Article

Bimbowrieite, NaMgFe₅³⁺(PO₄)₄(OH)₆·2H₂O, a new dufrénite-group mineral from the White Rock No.2 quarry, South Australia, Australia

Peter Elliott^{1,2} i and Anthony R. Kampf³

¹School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; ²South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; and ³Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA

Abstract

Bimbowrieite, NaMgFe³⁺₅(PO₄)₄(OH)₆·2H₂O, is a new mineral found in a mineralogically zoned rare-element bearing pegmatite at the White Rock No.2 quarry, Bimbowrie Conservation Park, South Australia, Australia. Crystals are dark olive green to greenish brown and are bladed with dimensions of up to 150 µm. Crystals occur as aggregates up to 0.4 mm across associated with ushkovite, bermanite, leucophosphite and sellaite. Bimbowrieite is pleochroic, biaxial (+), with $\alpha = 1.785(5)$, $\beta = 1.795(5)$, $\gamma = 1.805(5)$ and 2V(meas.) = 89.4(5)°. The average of 28 chemical analyses gave the empirical formula: $(Na_{0.81}Ca_{0.19})_{\Sigma1.00}(Mg_{0.75}Mn_{0.19}^{2+}Fe_{0.05}^{2+})_{\Sigma0.99}(Fe_{4.99}^{3+}Al_{0.01})_{\Sigma5.00}$ (PO₄)_{3.97}(OH)_{5.88}·2.05 H₂O based on 24 oxygen atoms. Bimbowrieite is monoclinic, space group C2/c with a = 25.944(5), b = 5.1426(10), $c = 13.870(3 \text{ Å}, \beta = 111.60(3)^\circ$, $V = 1720.4(7) \text{ Å}^3$ and Z = 4. The crystal structure was refined to R1 = 1.97% for 1060 observed reflections with $F_0 > 4\sigma(F_0)$. Bimbowrieite is isostructural with dufrénite. The structure is based on a trimer of face-sharing octahedra in which an *M*2 octahedra shares two *trans* faces with two *M*4 octahedra. Trimers link in the **c**-direction by sharing corners with two *M*3 octahedra and with *T*1 and *T*2 tetrahedra. Linkage in the **a**-direction is *via* corner-sharing *M*1 octahedra and linkage in the **b**-direction is *via* corner-sharing *T*1 and *T*2 tetrahedra.

Keywords: bimbowrieite; new mineral species; sodium magnesium iron phosphate; pegmatite; crystal structure; White Rock No.2 quarry; Australia

(Received 3 October 2023; accepted 3 November 2023; Accepted Manuscript published online: 13 November 2023; Associate Editor: Daniel Atencio)

Introduction

Minerals of the dufrénite group are known from many localities worldwide and occur as secondary minerals in a variety of environments; as late-stage minerals from hydrothermal alteration in granite pegmatites, in iron ore deposits and iron-rich gossans and in sedimentary phosphate deposits. The first crystalstructure investigation of minerals of the dufrénite group was completed by Moore (1970) who studied dufrénite from Cornwall, England. Other members of the dufrénite group (Table 1) are natrodufrénite (Fontan et al., 1982), burangaite (Selway et al., 1997), matioliite (Atencio et al., 2006), gayite (Kampf et al., 2010) and bimbowrieite. Structure analyses have been published on all except natrodufrénite. The general formula for dufrénite-group minerals may be written as $XM1M2M3M4(PO_4)_4$ (OH)₆·2H₂O with Na and Ca at the X site, trivalent cations Fe^{3+} and Al at the M1, M3 and M4 sites and divalent cations Fe^{2+} , Mg and Mn²⁺ at the M2 site.

Corresponding author: Peter Elliott; Email: peter.elliott@adelaide.edu.au **Cite this article:** Elliott P. and Kampf A.R. (2024) Bimbowrieite, NaMgFe₅³⁺(PO₄)₄ (OH)₆·2H₂O, a new dufrénite-group mineral from the White Rock No.2 quarry, South Australia, Australia. *Mineralogical Magazine* **88**, 90–96. https://doi.org/10.1180/ mgm.2023.86 The new mineral bimbowrieite is named for the Bimbowrie Conservation Park in which the type locality is located (see below). The mineral and name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2020-006, Elliott and Kampf, 2020). The holotype specimen is deposited in the collection of South Australian Museum, Adelaide, South Australia, Australia, registration number G34762.

