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FUCHSIAN SUBGROUPS OF THE PICARD GROUP 

BENJAMIN FINE 

1. I n t r o d u c t i o n . T h e Picard group V = PSL2 (Z(i)) is the group of 
linear transformations 

Z' = ;—; ad — be = ± 1 with a, b, c, d Gaussian integers. 
cz + a 

T is of interest both as an abst ract group and in automorphic function 
theory [10]. In [10] Waldinger constructed a subgroup H of finite index which 
is a generalized free product, while in [1] Fine showed tha t T is a semidirect 
product with the subgroup H, contained as a subgroup of finite index in the 
normal factor. Tretkoff [2] used these to show tha t T is 5Q-universal, while 
Mennicke [8] and Maski t [7] used T to generate faithful representations of 
fundamental groups of Riemann surfaces. Most recently Karrass and Solitar 
[4] characterized abelian subgroups of V. In this paper we will show tha t T is 
given directly as a generalized free product, and use this to characterize 
Fuchsian subgroups. In order to do this we find the conjugacy classes of 
elliptic and parabolic maps. 

2. D e c o m p o s i t i o n of T. T contains the modular group PSL2(Z) as a 
subgroup. PSL2(Z) is known to be a free product [5]. Here we show tha t group 
theoretically is similar to the modular group. 

T H E O R E M 1. r is given directly as a free product of two groups Gi, G2 with 
amalgamated subgroup H; G\ is the free product of a symmetric group 2 3 and 
the alternating group AA with a S-cycle amalgamated, while G2 is 2 3 * D2 with a 
2-cycle amalgamated. 

T h e amalgamated subgroup H = PSL2(Z) {modular group}. 

Proof. T h e result follows from a presentation of the Picard group Y given 
by G. Sansone [9]. 

r = U , By C, D; A* = B2 = C2 = D2 = (AC)2 = (AB)2 = (CD)2 

= (BD)2 = 1} 

where A is the t ransformat ions ' = l/(z + 1), B i sz ' = l/z, Cisz' = 1/' (z + i), 
and D is z' = —l/z. 

(i) W e l e t G i = {A,B, C;A* = B2 = (AB)2 = 1, A* = C* = (AC)2 = 1} 
^ S 3 * AA with a 3-cycle amalgamated, and let G2 = {B, C, D; B2 = D2 = 
(BD)2 = 1, D2 = C3 = (CD)2 = 1} ^ S 3 * D2 with a 2-cycle amalgamated. 
Then r is G\ * G2 with the identifications B = B, C = C. 

(ii) In Gi, the subgroup generated by B, C is their free product , z2 * 23 while 
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this is also true in G2\ these follow from combinatoral arguments. Therefore 
the identifications induce isomorphisms and T is a generalized free product 
with the subgroup H =^ z2 * z$ = PSL2(Z) amalgamated. 

A decomposition of V as a free product with amalgamation was computed 
in a different manner by Karrass & Solitar [4]. This was used to investigate 
abelian and nilpotent subgroups of T. 

3. Conjugacy classes. T is also presented by [1] {a, I, /, u\a2 = I2 = 
(al)2 = (tl)2 = (ul)2 = (at)3 = (uaiy = tut-Hr1 = 1J where a is z' = - 1 / z , 
I : z' = — z,t:zf = z + l,u:z' = z-\-i. We will be using this presentation 
as well as the previous one. Now although T is similar as a group to PSL2(Z) 
they differ greatly in their action on the complex plane C. While PSL2(Z) is 
discontinuous in the upper half-plane and Fuchsian with the real line as a fixed 
circle [5], T is nowhere discontinuous in C and therefore has no Fuchsian 
subgroups of finite index [5]. If C is a circle we let P(C) be the Fuchsian Stabi
lizer in C in T {the subgroup of T which maps both C and the interior of C on 
itself} and PN(C) the normal closure in T of P(C). Waldinger [10], exhibited 
several classes of circles Ct for which |T : PN(Ct)\ is finite. We extend these 
results. To do this we must find the conjugacy classes of elliptic and parabolic 
elements in T. 

THEOREM 2. There are only seven conjugacy classes of elliptic elements in Y; 
jive for those of order 2, and two for those of order 3. In particular, any elliptic 
map of order is conjugate to one of: l(z) = — z, al(z) = 1/z, ul(z) = — z + i, 
tl(z) = —z-\-l,utl(z) = —z-\- (1 + i), while any elliptic map of order 3 is 
conjugate to at(z) = —1/(2 + 1), or ual(z) = l/(z + i). 

Proof. From Theorem 1, T = d * G2 with H amalgamated. 

