 conv U(C) with the Mid-Point Convex Property

In this section, we characterize those matrices C ∈ Hn so that conv U(C) has the

mid-point convex property, i.e., every matrix in conv U(C) can be written as the
average of two matrices in U(C). It turns out that these are the same as those C ∈ Hn

satisfying the much weaker condition that every matrix in conv U(C) can be written
as a convex combination (not necessary the average) of two matrices in U(C), and

they are the matrices of form (1).

Theorem 2.1 The following conditions are equivalent for a given C ∈ Hn:

(a) conv U(C) = { 1
2
(C1 + C2) : C1,C2 ∈ U(C)}.

(b) conv U(C) = {tC1 + (1− t)C2 : C1,C2 ∈ U(C), 0 ≤ t ≤ 1}.
(c) C has eigenvalues a, a + b, . . . , a + (n− 1)b for some a, b ∈ R, i.e., the eigenvalues

of C form an arithmetic progression.

To prove Theorem 2.1, we need some notations and a recent result concerning the
eigenvalues of X,Y,Z ∈ Hn with X = Y + Z. Let

T
n
1 =
{(

(r), (s), (t)
)

: 1 ≤ r, s, t ≤ 1, r + 1 = s + t
}

.

For m > 1, let T
n
m to be the set of (R, S,T), where R = (r1, . . . , rm), S = (s1, . . . , sm)

and T = (t1, . . . , tm) are three subsequences of (1, . . . , n) satisfying the following
conditions:

(1)
∑m

j=1 r j + m(m + 1)/2 =
∑m

j=1(s j + t j).

(2) For all 1 ≤ k < m and (U ,V,W ) ∈ T
n
k , where U = (u1, . . . , uk), V =

(v1, . . . , vk) and W = (w1, . . . ,wk) with k < m, we have

k
∑

j=1

ru j
+ k(k + 1)/2 ≥

k
∑

j=1

(sv j
+ tw j

).

With these notations, we can state the following theorem, see [14, 20, 21] and also
[7, 11, 16, 18, 38].
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Eigenvalue Inequality Theorem The necessary and sufficient condition for the real

numbers a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn to be the eigenvalues of three

matrices X,Y,Z ∈ Hn such that X = Y + Z is:

n
∑

j=1

a j =

n
∑

j=1

b j +

n
∑

j=1

c j

and for every 1 ≤ m < n, and (R, S,T) ∈ T
n
m,

∑

r∈R

ar ≤
∑

s∈S

bs +
∑

t∈T

ct .

The following lemma will be useful in the proof of Theorem 2.1 and Corollary 2.3.

Lemma 2.2 Let b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ Rn with b1 ≥ · · · ≥ bn and

c1 ≥ · · · ≥ cn. If there exist B1,B2 ∈ U([b]) and C1,C2 ∈ U([c]) such that

B1 + C1 = rIn and B2 + C2 = [b1 + c1]⊕ sIn−1

for some r, s ∈ R, then the sequences (b1, . . . , bn) and (c1, . . . , cn) are arithmetic pro-

gressions with the same common difference.

Proof Since B1 + C1 = rIn, we have bi = r − cn+1−i for 1 ≤ i ≤ n, and hence

bi − bi+1 = cn−i − cn+1−i for 1 ≤ i ≤ n− 1.(2)

If B2 + C2 = [b1 + c1] ⊕ sIn−1, then (see [22, Lemma 4.1]) B2 = [b1] ⊕ B3 and

C2 = [c1] ⊕C3, where λ(B3) = (b2, . . . , bn) and λ(C3) = (c2, . . . , cn). Applying the
above argument to sIn−1 = B3 + C3, we have

bi+1 − bi+2 = cn−i − cn+1−i for 1 ≤ i ≤ n− 2.(3)

The result now follows from (2) and (3).

Now, we are ready to present the

Proof of Theorem 2.1 Suppose C ∈ Hn has eigenvalues c1 ≥ · · · ≥ cn.
(a)⇒ (b) follows from

{ 1

2
(C1 + C2) : C1,C2 ∈ U(C)

}

⊆ {tC1 + (1− t)C2 : C1,C2 ∈ U(C), 0 ≤ t ≤ 1}

⊆ conv U(C).

Now, suppose (b) holds. We may assume that n ≥ 3 and c2 > cn. Let r =

(c1 + · · · + cn)/n and s = (c2 + · · ·+ cn)/(n− 1). Then rIn, [c1]⊕ sIn−1 ∈ conv U(C).
So, there exist Ci ∈ U(C) i = 1, 2, 3, 4 and 0 ≤ t j ≤ 1, j = 1, 2 such that
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i) t1C1 + (1− t1)C2 = rIn

ii) t2C3 +(1−t2)C4 = [c1]⊕sIn−1 = [t2c1]⊕(t2s)In−1 +[(1−t2)c1]⊕(1−t2)sIn−1

Applying the argument in Lemma 2.2 to i), we have for 1 ≤ i ≤ n− 1

t1(ci − ci+1) = (1− t1)(cn−i − cc+1−i)⇒ t1(c1 − cn) = (1− t1)(c1 − cn)⇒ t1 = 1/2.

Similarly, we have t2 = 1/2. Thus C1 + C2 = 2rIn and C3 + C4 = 2([c1] ⊕ sIn−1).
Hence, (c) follows from Lemma 2.2.