Occurrence

The White Rock No.2 quarry from which the type specimen was collected is located in the Bimbowrie Conservation Park, 24 km N of Olary, South Australia, Australia. Pegmatites and pegmatoids are ubiquitous throughout the region, and occur as sills, dykes, lenses and segregation bodies of ill-defined shape (Campana, 1957). They have been intruded into rocks of the Archaean Willyama Complex. Willyama Supergroup rocks comprise upper greenschist- to amphibolite-grade metamorphosed and strongly deformed sedimentary and minor igneous rocks (Lottermoser and Lu, 1997), which are unconformably overlain by late Proterozoic Adelaidean metasediments. The White Rock pegmatite is one of more than 70 pegmatite bodies in the Olary Province of South Australia. It is a mineralogically zoned rare-element

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Table 1. Comparison of related minerals.

Mineral name	bimbowrieite	dufrénite	natrodufrénite	gayite	burangaite	matioliite
Formula	NaMgFe ₅ ³⁺ (PO ₄) ₄ (OH) ₆ ·2H ₂ O	Ca _{0.5} Fe ²⁺ Fe ₅ ³⁺ (PO ₄) ₄ (OH) ₆ ·2H ₂ O	NaFe ²⁺ Fe ³⁺ ₅ (PO ₄) ₄ (OH) ₆ ·2H ₂ O	NaMn ²⁺ Fe ₅ ³⁺ (PO ₄) ₄ (OH) ₆ ·2H ₂ O	NaFe ²⁺ Al ₅ (PO ₄) ₄ (OH) ₆ ·2H ₂ O	NaMgAl ₅ (PO ₄) ₄ (OH) ₆ ·2H ₂ O
Space group	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c
a (Å)	25.994(5)	25.84(2)	25.83(2)	25.975(3)	25.099(2)	25.075(1)
b (Å)	5.1426(10)	5.126(3)	5.150(3)	5.1766(4)	5.0491(7)	5.0470(3)
c (Å)	13.870(3)	13.78(1)	13.772(9)	13.929(1)	13.438(1)	13.4370(7)
β (°)	111.60(3)	111.20(6)	111.53	111.293(2)	110.88(1)	110.97(3)
V (Å ³)	1720.4(7)	1701.72	1703.94	1745.1(3)	1591.1(3)	1587.9(4)
Ζ	4	4	4	4	4	4
Reference	this work	Moore (1970)	Fontan <i>et al.</i> (1982)	Kampf <i>et al.</i> (2010)	Selway <i>et al.</i> (1997)	Atencio <i>et al.</i> (2006)

bearing pegmatite characterised by the occurrence of late-stage phosphate nodules between the quartz core and intermediate feldspar-rich zone and belongs to the beryl-columbite phosphate rare-element type in the classification of Černý (1991). Triplite-zwieselite was formed by metasomatic alteration of magmatic fluorapatite and has been transformed by hydrothermal alteration and weathering, in an oxidising, lowtemperature, low-pH environment, to give a complex, microcrystalline intergrowth of secondary phosphate minerals (Lottermoser and Lu, 1997). At White Rock, three pegmatites with poor outcrops, up to 120 m long were mined for feldspar (both albite and microcline), muscovite and beryl over the period 1932-1973 (Olliver and Steveson, 1982). Three guarries were excavated to a depth of 10 m with recorded production of 860 tonnes of feldspar and 8.1 tonnes of beryl. Triplite and associated secondary phosphate minerals have been exposed in only the No.2 quarry. Bimbowrieite occurs in seams in a matrix comprising triplite and fluorapatite. Associated minerals are ushkovite, bermanite, leucophosphite and sellaite.

Appearance and physical properties

Bimbowrieite occurs as aggregates of crystals to 0.4 mm across (Fig. 1). Crystals are dark olive green to greenish brown blades, up to 150 μ m in length. The blades are flattened on {100} and exhibit the crystal forms {100}, {111} and {201} (Fig. 2). The

Figure 1. Greenish-brown crystals of bimbowrieite on fluorapatite, associated with ushkovite (orange) and sellaite (white). The field of view is 2.3 mm, South Australian Museum specimen G34762.

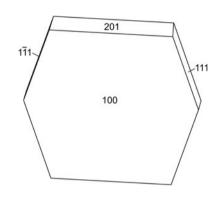


Figure 2. Crystal drawing of bimbowrieite (clinographic projection in standard orientation).

streak is olive green, the lustre is vitreous, the tenacity is brittle and the fracture is irregular. There is one excellent cleavage on {100}. Optically, bimbowrieite is biaxial (+), $\alpha = 1.785(5)$, $\beta =$ 1.795(5) and $\gamma = 1.805(5)$ (measured in white light). The $2V_z$ measured on a spindle stage is $89.4(5)^\circ$; the calculated $2V_z$ is 90.5° . Dispersion is r < v, extreme. The optical orientation is Y =**b**, $X \land \mathbf{c} \approx 18^\circ$ in obtuse β . The mineral is pleochroic with X =brown orange, Y = brown yellow, Z = blue green and Y < X < Z. The Gladstone–Dale compatibility index $1 - (K_P/K_C)$ for the empirical formula is 0.056 (good) (Mandarino, 2007).