Gi ^ {A, B, C; Az = B2 = AB2 = 1, A' = C3 = (AC)2 = 1} 

G2 ^ {B, C, D; B2 = D2 = (BD)2 = 1, B2 = C3 = (CD)2 = 1} 

with Ay B, C, D as before. 

Now in a generalized free product * (Gi, G2; H) any element of finite order 
is conjugate to an element of finite order in one of the factors [6]. Therefore 
to find the conjugacy classes of elliptic elements in T, we must find the con
jugacy classes of elements of finite order in Gi and in G2. 

Now 

Gi ^ [A, B, C; A3 = B2 = (AB)2 = 1, A* = C3 = (AC)2 = 1} 
^ {A,B;A* = B2 = (AB)2 = 1} * {A, C; A* = C3 = (AC)2 = 1} 

with the amalgamation A = A. Therefore by the same argument as above, to 
find the conjugacy classes in Gi, we must find the conjugacy classes in the 
factors of Gi. 

Now {A, B; Az = B2 = (AB)2 = 1} ^ 2 3 has two conjugacy classes of 
elements of order 2 with representatives B, AB, and one conjugacy class of 
elements of order 3 with representative A. While in {A,C;A3 = G3 = (AC)2 = 
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1} = A4, there is one conjugacy class of elements of order 2 with representative 
A C and two conjugacy classes in order 3 with representatives A, C. Hence in G\, 
there are three conjugacy classes of elements of order 2 with representatives B, 
AB, AC, and two conjugacy classes in order 3 with representatives A, C. 

In an identical manner we investigate Gi ~ {B, C, D • B2 = D2 = (BD)2 = 
(CD)2 = 1} to find there are four classes of elements in order 2 with representa
tives B, D, BD, CD, and one class in order 3 with representative C. Therefore, 
in T as a whole we have the following representatives for elliptic maps; B, AB, 
AC, D, BD in order 2 and A, C in order 3. 

B is z' = 1/z = al(z); AB is z' — — z/(z + 1) = ala(z) which is conjugate 
(by a) to tl(z) = — z + 1; AC is z' = —z/(I + i)(z + 1) = aut la(z) which is 
conjugate to utl\ BD is z' — —z = l(z) while D is z' = —1/z = a(z). But from 
(ual)* = (ul)2 = (al)2 = I2 = 1 it follows that uau~laua = I; hence (uau~l) 
a(uau~x) = lu~x = ul and so a is conjugate to ul(z) = — z + i. 

In order 3, A is s' = — l/(z + 1) = at(z) while Cis z' = l / ( s + i) = ual(z). 

We would like to note that there is also a direct proof of the above theorem 
which does not involve the decomposition of T as a generalized free product. 
This entails the minimizing of elements in matrices and while is lengthier 
does have the property that it will generalize to certain other matrix groups 
which do not necessarily decompose as generalized free products. 

Using the above theorem we get 

THEOREM 3. If G is a normal subgroup of Y and G contains an elliptic element 
then the index \T : G\ is finite. 

Proof. Say T is elliptic and T € G. Since G < T, then G 3 N(T) {normal 
closure in T of T) implies | Y : G\ ^ | T : N(T)\. We will show | Y : N(T)\ < oo 
for all elliptic maps T. 

Now |T : N(T)\ = |T : N(T*)\ for all conjugates T* of T, so we must only 
show that the normal closures of our conjugacy class representatives have 
finite index; to do this we show the factor groups have finite order. To do this 
we will set our conjugacy class representatives equal to 1 in the presentation 
of T to obtain presentations for the factor groups. 

Now T = {a, I, t, u\ a2 = I2 = (al)2 = (tl)2 = (ul)2 = (at)* = (uaiy = 
tut~lu~l = 1}. From Theorem 2, any elliptic map is conjugate to /, tl, al, ul, utl, 
at, or ual, so 

(1) Y/N(l) ^ {a, t, u\ a2 = t2 = u2 = (tu)2 = (at)* = (auY = 1} which 
has order 24 [10]. 

(2) Y/N(al) ^ {a, t, u; a2 = (at)* = (at)2 = (au)2 = u* = tut~lu~l = 1} 
^ {a; a2 = 1} ^ Z2 so order 2. 

(3) Y/N(ul) 9Ë {a, t, I; a2 = I2 = (al)2 = a3 = (at)* = (tl)2 = 1, tl = /*} 
^ {/;/2 = 1} ^ Z 2 so order 2. 

(4) T/iV(7/) ^ {/; I2 = 1} ^ Z2 so order 2. 
(5) Y/N(utl) ^ {a, /, w; a2 = t2 = zi2 = (atu)2 = (tu)2 = (a/)3 = 1} 

9Ë {a, /, z; a2 = t2 = (a*)3 = 1, 22 = 1, [a, z) = 1, [t, z] = 1} ^ Z2 X 2 3 so 
order 12. 
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(6) T/N(at) ^ {a, /; a2 = I2 = (a/)2 = 1} ^ Z 2 X Z 2 so order 4. 
(7) T/N(ual) ^ {a, /; a2 = /2 = (a/)2 = 1} ^ Z 2 X Z 2 so order 4. 