Finally, suppose (c) holds. Replacing C by αC + βI for some suitable α, β ∈ R,
we may assume that c j = − j for 1 ≤ j ≤ n. Let B ∈ conv U(C). We may assume

that B = diag(b1, . . . , bn) such that b1 ≥ · · · ≥ bn and (b1, . . . , bn) ≺ (c1, . . . , cn) =
(−1, . . . ,−n). Let D = diag(d1, . . . , dn) where d j = 2b j for 1 ≤ j ≤ n. Then
(d1, . . . , dn) ≺ (−2, . . . ,−2n). We are going to show that for 1 ≤ k1 < · · · < km ≤ n

and 1 ≤ m, we have

dk1
+ · · · + dkm

≤ −
(

k1 + · · · + km + m(m + 1)/2
)

.(4)

Suppose (4) holds. Then for any 1 ≤ i1 < · · · < im ≤ n, 1 ≤ j1 < · · · < jm ≤ n and
1 ≤ k1 < · · · < km ≤ n satisfying i1+· · ·+im+ j1+· · ·+ jm = k1+· · ·+km+m(m+1)/2,
we have

dk1
+ · · · + dkm

≤ ci1
+ · · · + cim

+ c j1
+ · · · + c jm

.

Also, we have
∑n

i=1 di = −n(n + 1) = 2
∑n

i=1 ci . By the Eigenvalue Inequality
Theorem, there exist C1,C2 ∈ U(C) such that

2B = D = C1 + C2 ⇒ B = (C1 + C2)/2.

Given 1 ≤ k1 < · · · < km ≤ n, define k0 = 0. We are going to prove (4) by induction
on km −m.

If km − m = 0, then ki = i for 1 ≤ i ≤ m. Since (d1, . . . , dn) ≺ (−2, . . . ,−2n),
we have

dk1
+ · · · + dkm

= d1 + · · · + dm ≤ −(2 + · · · + 2m)

= −m(m + 1) = −
(

1 + · · · + m + m(m + 1)/2
)

= −
(

k1 + · · · + km + m(m + 1)/2
)

.

Suppose (3) holds whenever km −m < p, where p > 0. Let 1 ≤ k1 < · · · < km ≤ n

be a sequence such that km−m = p. Choose the largest i such that ki−1 + 1 < ki . Let
r = m− i. Then

ki+ j = j + ki , j = 1, . . . , r.(5)

Note that the sequence (k1, . . . , ki−1) has ki−1 terms and

ki−1 − i − 1 < ki − i = km −m = p.
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By induction assumption, we have

dk1
+ · · · + dki−1

≤ −
(

k1 + · · · + ki−1 + i(i − 1)/2
)

Also, the sequence (k1, . . . , ki−1, ki − 1, ki , . . . , km) has (m + 1) terms, and km− (m +
1) = p − 1. By induction assumption, we have

dk1
+ · · ·+dki−1

+ dki−1 + dki
+ · · · + dkm

≤ −
(

k1 + · · · + ki−1 + (ki − 1) + ki + · · · + km + (m + 1)(m + 2)/2
)

.

Hence,

(r + 2)(dk1
+ · · · + dki−1

+ dki
+ · · · + dkm

)

≤ (r + 1)(dk1
+ · · · + dki−1

+ dki−1 + dki
+ · · · + dkm

) + (dk1
+ · · · + dki−1

)

≤ −(r + 1)
(

k1 + · · · + ki−1 + (ki − 1) + ki + · · · + km + (m + 1)(m + 2)/2
)

−
(

k1 + · · · + ki−1 + i(i − 1)/2
)

= −(r + 2)
(

k1 + · · · + km + m(m + 1)/2
)

− (r + 1)[(ki − 1) + (m + 1)](i + · · · + m) + (ki + · · · + km)

= −(r + 2)
(

k1 + · · · + km + m(m + 1)/2
)

,

where the last equality follows from (5). The proof is complete.

By private communication, O. Azenhas informed us that part of the proof of The-
orem 2.1 can be done using the idea in [2] and some combinatorial arguments in-

volving the manipulation of Young diagrams.

By Theorem 2.1 and the Eigenvalue Inequality Theorem, we have the following
corollary.

Corollary 2.3 Let b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ Rn with b1 ≥ · · · ≥ bn and

c1 ≥ · · · ≥ cn. The following conditions are equivalent.

(a) The sequences (b1, . . . , bn) and (c1, . . . , cn) are arithmetic progressions with the

same common difference.

(b) U([b]) + U([c]) = {B + C : B ∈ U([b]),C ∈ U([c])} is convex.

(c) Whenever A ∈ Hn satisfies λ(A) ≺ b + c, there exist B ∈ U([b]), C ∈ U([c]) such

that A = B + C.

Proof Let A = {A ∈ Hn : λ(A) ≺ b + c}. Suppose B ∈ U([b]), C ∈ U([c]). Then

there exists U ∈ Un such that U (B + C)U ∗ = [λ(B + C)]. So, by Proposition 1.1, we
have

λ(B + C) = diag U BU ∗ + diag UCU ∗ ≺ b + c.
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Hence, one can use the fact that

U([b]) + U([c]) ⊆ A = conv
(

U([b + c])
)

⊆ conv
(

U([b]) + U([c])
)

to conclude that

U([b]) + U([c]) ⊆ A = conv
(

U([b]) + U([c])
)

.

Therefore, (b) and (c) are equivalent.