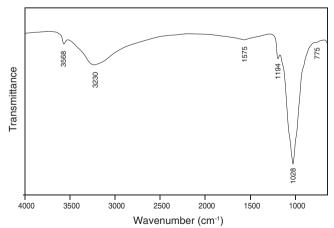


Figure 3. The FTIR spectrum of powdered bimbowrieite.

Table 2. Analytical data for bimbowrieite.

Constituent	Wt.%	Range	S.D.	Probe standard
Na ₂ O	2.93	2.29-3.49	0.27	albite
CaO	1.27	0.72-2.22	0.36	plagioclase
Al_2O_3	0.05	0.00-0.30	0.08	almandine-pyrope
Fe ₂ O ₃ *	46.90	45.36-47.13	0.47	almandine-pyrope
FeO*	0.45	0.00 - 1.81	0.66	almandine-pyrope
MgO	3.53	2.84-4.96	0.57	almandine-pyrope
MnO	1.56	0.76-2.70	0.65	rhodonite
P ₂ O ₅	33.34	31.68-34.40	0.71	apatite
H ₂ 0**	10.64			
Total	100.67			

*Fe₂O₃ and FeO calculated to give full occupancy of the M1, M3, and M4 sites by Fe³⁺+Al. **H₂O calculated from the crystal structure analysis.

S.D. = standard deviation

Infrared spectroscopy

The infrared spectrum (Fig. 3) of powdered bimbowrieite was recorded using a Nicolet 5700 FTIR spectrometer (range 4000 to 650 cm⁻¹, transmission mode) equipped with a Nicolet Continuum IR microscope and a diamond-anvil cell. The spectrum shows a broad absorption band due to OH stretching vibrations with maxima at 3568 cm⁻¹ and 3230 cm⁻¹. According to the correlation given by Libowitzky (1999), the approximate O–H···O hydrogen bond-lengths range between 3.1 and 2.6 Å. A band found at 1575 cm⁻¹ is assigned to the v₂ H–O–H bending vibration of water molecules. The bands at 1194 and 1028 cm⁻¹ may be assigned to the PO₄ v₃ antisymmetric stretching vibrations and the band at 775 cm⁻¹ is assigned to the PO₄ v₁ symmetric stretching vibration.

Chemical composition

Quantitative chemical data were collected on two polished crystal aggregates using a Cameca SXFive electron microprobe (WDS mode, 20 kV, 20 nA, 5 µm beam diameter). Data were reduced using the $\phi(\rho Z)$ method of Pouchou and Pichoir (1991). Twenty-eight points were analysed (Table 2). The small amount of material available did not allow for the direct determination of H₂O, so it was calculated give 10 H atoms per formula unit. The empirical formula, based on 24 O atoms, is $(Na_{0.81}Ca_{0.19})_{\Sigma1.00}$ (Mg_{0.75}Mn²⁺_{0.19}Fe²⁺_{0.05})_{\substace{0.99}}(Fe³⁺_{4.99}Al_{0.01})_{\substace{5.00}}(PO₄)_{3.97}(OH)_{5.88}·2.05 H₂O.

The ideal formula is $NaMgFe_5^{3+}(PO_4)_4(OH)_6 \cdot 2H_2O$ which requires Na_2O 3.67, MgO 4.77, Fe_2O_3 47.27, P_2O_5 33.62, H_2O 10.67, total 100 wt.%.

X-ray crystallography and crystal-structure determination

Powder X-ray diffraction data (Table 3) were recorded using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer with monochromatised MoK α radiation. A Gandolfi-like motion on the ϕ and ω axes was used to randomise the sample. Observed d values and intensities were derived by profile fitting using *JADE Pro* software (Materials Data, Inc.). The unit-cell parameters refined from the powder data using *JADE Pro* with whole-pattern fitting are: a = 26.07(2), b = 5.17(2), c = 13.95(2) Å, $\beta = 111.56(2)^{\circ}$ and V = 1749(7) Å³, which are in good agreement with the single-crystal study below.

