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We show that in a turbulent flow transporting suspended sediment, the unsaturated
sediment flux q(x, t) can be described by a first-order relaxation equation. From
a mode analysis of the advection–diffusion equation for the particle concentration,
the relaxation length and time scales of the dominant mode are shown to be the
deposition length HU/Vfall and deposition time H/Vfall , where H is the flow depth, U

the mean flow velocity and Vfall the sediment settling velocity. This result is expected
to be particularly relevant for the case of sediment transport in slowly varying flows,
where the flux is never far from saturation. Predictions are shown to be in quantitative
agreement with flume experiments, for both net erosion and net deposition situations.
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1. Introduction
Suspension is an important mode for the transport of sediments by fluid flows. It

occurs when the falling velocity of the particles is smaller than the turbulent velocity
fluctuations, so that particles can remain suspended for a long time, trapped by
turbulent eddies, before they eventually fall back on the bed because of gravity. In
nature, one observes suspension in large rivers, i.e. in their downstream part, where
a large amount of fine particles has been collected from the catchment basin. Rivers
that ordinarily present bed-load transport (the moving particles remain close to the
bed) can also experience suspension (the particles are present over the whole flow
depth) when the water discharge is unusually large, e.g. during flood events.

Vertical concentration profiles and overall sediment fluxes are among the major
issues (see the pioneering works of Rouse 1936, Vanoni 1946 or van Rijn 1984b).
From the point of view of hydraulic engineering, the problem has been satisfactorily
solved for rivers in a steady state, although some questions are still open, such as
particle trapping by turbulent eddies or the structure of the flow near the bottom
where the concentration is large (Nielsen 1992; Nezu 2005). However, the response
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Figure 1. Sketches of the situations studied in § 4: (a) flow over a slope change and (b) flow
over the passage from non-erodible to erodible bed. Here, H and S are the river depth and
the bottom slope for x < 0, and Φ0(z) is the corresponding saturated concentration profile; δH
and δS are the variations in H and S downstream of the change at x =0, and Φsat (z) is the
new saturated concentration profile reached at the distance x ≈ Lsat .

of the sediment flux to temporal or spatial changes of the flow is largely unknown.
Such changes may be induced, for instance, by long gravity waves, or a sudden
increase of the flow rate, or variations of the river slope or geometry. Two typical
problems of relaxation downstream of a change in the flow conditions are depicted
in figure 1, which will be studied in § 4: that of a small change of the slope of the
bottom (figure 1a) and that of a change of the bottom conditions, from non-erodible
to erodible (figure 1b). The suspended sediment response is expected to have a strong
effect on the dynamics of the erodible bottom, especially on the formation of dunes
or bars or, at a larger scale, on the development of meanders (Seminara 2006).
Specific relaxation problems have been investigated by numerical integration of the
Reynolds-averaged Navier–Stokes equations, using mixing length or k–ε turbulence
models (Apmann & Rumer 1970; Hjelmfelt & Lenau 1970; Jobson & Sayre 1970;
van Rijn 1986b; Celik & Rodi 1988; Ouillon & Le Guennec 1996).

In the case in which bed load is dominant, or in the aeolian situation (saltation), it
has been shown that the evolution of the sediment flux q can be accounted for by a
relaxation equation of the form

Tsat∂tq + Lsat∂xq = qsat − q, (1.1)

where qsat is the saturated flux; Tsat and Lsat are the relaxation time and length scales –
i.e. the time and length over which the flux relaxes towards saturation. This saturation
corresponds to the homogeneous and steady state for which sediment transport
is constant in both space and time for given flow conditions. Such a first-order
equation was first introduced in the aeolian context as the simplest equation describing
relaxation effects (Sauermann, Kroy & Herrmann 2001; Andreotti, Claudin & Douady
2002; Kroy, Sauermann & Herrmann 2002; Andreotti 2004). It was then shown
that, for water flows, this equation can be derived from the analysis of the erosion
and deposition rates, the relaxation scales there being related to particle deposition
(and not particle inertia) (Charru 2006; Lajeunesse, Malverti & Charru 2010). The
importance of the relaxation length Lsat appeared to be crucial in particular for
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stability analyses of the erodible bottom, for selection of the ripple wavelength
(Fourrière, Claudin & Andreotti 2010). The importance of relaxation phenomena for
suspensions in turbulent flow is well known in the context of hydraulic engineering
(Yalin & Finlaysen 1973; van Rijn 1986a; Celik & Rodi 1988; Ouillon & Le Guennec
1996). This importance has also been recognized in the context of geomorphology;
in particular, Davy & Lague (2009) proposed a deposition length of sediment as the
relevant transport length. However, a derivation of a relaxation equation of the form
(1.1), from firm hydrodynamic grounds, is still lacking.