Let v = (1, . . . , 1) ∈ Rn. If (a) holds, then the sequence a = b− bnv = c − cnv is
in arithmetic progression. By Theorem 2.1, we have

U([b]) + U([c]) = U([a + bnv]) + U([a + cnv])

=

(

U([a]) + U([a])
)

+ (bn + cn)In

= 2
[ 1

2

(

U([a]) + U([a])
)

]

+ (bn + cn)In

= 2 conv
(

U([a])
)

+ (bn + cn)In

is convex. This proves (a)⇒ (b).
Conversely, suppose (b) holds. Let

r =
(b1 + c1 + · · · + bn + cn)

n
, s =

(b2 + · · · + bn)

(n− 1)
and t =

(c2 + · · · + cn)

(n− 1)
.

Then rIn, ([b1]⊕ sIn−1 + [c1]⊕ tIn−1) ∈ conv
(

U([b]) + U([c])
)

= U([b]) + U([c])
and (a) follows from Lemma 2.2.

3 Submatrices of Matrices In U(C)

We begin with the study of the set Pk(C) of k × k (leading) principal submatrices of

matrices in U(C).

Theorem 3.1 Let 1 ≤ k ≤ n. Suppose C ∈ Hn have eigenvalues c1 ≥ · · · ≥ cn,

and Pk(C) be the set of k × k (leading) principal submatrices of matrices in U(C). Let

D ∈ Hk have eigenvalues d1 ≥ · · · ≥ dk. Then

(a) D ∈ Pk(C) if and only if

cn−k+ j ≤ d j ≤ c j , 1 ≤ j ≤ k;

(b) D ∈ conv Pk(C) if and only if there is a matrix D̃ ∈ conv Pk(C) with diagonal

entries d1, . . . , dk, equivalently,

cn + · · · + cn−m+1 ≤ di1
+ · · · + dim

≤ c1 + · · · + cm(6)

whenever 1 ≤ m ≤ k and 1 ≤ i1 < · · · < im ≤ k;
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(c) D is an extreme point of conv Pk(C) if and only if

(d1, . . . , dk) = (c1, . . . , cp, cn−q+1, . . . , cn)

for some 0 ≤ p, q ≤ k such that p + q = k.

Consequently, the set of k× k principal submatrices of matrices in U(C) is convex if and

only if c1 = ck and cn−k+1 = cn; in such case,

conv Pk(C) = {P ∈ Hk : P has eigenvalues in the interval [cn, c1]}.

Proof Part (a) follows from the result in [12].

To prove (b), note that by Proposition 1.1, D ∈ conv Pk(C) has eigenvalues d1, . . . ,
dk if and only if there is a matrix D̃ ∈ conv Pk(C) with diagonal entries d1, . . . , dk. By
the arguments in the proof of [4, Theorem 2.4], these equivalent conditions hold if
and only if (6) holds whenever 1 ≤ m ≤ k and 1 ≤ i1 < · · · < im ≤ k.

To prove (c), note that if (6) holds whenever 1 ≤ m ≤ k and 1 ≤ i1 < · · · < im ≤
k, then for dk+1 = · · · = dn = [(

∑n
j=1 c j)− (

∑k
j=1 d j)]/(n− k) we have

(d1, . . . , dn) ≺ (c1, . . . , cn),

see the proof of [4, Theorem 2.4]. By Proposition 1.1, (d1, . . . , dn) is a convex combi-
nation of the vectors of the form (ci1

, . . . , cin
), where (i1, . . . , in) is a permutation of

(1, . . . , n). Hence, the k × k diagonal matrix [(d1, . . . , dk)] is a convex combination

of the diagonal matrices of the form [(ci1
, . . . , cik

)]. Thus, every matrix D ∈ Hk with
eigenvalues d1, . . . , dk is a convex combination of matrices in Hk with eigenvalues
ci1
, . . . , cik

. Hence, if C0 is an extreme point of conv Pk(C), then C0 has eigenvalues
ci1
, . . . , cik

, where {i1, . . . , ik} is a k-element subset of {1, . . . , n}. To complete our

proof, we show that {ci1
, . . . , cik

} must be of the form {c1, . . . , cp, cn−q+1, . . . , cn}
for some p, q ≥ 0 with p + q = n. If it is not true and if i1, . . . , ik are rear-
ranged so that 1 ≤ i1 < · · · < ik ≤ n, then there exists r such that cr > cir

and
(cir
, . . . , cik

) 6= (cn−k+r, . . . , cn). Thus r /∈ {i1, . . . , ik} and there exists s > ir so that

s /∈ {ir, . . . , ik} and cir
> cs. But then we may obtain C1 (respectively, C2) from C0

by replacing the diagonal entry cir
by cr (respectively, cs) so that C0 is a convex combi-

nation of the matrices C1 and C2, contradicting the fact that C0 is an extreme point.

Next, we turn to the set

Sk(C) =

{

X ∈ Ck×(n−k) :

(

P X

X∗ Q

)

∈ U(C) for some P ∈ Hk,Q ∈ Hn−k

}

for a given C ∈ Hn. Since

(

P X

X∗ Q

)

is permutationally similar to

(

Q X∗

X P

)

, we

see that

Sk(C) = {X∗ : X ∈ Sn−k(C)}.
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Thus, we can focus on the cases for 1 ≤ k ≤ n/2. This assumption and the notation
Sk(C) will be used throughout this section, and the vector of singular values of X ∈
Sk(C) will be denoted by

s(X) = (s1, . . . , sk), with s1 ≥ · · · ≥ sk.

Proposition 3.2 Suppose C ∈ Hn has eigenvalues c1 ≥ · · · ≥ cn, and 1 ≤ k ≤ n/2.

(a) X ∈ Sk(C) if and only if U XV ∈ Sk(C) for any unitary matrices U and V of sizes k

and (n− k) respectively.