A crystal was attached to a MiTeGen polymer loop and X-ray diffraction data was collected at the micro-focus macromolecular MX2 beamline at the Australian Synchrotron (Aragao *et al.*, 2018). Data were collected using a Dectris EigerX 16M detector

Table 3. Powder X-ray data for bimbowrieite. Only calculated lines with $l \ge 6$ are listed.

h k l	I_{calc}	d_{calc}	$d_{\rm obs}$	I _{obs}	h k l	I _{calc}	d_{calc}	$d_{\rm obs}$	I _{obs}	h k l	I _{calc}	d_{calc}	d_{obs}	l _{obs}
13 1 0	14	1.7487	1.7369	31	711	40	2.6344	2.640	43	200	30	12.0839	12.3	63
ē08	17	1.7354			020	18	2.5755			002	7	6.4578	6.18	29
14 0 0	21	1.7263			404	9	2.4917	2.489	14	400	15	6.0420		
715	14	1.6806	1.6857	16	<u>9</u> 13	10	2.4499	2.433	61	110	83	5.0378	5.04	100
Ī32	8	1.6663	1.6610	37	315	12	2.4429			202	35	4.9834		
<u></u>	15	1.6601			513	16	2.4265			$\bar{1}$ 11	9	4.8204		
12 2 2	18	1.6560			515	20	2.4157			311	21	4.3847	4.39	45
518	11	1.6445			<u>2</u> 22	16	2.4102			310	9	4.3397		
531	14	1.6304	1.6244	36	314	14	2.3747			<u>1</u> 12	64	4.1288	4.12	56
1514	6	1.6281			<u>9</u> 14	9	2.3104			600	21	4.0280		
1604	23	1.6155			222	12	2.2880	2.297	11	312	10	3.9867		
008	9	1.6144			115	6	2.2301			402	13	3.7729	3.807	15
10 2 6	16	1.5887	1.5858	65	006	6	2.1526	2.165	15	$\bar{5}$ 1 1	30	3.6591	3.694	17
5.33	13	1.5800			11 1 2	6	2.1471			510	9	3.5247		
226	56	1.5777			514	7	2.1148			2 04	26	3.4527	3.443	96
12 0 8	9	1.5739			$\overline{11}$ 1 1	46	2.1087	2.119	59	4 04	19	3.4189		
72	9	1.5541			516	14	2.1058			313	66	3.4137		
532	13	1.5257	1.5296	10	224	28	2.0644	2.0661	37	<u>8</u> 02	93	3.2309	3.234	93
12 2 6	17	1.5021	1.5056	34	ā 2 4	13	2.0571			513	100	3.1774	3.191	84
14 2 2	15	1.5004			315	7	2.0482			113	38	3.1554		
11 1 4	7	1.4997			<u>8</u> 22	29	2.0139	2.0171	26	800	9	3.0210		
14 2 4	8	1.4906	1.4759	15	206	11	1.9961			711	59	3.0007	3.011	56
<u>9</u> 32	11	1.4754			820	8	1.9599	1.9522	29	712	10	2.9811		
15 1 1	7	1.4676			622	37	1.9437			<u>3</u> 14	70	2.8784	2.884	60
13 1 3	7	1.4540	1.4568	24	224	8	1.9160			710	31	2.8679		
<u>3</u> 19	11	1.4510			517	15	1.8517	1.8545	17	Ī14	9	2.8185		
					11 1 6	11	1.8110			512	15	2.7943		
					11 2	9	1.7657	1.7655	23	804	7	2.7737		
					822	6	1.7621							
					$\frac{1}{13}$ 1 5	10	1.7581							

Table 4. Crysta	al data, data	a collection a	and refinem	ent details.
-----------------	---------------	----------------	-------------	--------------

Crystal data						
Space group	C2/c					
a,b,c (Å)	25.944(5), 5.1426(10), 13.870(3)					
β (°)	111.60(3)					
V (Å ³), Z	1720.4(7), 4					
F(000)	1685.0					
μ (mm ⁻¹)	4.939					
Absorption correction	multi-scan, T _{min} , T _{max} = 0.40, 0.43					
Crystal dimensions (µm)	0.40 x 0.25 x 0.10					
Data collection						
Diffractometer	Dectris EigerX 16M					
Temperature (K)	100					
Radiation	Synchrotron, $\lambda = 0.710760$ Å					
Crystal detector distance (mm)	108.025					
θ range (°)	1.69-23.15					
h,k,l ranges	$-26 \rightarrow 26, -5 \rightarrow 5, -14 \rightarrow 14$					
Total reflections measured	6676					
Unique reflections	1060 ($R_{int} = 0.0352$)					
Refinement						
Refinement on	F ²					
$R_1 * \text{ for } F_0 > 4\sigma(F_0).$	1.97%					
wR_2^{\dagger} for all F_0^2	5.33%					
Reflections used $F_{0} > 4\sigma(F_{0})$	1057					
Number of parameters refined	182					
GooF	1.256					
$(\Delta/\sigma)_{max}$	0.000					
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e/Å)	0.350, -0.471					