W e can restate this as 

COROLLARY. If G <\ T and G has an elliptic element then \T : G\ divides 24 
[divides 2, 4, 12 or 24 depending on elliptic map). 

Applying this to our Fuchsian groups P(C) we get 

COROLLARY. If the circle C and the interior of C are both fixed by any elliptic 

map in r then the index \T : PN(C)\ < oo. In fact \T : PN(C)\ divides 2, 4, 12 

or 24. 

If we do not require the interior of C to be mapped on itself we get a stronger 
s ta tement . Let t ing L(C) be the general stabilizer of the circle C in T, (the 
subgroup of r which maps C on itself) and LN(C) its normal closure, we get 

T H E O R E M 4. If the circle C is fixed by either an elliptic and/or parabolic map 

in r then \T : LN(C)\ < oo (infact \T : LN(C)\ | 24). 

Proof. If the circle C is fixed by an elliptic map then the result follows from 
Theorem 3. If C is fixed by a parabolic map we need the following. 

LEMMA. A parabolic map in V is conjugate within T itself to a translation. 

Proof. If T is parabolic, T £ I \ then T = (az + b)/(cz + d) with a + d = 
± 2 . Then the fixed point of T is (a — d)/2c which is a Gaussian rat ional . 

If a/B is a Gaussian rational, with (a, B) = 1, then 

7 i ( Z ) = (az + a)/(cz + B) 

is in T (where a, c, B, a are Gaussian integers with aB — cot = 1 and a, ct 

exist because (a, B) = 1), and maps 0 to a/B. So F i _ 1 maps a / 5 to 0 and then 
a = \z' = —l/z) takes 0 to oo . So aVr1 : a / 5 —» oo . 

Therefore, conjugating T by aVi~* gives T* which is also parabolic [5], 
and in T and has fixed point infinity. A parabolic map in T with fixed point oo 
is a t ranslat ion [5], proving the lemma. 

Say parabolic T fixes circle C and say V~lTV = T* is a t ranslat ion, say 
z' = z -\- a. Then V(C) is a fixed circle of T* which mus t be the line L through 
a and the origin. Bu t any line through the origin is fixed by l(z) = —z (al
though not in a Fuchsian manner ) . Then V~H V fixes C so L(C) contains an 
elliptic map . Then from Theorem 3, | T : LN(C)\ < oo ; in fact it divides 24. 

4. F u c h s i a n s u b g r o u p s . Using the above we can characterize normal 
Fuchsian subgroups. 

T H E O R E M . A finitely generated normal Fuchsian subgroup F of Y is either a 
free group or provides a faithful representation of a fundamental group of a 
Riemann surface of genus ^ 2. 

T h e theorem is also t rue if F is not normal bu t if the normal closure of F 
in T has infinite index. 

https://doi.org/10.4153/CJM-1976-049-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-049-3


FUCHSIAN SUBGROUPS 485 

Proof. Say F < T and F is finitely generated Fuchsian. Then since F is 
discontinuous in C, | T : F| = oo [5]. Therefore from before F cannot have any 
elliptic maps. (If it did it would be of finite index.) 

A finitely generated Fuchsian group F has a presentation; 

F = {ait bit cjt dk, i = 1 . . . n, j = 1 . . . s, k = 1 . . . /; cjlj = 1 ; 

cr1... Cs~
ldrl... dr'l/n, &d •. • K W = 1} 

Since T7 is elliptic map free, 7 = 0 and we get 

F ^ {at, bt, dk, i = 1 . . . n, k = 1 . . . t; di . . . dt[au b{\ . . . [an, 6n] = 1} 

If / 7e 0 then F is a free product of torsion free cyclic groups [3] and is 
therefore a free group. 

If t = 0 then 

F ^ {aubui = 1, . . . n; |>if&i] . . . [an, 6n] = 1} 

which is a presentation for the fundamental group of Riemann surface of 
genus n. Iî n = 1, F is free abelian of rank 2 and cannot be Fuchsian [5] so 
n > 1, and F provides a faithful representation of a fundamental group of a 
Riemann surface of genus n ^ 2 . 

If F is not normal but | T : N(F)\ = oo , then by the same argument F must 
be elliptic map free, and satisfy the same requirements as above. 

It is interesting to note that free groups of all finite ranks as well as faithful 
representations of fundamental groups of Riemann surfaces of all finite genuses 
do appear in T [7 ; 8], although not necessarily as normal Fuchsian subgroups. 
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