(b) X ∈ conv Sk(C) if and only if

s(X) ≺w (c1 − cn, c2 − cn−1, . . . , ck − cn−k+1)/2.(7)

(c) X is an extreme point of conv Sk(C) if and only if

s(X) = (c1 − cn, . . . , ck − cn−k+1)/2.(8)

Proof (a) Suppose X is the (1, 2) block of C0 ∈ U(C). Then U XV is the off-diagonal
block of C1 = (U ⊕V ∗)C0(U∗ ⊕V ) ∈ U(C). The converse can be proved similarly.

To prove (b) and (c), let T be the set of k × (n − k) matrices X satisfying (8). By

the result in [34], conv T is the collection of k × (n − k) matrices X satisfying (7).
Thus, condition (b) can be restated as conv Sk(C) = conv T.

We claim that T ⊆ Sk(C). To see this, let P = diag(c1 + cn, c2 + cn−1, . . . , ck +
cn−k+1)/2, Q = P⊕ diag(ck+1, . . . , cn−k), and X be the k× (n− k) matrix with ( j, j)

entry equal to (c j − cn− j+1)/2 for j = 1, . . . , k. Then

C0 =

(

P X

X∗ Q

)

∈ U(C).

By condition (a), we see that for every unitary matrix U and V of sizes k and (n− k)
respectively, U XV belongs to Sk(C). Thus, T ⊆ Sk(C).

By the result in [23], we have Sk(C) ⊆ conv T. Hence,

T ⊆ Sk(C) ⊆ conv T,

and T contains all the extreme points of conv Sk(C). Since every elements in T has the
same Frobenius norm, none of X ∈ T is the convex combination of other elements
in T. So, T is the set of extreme points of conv T.

In general, it is difficult to give a complete description of Sk(C) except for special
C or special values of k. For example, if k = 1, then X ∈ S1(C) if and only if
s1(X) ≤

(

λ1(C)− λn(C)
)

/2; if C is a rank p orthogonal projection, then X ∈ Sk(C)

if and only if s1(X) ≤ 1/2 and rank(X) ≤ p. Nonetheless, we have the following
characterization of C ∈ Hn for which Sk(C) is convex.

Theorem 3.3 Suppose C = diag(c1, . . . , cn) with c1 ≥ · · · ≥ cn, and 1 ≤ k ≤ n/2.

The following conditions are equivalent.
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(a) Sk(C) is convex, i.e.,

Sk(C) = {X ∈ Ck×(n−k) : s(X) ≺w (c1 − cn, . . . , ck − cn−k+1)/2}.

(b) The sequences (c1, . . . , ck) and (cn−k+1, . . . , cn) are arithmetic progressions with the

same common difference.

The proof of Theorem 3.3 is divided into several lemmas. In the rest of this section,
we always assume that k,C and Sk(C) = S (for simplicity) satisfy the hypotheses of
Theorem 3.3.

The next two lemmas deal with the implication (a)⇒ (b) in Theorem 3.3.

Lemma 3.4 Let h be a positive integer such that h ≤ n/2, and let s =
∑h

i=1(ci − cn−i+1)/(2h). Suppose there is an X = (xpq) ∈ S such that x11 = · · · =
xhh = s and xpq = 0 for all other (p, q). Then

c1 − cn−h+1 = c2 − cn−h+2 = · · · = ch−1 − cn−1 = ch − cn = 2s.

Proof Suppose C0 =

(

P0 X

X∗ Q0

)

∈ U(C), where X = (xpq) ∈ S satisfies the hy-

pothesis of the lemma. Then the 2h× 2h principal submatrix of C0 lying in the rows

and columns with indices 1, . . . , h, k + 1, . . . , k + h, is of the form

(

P sIh

sIh Q

)

. Since

C̃0 =
1√
2

(

Ih Ih

Ih −Ih

)(

P sIh

sIh Q

)

1√
2

(

Ih Ih

Ih −Ih

)

=

1

2

(

P + Q + 2sI P − Q

P − Q P + Q− 2sI,

)

the matrix C0 is unitarily similar to a matrix of the form

(

C̃0 ∗
∗ ∗

)

∈ U(C). Suppose

(P + Q)/2 has eigenvalues γ1 ≥ · · · ≥ γh. Then (P + Q + 2sI)/2 and (P + Q− 2sI)/2
have eigenvalues γ1 + s ≥ · · · ≥ γh + s and γ1 − s ≥ · · · ≥ γh − s, respectively. Since
(P + Q + 2sI)/2 and (P + Q − 2sI)/2 are principal submatrices of a matrix in U(C),

we have

cn− j+1 ≤ γh− j+1 − s and γ j + s ≤ c j , j = 1, . . . , h,(9)

by Theorem 3.1. Thus,

h
∑

j=1

(c j − cn− j+1) = 2hs =

h
∑

j=1

(γ j + s)−
h
∑

j=1

(γ j − s) ≤
h
∑

j=1

(c j − cn− j+1).

It follows that the inequalities in (9) are equalities. Hence (c1, . . . , ch) =

(γ1 + s, . . . , γh + s), (cn−h+1, . . . , cn) = (γ1 − s, . . . , γh − s), and the result follows.

https://doi.org/10.4153/CJM-2003-004-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-004-x


102 Man-Duen Choi, Chi-Kwong Li and Yiu-Tung Poon

Lemma 3.5 The implication (a)⇒ (b) in Theorem 3.3 holds.

Proof Suppose Condition (a) of Theorem 3.3 holds. Condition (b) is trivial if k = 1.