 $\label{eq:rescaled_rescaled$

 $P = ([\max \text{ of } (0 \text{ or } F_0^2)] + 2Fc^2)/3$

and monochromatic radiation with a wavelength of 0.710760 Å. The data set was processed using XDS (Kabsch, 2010) without scaling, and with absorption correction and scaling using SADABS (Bruker, 2001). Structure solution in space group C2/c was carried out using SHELXT (Sheldrick, 2015a) as implemented in the WinGX suite (Farrugia, 2012). The atom coordinates were 93

then transformed to correspond to those in the structure of dufrénite (Moore, 1970). SHELXL-2018 (Sheldrick, 2015b) was used for the refinement of the structure. All H atom sites were located in difference-Fourier maps and were refined with soft restraints of 0.82(3) Å on the O–H distances. The site occupancies at the X site and the M2 site were fixed to $(Na_{0.81}Ca_{0.19})$ and $(Mg_{0.75}Mn_{0.19}^{2+}Fe_{0.05}^{2+})$, respectively, in accordance with the electron microprobe data. The final refinement converged to an agreement index of $R_1 = 1.97\%$ for 1060 observed reflections with $F_0 > 4\sigma$ (F_{0}) . Data collection and refinement details are given in Table 4, atom coordinates and displacement parameters in Table 5, selected bond distances in Table 6 and a bond valence analysis in Table 7. The crystallographic information file has been deposited with the Principal Editor of Mineralogical Magazine and is available as Supplementary material (see below).

The main feature of the structure is a trimer of face-sharing octahedra, the "h-cluster" described by Moore (1970), which is also a feature in the structures of a number of other basic ironphosphate minerals. A central $M2\phi_6$ octahedron shares two trans faces with two $M4\phi_6$ octahedra, via the OH5, O6 and O7 anions, to form a trimer of the form $[M_3\phi_{12}]$. Linkage in the a-direction is via corner-sharing M1 octahedra and T2 tetrahedra. Trimers link in both the **b**-direction and the **c**-direction by sharing corners with M3 octahedra and with T1 and T2 tetrahedra (Fig. 4).

The X site occupies channels that run along [010] and is coordinated by six O atoms and two H₂O molecules to form a square antiprism. The refinement yields an X site occupied by Na_{0.84}Ca_{0.16} (12.43 epfu), in good agreement with the chemical analysis that shows Na_{0.81}Ca_{0.19} (12.71 epfu). The bond-valence sum at the site of 1.34 is also in agreement with a mixed (Na, Ca) site population. Each of the M sites is coordinated by six anions in an octahedral arrangement. The M2 site is occupied by Mg plus minor Mn^{2+} and Fe^{2+} and is coordinated by four O anions and two OH groups. The site was refined with joint

Table 5. Fractional coordinates and displacement parameters $(Å^2)$ for atoms for bimbowrieite.

	X	У	Ζ	$U_{\rm eq}$	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U ²³
X ^a	1/2	-0.1572(3)	3/4	0.0073(7)	0.0053(10)	0.0096(10)	0.0064(10)	0	0.0013(6)	0
<i>M</i> 1 (Fe)	1/2	0	1/2	0.0039(3)	0.0034(5)	0.0050(5)	0.0036(5)	-0.0010(3)	0.0015(3)	-0.0003(3)
M2 (Mg) ^b	1/4	1/4	0	0.0059(5)	0.0054(7)	0.0056(7)	0.0059(7)	0.0000(4)	0.0011(5)	-0.0003(4)
M3 (Fe)	0.34672(2)	0.01692(9)	0.38984(4)	0.0039(2)	0.0043(3)	0.0040(3)	0.0032(3)	-0.0010(2)	0.0012(2)	-0.0003(2)
M4 (Fe)	0.35947(2)	0.22512(10)	0.14906(4)	0.0041(3)	0.0041(4)	0.0039(4)	0.0041(4)	0.0001(2)	0.0012(2)	0.0000(2)
P1	0.28236(4)	0.73847(16)	0.16731(7)	0.0059(3)	0.0065(5)	0.0055(5)	0.0055(5)	-0.0001(4)	0.0022(4)	-0.0003(3)
P2	0.42124(4)	0.72423(17)	0.10846(7)	0.0065(3)	0.0066(5)	0.0059(5)	0.0071(5)	0.0006(4)	0.0029(4)	0.0002(3)
01	0.42298(9)	0.4584(4)	0.15928(18)	0.0084(6)	0.0084(13)	0.0076(12)	0.0096(12)	0.0001(10)	0.0039(10)	0.0005(10)
02	0.41124(10)	0.9366(5)	0.17786(17)	0.0092(5)	0.0095(12)	0.0078(12)	0.0096(12)	-0.0008(11)	0.0027(10)	0.0014(10
03	0.47861(10)	0.7800(5)	0.10190(18)	0.0107(6)	0.0081(14)	0.0125(13)	0.0112(13)	0.0043(10)	0.0033(11)	0.0008(10
04	0.37570(10)	0.7225(4)	0.00109(18)	0.0088(6)	0.0107(13)	0.0068(13)	0.0094(13)	0.0028(10)	0.0044(11)	0.0001(10
OH5	0.32788(10)	0.2270(5)	-0.01339(18)	0.0086(6)	0.0121(14)	0.0076(13)	0.0082(13)	-0.0013(11)	0.0061(11)	-0.0009(10
O6	0.29808(9)	0.5061(4)	0.11306(17)	0.0072(5)	0.0083(13)	0.0057(13)	0.0070(12)	-0.0012(10)	0.0021(10)	-0.0004(9)
07	0.28974(9)	0.9921(4)	0.11435(17)	0.0076(6)	0.0089(13)	0.0066(13)	0.0061(12)	0.0003(10)	0.0014(10)	-0.0011(10)
OH8	0.37097(10)	0.2676(4)	0.29776(18)	0.0091(6)	0.0106(14)	0.0099(13)	0.0075(13)	0.0015(10)	0.0040(11)	0.0020(10
09	0.32327(10)	0.7443(4)	0.28071(18)	0.0084(6)	0.0091(13)	0.0099(14)	0.0049(12)	-0.0005(9)	0.0011(10)	0.0005(10
O10	0.22295(10)	0.7095(5)	0.15877(18)	0.0095(6)	0.0080(13)	0.0113(13)	0.0100(13)	-0.0011(10)	0.0041(10)	-0.0008(10
OH11	0.57579(9)	0.1352(5)	0.56802(18)	0.0105(6)	0.0073(13)	0.0086(14)	0.0142(13)	-0.0028(11)	0.0024(11)	-0.0001(10
OH12	0.52308(10)	-0.2936(5)	0.60692(19)	0.0102(6)	0.0071(13)	0.0112(13)	0.0111(13)	0.0002(11)	0.0018(11)	-0.0019(11
H5	0.338(2)	0.368(6)	-0.022(4)	0.050						
H8	0.3549(19)	0.405(7)	0.298(4)	0.050						
H11	0.579(2)	0.218(9)	0.619(3)	0.050						
H12A	0.5053(18)	-0.436(7)	0.594(4)	0.050						
H12B	0.5585(12)	-0.308(9)	0.634(4)	0.050						

^aRefined occupancy Na_{0.81}Ca_{0.19}

^bRefined occupancy Mg_{0.75}Mn²⁺_{0.19}Fe²⁺_{0.05}

Table 6. Selected interatomic distances (Å), angles (°) and hydrogen bonds for bimbowrieite.

Х	<i>X</i> -OW12 ×2	2.380(3)	<i>M</i> 3 (Fe)	M3-010	1.951(2)	P1	P1-010	1.509(3)
	<i>X</i> -02 ×2	2.428(3)		<i>M</i> 3–O4	1.972(2)		P1-09	1.540(3)
	<i>X</i> -01 ×2	2.475(3)		<i>M</i> 3–O9	1.987(2)		P1-07	1.543(2)
	<i>X</i> –03 ×2	2.729(3)		M3-05	2.024(2)		P1-06	1.545(2)
	<x-o></x-o>	2.503		M3-011	2.032(2)		<p-0></p-0>	1.534
				<i>M</i> 3–08	2.069(2)			
<i>M</i> 1 (Fe)	M1-OH11 ×2	1.968(2)		< <i>M</i> -O>	2.015	P2	P2-04	1.523(3)
	M1-03 ×2	2.040(2)		BLD	1.786		P2-01	1.531(2)
	M1-OW12 ×2	2.045(3)		OAV	14.522		P2-02	1.540(3)
	< <i>M</i> -O>	2.018					P2-03	1.551(3)
	BLD	1.641	M4 (Fe)	<i>M</i> 4–O2	1.941(2)		<p-0></p-0>	1.536
	OAV	7.203		M4-OH8	1.984(2)			
				<i>M</i> 4–01	2.000(2)			
<i>M</i> 2 (Mg)	M2-07 ×2	2.033(2)		<i>M</i> 4–O6	2.071(2)			
	M2-06 ×2	2.076(2)		<i>M</i> 4–07	2.073(2)			
	M2-OH5 ×2	2.099(2)		M4-OH5	2.095(2)			
	< <i>M</i> -O>	2.069		< <i>M</i> -O>	2.026			
	BLD	1.171		BLD	2.581			
	OAV	140.916		OAV	63.585			
Hydrogen bor	nds							
D–H···A		D-H	H···A	D···A	<i>∠D</i> –H…A			
OH5-H5-04		0.79(3)	2.04(3)	2.809(3)	163(5)			
OH8-H8O9		0.82(3)	1.90(3)	2.717(3)	169(5)			
OW12-H12A.	·01	0.85(3)	2.61(5)	3.062(3)	115(4)			
OW12-H12A.	·03	0.85(3)	1.92(3)	2.745(3)	165(5)			
OW12-H12B.	·OH8	0.86(3)	1.74(3)	2.578(4)	166(5)			