We therefore assume that k ≥ 2. Let h = k − 1 or k. Set s j = (c j − cn− j+1)/2 for

1 ≤ j ≤ h, and s = (
∑h

j=1 s j)/h. By Condition (a) of Theorem 3.3, the k × (n − k)
matrix X with (p, q) entry equal to

xpq =

{

s if 1 ≤ p = q ≤ h,

0 otherwise,

belongs to S. By Lemma 3.4, we have

c1 − cn−h+1 = c2 − cn−h+2 = · · · = ch−1 − cn−1 = ch − cn.

For h = k, we have

c j − c j+1 = cn−k+ j − cn−k+ j+1, j = 1, . . . , k− 1.(10)

For h = k− 1, we have

c j − c j+1 = cn−k+ j+1 − cn−k+ j+2, j = 1, . . . , k− 2.(11)

As a result,

cn−k+ j − cn−k+ j+1 = cn−k+ j+1 − cn−k+ j+2, j = 1, . . . , k− 2,

and hence cn−k+1, . . . , cn is in arithmetic progression. By (10), we see that c1, . . . , ck

is also in arithmetic progression with the same common difference.

The next three lemmas deal with the implication (b)⇒ (a) of Theorem 3.3. We

first use Theorem 2.1 to prove a special case of the implication in the following
lemma.

Lemma 3.6 Suppose n = 2k, and Condition (b) of Theorem 3.3 holds. If t ∈ [0, 1]
and D ∈ Hn with λ(D) ≺ t(c1 − c2k, . . . , ck − ck+1)/2, then D ∈ S.

Proof Without loss of generality, we may assume that c1 ≥ · · · ≥ ck ≥ 0 and

c2k−i+1 = −ci for 1 ≤ i ≤ k. Then (c1 − c2k, . . . , ck − ck+1)/2 = (c1, . . . , ck).
Suppose λ(D) = (d1, . . . , dk) ≺ t(c1, . . . , ck). Let A = diag(c1, . . . , ck). Suppose
0 ≤ t ≤ 1. By Proposition 1.1, D ∈ conv U(tA). Since (c1, . . . , ck) is an arithmetic
progression, by Theorem 2.1, there exists A1, A2 ∈ U(A) such that D = t(A1 + A2)/2.

Let C = diag(c1, . . . , c2k). Then A1 ⊕ (−A2) ∈ U(C). We have

1√
2

(

Ik Ik

Ik −Ik

)(

A1 0k

0k −A2

)

1√
2

(

Ik Ik

Ik −Ik

)

=

1

2

(

A1 − A2 A1 + A2

A1 + A2 A1 − A2

)

∈ U(C).
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Choose 0 ≤ θ ≤ π/4 such that cos 2θ = t . Then

1

2

(

cos θIk sin θIk

− sin θIk cos θIk

)(

A1 − A2 A1 + A2

A1 + A2 A1 − A2

)(

cos θIk − sin θIk

sin θIk cos θIk

)

=

(

(A1 − A2)/2 + sin 2θ(A1 + A2)/2 D

D (A1 − A2)/2− sin 2θ(A1 + A2)/2

)

∈ U(C).

Hence, D ∈ S.

Lemma 3.7 Suppose c1 ≥ · · · ≥ ck ≥ 0, d1 ≥ · · · ≥ dk ≥ 0 and d = (d1, . . . , dk)
≺w (c1, . . . , ck) = c. Then we can write d = (d1, . . . , dr), c = (c1, . . . , cr), with

di, ci ∈ Rki ,
∑r

i=1 ki = k and di ≺ ti ci for some ti ∈ [0, 1], 1 ≤ i ≤ r.

Proof We prove the lemma by induction on k. The result clearly holds for k = 1.

Since (d1, . . . , dk) ≺w (c1, . . . , ck), we have

j
∑

i=1

di ≤
j
∑

i=1

ci for 1 ≤ j ≤ k.(12)

If the equality sign holds for some 1 ≤ j ≤ k, then the result follows. So, we may
assume that

j
∑

i=1

di <

j
∑

i=1

ci for 1 ≤ j ≤ k.

So for some 0 ≤ t < 1, we have

j
∑

i=1

di ≤
j
∑

i=1

tci for 1 ≤ j ≤ k,

with equality holds for at least one j and the result follows.

We complete the proof of Theorem 3.3 with the following lemma.

Lemma 3.8 The implication (b)⇒ (a) in Theorem 3.3 holds.

Proof Suppose Condition (b) of Theorem 3.3 holds. By the result in [23], if X ∈ S,
then (7) holds. We have to prove the converse.

First consider the case when n = 2k. Without loss of generality, we may assume

that c1 ≥ · · · ≥ ck ≥ 0 and c2k− j+1 = −c j for 1 ≤ j ≤ k. Then
(c1 − c2k, . . . , ck − ck+1)/2 = (c1, . . . , ck). By Proposition 3.2(a), we may assume
that X = diag(d1, . . . , dk), where s(X) = (d1, . . . , dk). By Lemma 3.7, we can write
d = (d1, . . . , dr), c = (c1, . . . , cr), with di, ci ∈ Rki ,

∑r
i=1 ki = k and di ≺ ti ci for
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some 0 ≤ ti ≤ 1, 1 ≤ i ≤ r. Let Di = diag(di). By Lemma 3.6, for each 1 ≤ i ≤ r

we have Xi ,Yi ∈ Hki
such that
(

X1 D1

D1 Y1

)

⊕ · · · ⊕
(

Xr Dr

Dr Yr

)

has eigenvalues c1, . . . , c2k.
Finally, suppose n > 2k. Again, by Proposition 3.2 (a), we may assume that X is an

k× (n− k) matrix with ( j, j) entry equal to d j for j = 1, . . . , k, and all other entries
equal to zero. One can then use the construction in the previous case to obtain a
matrix

C̃ =

(

P X̃

X̃∗ Q

)

∈ H2k,

where X̃ = diag(d1, . . . , dk), with eigenvalues c1 ≥ · · · ≥ ck and cn−k ≥ · · · ≥ cn.
Then the matrix C̃ ⊕ diag(ck+1, . . . , cn−k) ∈ U(C) will have X as the off-diagonal

block.