Note: BLD = bond-length distortions (Renner and Lehmann, 1986); OAV = octahedral angle variance (Robinson et al., 1971).

occupancy by Mg and Mn, yielding a site-scattering value of 16.32 e^- . This is greater than the site-scattering value of 15.17 e^- based on the site occupancy indicated by the empirical formula. The most likely explanation is that the crystal used for the structure determination was higher in Mn and lower in Mg than the crystal used for electron probe microanalysis (EPMA). The large variations in these elements noted during the EPMA further support this explanation. Fe³⁺ occurs at three symmetrically distinct sites, *M*1, *M*3 and *M*4. The *M*1 site is coordinated by two O atoms, two OH groups and two H₂O groups. The *M*3 site is coordinated by three O atoms and three OH groups. The observed mean *M*– ϕ bond-lengths for the *M*1, *M*3 and *M*4 sites (2.018, 2.015 and 2.026 Å respectively) and bond-valence sums (Table 7) support the occupancy of the *M*1 site by Fe³⁺ plus

minor Al. This is in agreement with the structure refinements of other members of the dufrénite group in which the smaller M1, M3 and M4 octahedral sites are dominated by either Fe³⁺ or Al. Of the M sites, M3 and M4 are more distorted in terms of bond-length distortion (BLD) and M2 and M4 are more distorted in terms of octahedral angle variance (OAV) (Table 6). Two symmetrically distinct sites, P1 and P2 in the structure are fully occupied by P. The PO₄ tetrahedra show similar <P–O> distances and degrees of geometrical distortion.

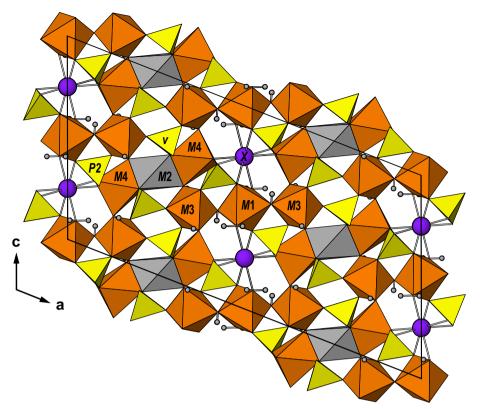

There are three OH groups and one H_2O group in the structure. The hydrogen bonding scheme (Table 6) for bimbowrieite is the same as that reported in previous studies on the dufrénite-group minerals burangaite (Selway *et al.*, 1997) and matioliite (Atencio *et al.*, 2006). The OH5 and OH8 groups provide hydrogen bonds accepted by O4 and O9, respectively. OW12

Table 7. Bond valence* (vu) sums for bimbowrieite.

	Х	<i>M</i> 1	M2	М3	<i>M</i> 4	P1	P2	H5	H8	H11	H12A	H12B	Sum
01	0.17× ² ↓				0.55		1.23					0.10	2.05
02	0.19ײ↓				0.62		1.26						2.07
03	0.09× ² ↓	0.46ײ↓					1.20				0.20		1.95
04				0.56			1.28	0.17					2.01
OH5			0.37× ² ↓	0.49	0.43			0.83					2.12
06			0.35× ² ↓		0.40	1.21							1.96
07			0.41× ² ↓		0.43	1.22							2.06
OH8				0.43	0.52				0.80			0.18	1.93
09				0.54		1.23			0.20				1.97
010				0.60		1.32							1.92
011		0.57× ² ↓		0.48						1.00			2.05
OW12	0.22	0.47× ² ↓									0.80	0.72	2.21
Sum	1.34	3.00	2.26	3.10	2.95	4.98	4.97	1.00	1.00	1.00	1.00	1.00	

*Bond-valence parameters used are from Gagné and Hawthorne (2015).

Bond valences for the X and M(2) sites are based on the refined occupancy.