4 The C-Numerical Ranges

In this section, we use the results in the previous sections to study the convexity of
the C-numerical range of A = (A1, . . . ,Am) ∈ H

m
n and some related problems. We

begin with the following observation, which is easy to verify.

Proposition 4.1 Let C ∈ Hn and A = (A1, . . . ,Am) ∈ H
m
n .

(a) WC (A) =WC (V ∗A1V, . . . ,V ∗AmV ) for any unitary V .

(b) WC (A) is convex if and only if WC (I,A1, . . . ,Am) is convex.

(c) Suppose WC (A) is convex and B j ∈ span {I,A1, . . . ,Am} for 1 ≤ j ≤ s. Then

WC (B1, . . . ,Bs) is convex.

In general, for n ≥ 3, the convexity of WC(A) for arbitrary C ∈ Hn and A ∈ H
m
n

is only guaranteed when m = 3, as shown in [1]. In particular, there exists A ∈ H
4
n

such that WC (A) is not convex if C is a rank one orthogonal projection. In [24], it was
shown that if C is a rank k orthogonal projection, then for any A1,A2,A3 ∈ Hn such
that {I,A1,A2,A3} is linearly independent, one can always find an A4 ∈ Hn so that
WC(A1, . . . ,A4) is not convex. We can extend the result to general C ∈ Hn. Note that

for n = 2, it is known (see e.g. [26]) that WC(A) is convex for A = (A1, . . . ,Am) ∈
H

m
n if and only if the linear span of {I,A1, . . . ,Am} has dimension not larger than 3.

We shall focus on the case when n ≥ 3.

Theorem 4.2 Let n ≥ 3 and let C ∈ Hn be nonscalar. If A1,A2,A3 ∈ Hn are such

that {I,A1,A2,A3} is linearly independent, then there exists A4 such that WC (A1, . . . ,
A4) is not convex.

Proof Suppose C = diag(c1, . . . , cn) with c1 ≥ · · · ≥ cn. Let k be the largest integer
such that ck > ck+1. Since we assume that C is nonscalar, we have k < n. Further-
more, since WC (A) is convex if and only if WD(A) if convex for D = C − ck+1I, we
may assume that ck+1 = · · · = cn = 0.
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Suppose A1,A2,A3 ∈ Hn are such that {I,A1,A2,A3} is linearly independent.
By [24, Theorem 4.1], there exists X ∈ Cn×2 such that X∗X = I2 and {I2,X

∗A1X,
X∗A2X,X∗A3X} is a basis for H2. Let U be a unitary matrix so that the columns of
X are the k-th and (k + 1)-st columns of U . Define A4 = U

(

diag(k, k − 1, . . . , 2) ⊕
I2 ⊕ 0n−k−1

)

U∗. We are going to prove that WC (A1, . . . ,A4) is not convex.
By Proposition 4.1, W (A1, . . . ,A4) = W (U ∗A1U , . . . ,U∗A4U ). Let A[k, k + 1]

denote the 2× 2 principal submatrix of A ∈ Hn lying in the k-th and (k + 1)-st rows
and columns. Then {U ∗A jU [k, k + 1] : 1 ≤ j ≤ 4} is a basis for H2 by our construc-
tion. Taking a suitable linear combinations of the matrices U ∗A1U , . . . ,U∗A4U , we
can get Ã1, Ã2, Ã3 ∈ Hn so that Ã j[k, k + 1] = B j for j = 1, 2, 3, where

B1 =

(

1 0
0 −1

)

, B2 =

(

0 1
1 0

)

, B3 =

(

0 i

−i 0

)

,

and Ã4 = U∗A4U = diag(k, k− 1, . . . , 2)⊕ I2 ⊕ 0n−k−1. Let Ã = (Ã1, . . . , Ã4). We

claim that the set W (Ã) ∩ {(a1, a2, a3, α) : a1, a2, a3 ∈ R} is not convex, where

α = kc1 + (k− 1)c2 + · · · + 2ck−1 + ck.

If this claim is proved, then we see that W (Ã) is not convex and neither is W (A1, . . . ,
A4) by Proposition 4.1.

To prove our claim, recall that C = diag(c1, . . . , cn) with c1 ≥ · · · ≥ ck > 0 =
ck+1 = · · · = cn by our assumption. Suppose V is unitary so that tr CV ∗Ã4V = α.

Let d1, . . . , dk+1 be the first k + 1 diagonal entries of VCV ∗. Since (d1, . . . , dk+1) ≺w

(c1, . . . , ck+1), we have

α = kd1 + (k− 1)d2 + · · · + 2dk−1 + dk + dk+1

= d1 + (d1 + d2) + · · · +
(

k−1
∑

j=1

d j

)

+
(

k+1
∑

j=1

d j

)

≤ c1 + (c1 + c2) + · · · +
(

k−1
∑

j=1

c j

)

+
(

k+1
∑

j=1

c j

)

= α.

Thus,
∑m

j=1 d j =
∑m

j=1 c j for m = 1, . . . , k− 1, and for m = k + 1. By [22, Lemma
4.1], VCV ∗ = diag(c1, . . . , ck−1)⊕ckP⊕0n−k−1 for a rank one orthogonal projection

P ∈ H2. Hence, for j = 1, 2, 3, if Ã j = (a
( j)
pq ) and α j =

∑k−1
s=1 csa

( j)
ss , then

tr CV ∗Ã jV = tr VCV ∗Ã j = α j + ck tr PB j .

It follows that

WC (Ã) ∩ {(a1, a2, a3, α) : a1, a2, a3 ∈ R}

= {(α1, α2, α3, α) + ck(tr PB1, tr PB2, tr PB3, 0) : P = vv∗, v ∈ C2, v∗v = 1}

= {(α1, α2, α3, α) + ck(v∗B1v, v∗B2v, v∗B3v, 0) : v ∈ C2, v∗v = 1}

= {(α1, α2, α3, α) + ck(b1, b2, b3, 0) : b2
1 + b2

2 + b2
3 = 1},
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which is not convex as desired.

Despite the negative result in Theorem 4.2, there has been considerable interest in
studying those A ∈ H

m
n so that WC (A) is convex for a given C ∈ Hn. In fact, the

convexity of WC (A) is equivalent to several other properties of A ∈ H
m
n pursued by

researchers in other areas (see [1, 13, 15, 24, 26] and their references). We summarize

them in the following proposition.

Proposition 4.3 Let C ∈ Hn have eigenvalues c1 ≥ · · · ≥ cn. Suppose A =

(A1, . . . ,Am) ∈ H
m
n . The following conditions are equivalent.

(a) The set WC (A) is convex.

(b) If φ : Hn → Rm is defined by φ(X) = (tr A1X, . . . , tr AmX) then φ
(

U(C)
)

is

convex.

(c) For any D ∈ Hn with λ(D) ≺ λ(C), the inclusion relation WD(A) ⊆ WC (A)
holds.

(d) For any D ∈ Hn with λ(D) ≺ λ(C), there exists C0 ∈ U(C) such that tr C0A j =

tr DA j for all j = 1, . . . ,m.

Now, we can apply the results in the previous sections to get information about
the convexity of WC (A), and hence for other equivalent conditions in Proposition 4.3.

First of all, using Theorem 3.3, we have the following.

Proposition 4.4 Suppose 1 ≤ k ≤ n/2. Let C ∈ Hn have eigenvalues c1 ≥ · · · ≥ cn

be such that the sequences (c1, . . . , ck) and (cn−k+1, . . . , cn) are arithmetic progressions

with the same common difference. Suppose A = (A1, . . . ,Am) ∈ H
m
n is such that

A j = α jI +

(

0k Y j

Y ∗j 0n−k

)

, j = 1, . . . ,m.

Then Conditions (a)–(d) of Proposition 4.3 hold.

Proof It suffices to prove one of the conditions in Proposition 4.3 holds. We consider

Condition (b) and define the linear transformation φ : Hn → Rm by

φ(Z) = (tr A1Z, . . . , tr AmZ).

Then φ
(

U(C)
)

= φ(S̃) + (tr C)(α1, . . . , αm) with

S̃ =

{(

0k X

X∗ 0n−k

)

: X ∈ Sk(C)

}

,

where Sk(C) is defined as in Theorem 3.3. By the assumption on C and Theorem 3.3,

the set S̃ is convex. Hence φ
(

U(C)
)

= φ(S̃) + (tr C)(α1, . . . , αm) is convex.

Similarly, by the convexity result on the set of leading k× k principal submatrices
of matrices in U(C) (see [27] and Proposition 3.1), we have the following.
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Proposition 4.5 Let 1 ≤ k ≤ n and let C have eigenvalues c1 ≥ · · · ≥ cn such that

c1 = ck and cn−k+1 = cn. Suppose A = (A1, . . . ,Am) ∈ H
m
n is such that

A j = α jI + (P j ⊕ 0n−k), j = 1, . . . ,m.

Then Conditions (a)–(d) of Proposition 4.3 hold.

Note that by Proposition 1.1, the set of vectors of diagonal entries of matrices in
U(C) is convex. We have the following consequence.

Proposition 4.6 Let C ∈ Hn and A = (A1, . . . ,Am) ∈ H
m
n be an m-tuple of diagonal

matrices. Then Conditions (a)–(d) of Proposition 4.3 hold.

By Theorem 4.2, if C ∈ Hn is non-scalar, then there exists A ∈ H
4
n so that WC (A)

is not convex. In Proposition 4.6, we can find A ∈ H
n
n with linearly independent

components so that WC (A) is convex for any C ∈ Hn. In Propositions 4.4 and 4.5,
we can find A ∈ H

m
n with m = k(n − k) + 1 and k2 + 1, respectively, so that A has

linearly independent components and WC (A) is convex for some special choices of
C ∈ Hn. It is of interest to determine whether we can add more linearly independent

components to those A ∈ H
m
n and still get a convex WC (A). Using the idea in the

proof of [24, Theorem 2.3], we can show that if C ∈ Hn has distinct eigenvalues γ1 >
· · · > γk with multiplicities n1, . . . , nk, respectively, then the (real) homogeneous
manifold U(C) has dimension

r = n2 − (n2
1 + · · · + n2

k);

and if {A1, . . . ,Am} ⊆ Hn is linearly independent such that WC(A1, . . . ,Am) is con-

vex, then
m ≤ r + 1.