Figure 4. The crystal structure of bimbowrieite viewed along [010]. Hydrogen atoms are small grey spheres. The unit cell is outlined.

provides three hydrogen bonds accepted by O1, O3 and OH8. The hydrogen bonds are of weak to medium strength with O–O distances in the range 2.580 to 3.065 Å.

Acknowledgements. The authors thank Ben Wade of Adelaide Microscopy, The University of Adelaide for assistance with the microprobe analysis. The infrared spectrum was acquired with the assistance of the Forensic Science Centre, Adelaide. This research was undertaken in part using the MX2 beamline at the Australian Synchrotron, part of ANSTO, and made use of the Australian Cancer Research Foundation (ACRF) detector.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1180/mgm.2023.86.

Competing interest. The authors declare none.

References

- Aragao D., Aishima J., Cherukuvada H., Clarken R., Clift M., Cowieson N.P., Ericsson D.J., Gee C.L., Macedo S., Mudie N., Panjikar S., Price J.R., Riboldi-Tunnicliffe A., Rostan R., Williamson R. and Caradoc-Davies T.T. (2018) MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. *Journal of Synchrotron Radiation*, 25, 885–891.
- Atencio D., Coutinho J.M.V., Mascarenhas Y.P. and Ellena J.A. (2006) Matioliite, the Mg-analog of burangaite, from Gentil mine, Mendes Pimentel, Minas Gerais, Brazil, and other occurrences. *American Mineralogist*, **91**, 1932–1936.

Bruker (2001) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Campana B. (1957) Granites, orogenies and mineral genesis in the Olary Province (South Australia), *Journal of the Geological Society of Australia*, 4, 1–12.
- Černý P. (1991) Rare element granitic pegmatites, part I. Anatomy and internal evolution of pegmatite deposits. *Geoscience Canada*, 18, 49–67.

- Elliott P. and Kampf A.R. (2020) Bimbowrieite, IMA 2020-006. CNMNC Newsletter No. 55; *Mineralogical Magazine*, **84**, https://doi.org/10.1180/ mgm.2020.39
- Farrugia L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849–854.
- Fontan F., Pillard F. and Permingeat F. (1982) La natrodufrénite (Na,□) (Fe⁺⁺⁺,Fe⁺⁺)(Fe⁺⁺⁺,Al)₅(PO₄)₄(OH)₆·2H₂O, une nouvelle espèce minérale du groupe de la dufrénite. *Bulletin de Minéralogie*, **105**, 321–326.
- Gagné O.C. and Hawthorne F.C. (2015) Comprehensive derivation of bondvalence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- Kabsch W. (2010) XDS. Acta Crystallographica, D66, 125-132.
- Kampf A.R., Colombo F. and González del Tánago J. (2010) Gayite, a new dufrénite-group mineral from the Gigante granitic pegmatite, Córdoba province, Argentina. American Mineralogist, 95, 386–391.
- Libowitzky E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. *Monatshefte für Chemie*, **130**, 1047–1059.
- Lottermoser B.G. and Lu J. (1997) Petrogenesis of rare-element pegmatites in the Olary Block, South Australia, part 1. Mineralogy and chemical evolution. *Mineralogy and Petrology*, 59, 1–19.
- Mandarino J.A. (2007) The Gladstone-Dale compatibility of minerals and its use for selecting mineral species for further study. *The Canadian Mineralogist*, **45**, 1307–1324.
- Moore P.B. (1970) Crystal chemistry of the basic iron phosphates. *American Mineralogist*, **55**, 135–169.
- Olliver J.G. and Steveson B.G. (1982) Pegmatites in the Olary Province. A review of feldspar and beryl mining north of Olary and the results of reconnaissance sampling of feldspar. *Report 81/74. South Australian Department of Mines and Energy*, Adelaide, Australia.
- Pouchou J.-L., and Pichoir F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model "PAP". Pp. 31–75 in: *Electron Probe Quantitation* (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.
- Renner B. and Lehmann G. (1986) Correlation of angular and bond length distortions in TO₄ units in crystals. *Zeitschrift für Kristallographie*, **175**, 43–59.

- Robinson K., Gibbs G.V. and Ribbe P.H. (1971) Quadratic elongation; a quantitative measure of distortion in coordination polyhedra. *Science*, **172**, 567–570.
 Selway J.B., Cooper M.A. and Hawthorne F.C. (1997) Refinement of the crystal structure of burangaite. *The Canadian Mineralogist*, **35**, 1515–1522.
- Sheldrick G.M. (2015a) SHELXT Integrated space-group and crystalstructure determination. *Acta Crystallographica*, A71, 3–8.
- Sheldrick G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8.