If C is a rank k orthogonal projection with k ≤ n/2, then one can actually have
linearly independent A1, . . . ,Am ∈ Hn with m = r + 1 such that WC (A1, . . . ,Am) is
convex (see [24]). Nevertheless, it is unknown whether the bound can be improved

for other cases. In general, for a given C ∈ Hn, it is interesting to determine the size
of a maximal linearly independent set {A1, . . . ,Am} ⊆ Hn so that WC(A1, . . . ,Am)
is convex.

Even if WC (A) is not convex, there are motivations from applications (see [13, 31])

to study the minimum number p such that every v ∈ conv WC(A) ⊆ Rm can be
written as the convex combination of p elements in WC(A). Let us regard WC(A) as
φ
(

U(C)
)

for a linear map φ : Hn → Rm. Using the results in [3] and Theorem 2.1,
we have the following proposition.

Proposition 4.7 Suppose C ∈ Hn and A ∈ H
m
n . Then every point in conv WC (A)

can be written as the average of at most p elements in WC (A), where p = min{n,m+1}.
If C is a rank k orthogonal projection with 1 ≤ k < n, then p = min{q,m + 1} with

q = max{k + 1, n− k + 1}. If C satisfies any one (and hence all) of Conditions (a)–(c)

in Theorem 2.1, then p = 2.
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5 Results on Real Symmetric Matrices

The problems considered in the previous sections admit formulations for real sym-
metric matrices with U(C) replaced by O(C), the set of real symmetric matrices hav-
ing the same eigenvalues as C . In fact, one often deals with real symmetric matrices

instead of complex Hermitian matrices in problems arising in applications. For in-
stance, in the computation of structured singular values that motivates the study of
the convexity of WC (A), the matrices C,A1, . . . ,Am under consideration are often
real (see [10, 13]). Actually, in this case, one would consider

W R
C (A1, . . . ,Am) = {(tr A1X, . . . , tr AmX) : X ∈ O(C)}.

In the following, we discuss results on real matrices analogous to those on complex
Hermitian matrices in the previous sections. First, we present the following result of
Fulton [14, Theorem 20] that allows us to “transfer” results on complex Hermitian
matrices to real symmetric matrices.

Proposition 5.1 Let C be a nonscalar n × n real symmetric matrix. If there exist

complex Hermitian matrices X1, . . . ,Xm such that C = X1 + · · · + Xm, then there exist

real symmetric matrices Y1, . . . ,Ym so that C = Y1 + · · ·+Ym and Y j ∈ U(X j) for each

j = 1, . . . ,m.

Note that every matrix X ∈ conv O(C) can be written as the average of n complex
Hermitian matrices (see [3]). By Proposition 5.1, we have the following corollary.

Corollary 5.2 Let C be an n × n nonscalar real symmetric matrix. Then every X ∈
conv O(C) can be written as the average of n matrices in O(C).

In general, it is not hard to write a matrix in conv O(C) as the convex combination
of n matrices in O(C). In fact, for any X = QtDQ ∈ conv O(C), where D is diagonal
and Q is orthogonal, the vector of diagonal entries of D is majorized by (c1, . . . , cn).
Thus (see e.g. [28]), D can be written as a convex combination of diagonal matrices in

O(C). Since the diagonal matrices in O(C) have the same trace, the affine dimension
of their convex hull is n− 1. Hence, D (respectively, Qt DQ) is a convex combination
of n diagonal matrices C1, . . . ,Cn (respectively, QtC1Q, . . . ,QtCnQ) in O(C). Also,
it is easy to write a matrix in conv O(C) as the average of 2n−1 matrices in O(C) (see

e.g. [3]). However, there does not seem to be an easy way to write a real symmetric
matrix in conv O(C) as the average of n matrices in O(C). It would be nice to find
such a construction.

Next, we turn to the results in Sections 2–4. The results in Sections 2 and 3 are
valid for the real symmetric case. One can use our proofs together with Proposi-

tion 5.1 and the real symmetric version of the Eigenvalue Inequality Theorem in [14,
Theorem 3]. For those results in Section 4, some modifications are needed. First, the
real symmetric version of Proposition 4.1 is valid for W R

C (A); of course, we require V

to be orthogonal in Condition (a). The real symmetric version of Theorem 4.2 is:
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Theorem 5.3 Suppose C is an n × n real symmetric matrix, where n ≥ 3. Then for

any n× n real symmetric matrices A1, A2 such that {I,A1,A2} is linearly independent,

there exists A3 such that W R
C (A1,A2,A3) is not convex.

The proof is similar to that of Theorem 4.2. One needs to restrict the choice of
unitary matrices to real orthogonal matrices, and therefore the matrix Ã3 in the proof
will not appear.

For a given real symmetric C , one can also obtain an upper bound for the size

of a linearly independent set {A1, . . . ,Am} of real symmetric matrices such that
W R

C (A1, . . . ,Am) (see [24]). In such case, if C is a real symmetric matrix having
distinct eigenvalues γ1 > · · · > γk with multiplicities n1, . . . , nk, respectively, then
the (real) homogeneous manifold U(C) has dimension

r = {n(n− 1)− [n1(n1 − 1) + · · · + nk(nk − 1)]}/2;

and if {A1, . . . ,Am} is a linearly independent set of real symmetric matrices such that
W R

C (A1, . . . ,Am) is convex, then

m ≤ r + 1.

Finally, Proposition 4.7 is valid for real symmetric matrices with the same proof.

Note that there are other types of joint numerical ranges and matrix comple-
tion problems associated with matrix orbits associated with other group actions (see
[24, 26]). Our techniques can be used to obtain similar results for some of these
variations.
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