In this paper, we discuss the conditions under which an equation of the form
(1.1) can be derived for turbulent flows, when suspension is the dominant mode of
transport, with particular emphasis on the identification of the saturation length and
time scales. The paper is organized as follows. In the next section, we present the
flow models and saturation conditions. In § 3 we perform a mode analysis of the
advection–diffusion equation for the particle concentration applied to unsaturated
cases and then identify the saturation length and time scales of the flux. The relevance
of this approach is illustrated in § 4 by treating a few examples: (i) the effect on
the sediment flux of a change in the river slope, (ii) the change from a fixed to
an erodible bed and (iii) the deposition of sediments from a source near the free
surface. For the last two situations, the predictions of the model are tested against
experimental data from the literature.

2. Flow models
2.1. Logarithmic flow model

We consider the free-surface, turbulent flow of a fluid layer of thickness H over an
erodible bed. For the sake of simplicity, we restrict the discussion to flows invariant
in the spanwise direction, i.e. two-dimensional, with streamwise coordinate x and
upward transverse coordinate z. Measurements have shown that the profile of the
streamwise velocity is close to the logarithmic law,

ux(z) =
u∗

κ
ln

(
z + z0

z0

)
, (2.1)

where u∗ is the friction velocity; z0 is the hydrodynamical bed roughness; and κ = 0.4
is the von Kármán coefficient. For a steady flow in which the shear stress is balanced
by the streamwise component of gravity, the shear stress increases linearly from zero
at the free surface to τb = ρu2

∗ at the bottom, so that the logarithmic velocity profile
(2.1) corresponds to a parabolic eddy viscosity νt (Nezu & Rodi 1986), given by

νt

u∗H
= κ

(
z + z0

H

) (
1 − z

H

)
. (2.2)

From (2.1), the depth-averaged velocity U is given by

λ ≡ U

u∗
=

1

κ

[
ln

(
H

z0

)
− 1

]
, (2.3)

with the typical value λ=10, corresponding to z0/H ≈ 0.01 (Raudkivi 1998).
We assume that the sediment concentration φ is governed by the advection–diffusion

equation

∂φ

∂t
+ ux

∂φ

∂x
=

∂

∂x

(
D

∂φ

∂x

)
+

∂

∂z

(
D

∂φ

∂z
+ φVfall

)
, (2.4)
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where D is the particle eddy diffusivity and Vfall the settling velocity. Measurements
have shown that D(z) is reasonably parabolic and proportional to the eddy viscosity
(2.2), with a turbulent Schmidt number

Sc =
νt

D
(2.5)

in the range 0.5–1 (Coleman 1970; Celik & Rodi 1988; Nielsen 1992). The settling
velocity Vfall is taken uniform and, when needed for comparison with experiments,
equal to that of a single particle in the quiescent fluid. Note that the above modelling
ignores inertial effects on particle motion, in particular their ejection from the core
of vortices and their clustering (Bec et al. 2007; Hunt et al. 2007). We also limit the
discussion to dilute suspensions, i.e. small volume particle concentration φ, for which
there is no significant feedback of the particles on transport.

Solving (2.4) requires two boundary conditions, one at the free surface and one on
the sedimentary bed. At the free surface, the net vertical flux vanishes, giving

D
∂φ

∂z
+ φ Vfall = 0 at z = H. (2.6)

At the bottom, just above the bed-load layer where particles mainly roll and slide on
each other, the diffusive flux is equal to the erosion flux ϕ↑, i.e. the volume of particles
entrained in suspension per unit time and bed area (Parker 1978; van Rijn 1986b):

−D
∂φ

∂z
= ϕ↑ at z = 0. (2.7)

The erosion rate, or ‘pickup function’, is generically an increasing function of
the basal shear stress above a threshold. Its functional form is determined
phenomenologically from experiments and depends on the nature of the bed –
whether it is consolidated/cohesive or not, composed of grains or containing clay,
etc. (Shields 1936; Einstein 1950; Engelund 1970; van Rijn 1984a; Briaud et al. 2001;
Hanson & Simon 2001; Bonelli, Brivois & Benahmed 2007).

Two remarks have to be made here. First, the bottom condition (2.7) applies for
steady and homogeneous as well as unsteady and heterogeneous flows. In the latter
case, the erosion flux may be different from the deposition flux, so that the net flux
is non-zero, which may lead to variations of the bed topography (but not necessarily,
as in the experiments to be discussed later). Possible variations in the bed topography
will be ignored here. Second, the boundary condition (2.7) corresponds to a bed
allowing unlimited sediment supply. For more general situations (e.g. fixed bed),
slightly different boundary conditions have been proposed (see Celik & Rodi 1988),
which however requires an empirical constant or reference concentration near the
bottom to be given, which varies along the channel. Finally, assuming that particles
have the same mean velocity as the fluid, ux , the flux of suspended particles, per unit
length in the spanwise direction, is given by

q =

∫ H

0

φux dz. (2.8)

The concentration equation (2.4) with the boundary condition (2.6) admits a steady
and homogeneous solution corresponding to the balance of the settling and diffusive
fluxes,

Φsat (z) = Φb

(
1 − z/H

1 + z/z0

)β/(1+z0/H )

, (2.9)
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Figure 2. (a) Logarithmic flow model: normalized velocity profile (dashed line) and
normalized concentration profiles (2.9) for three values of β (solid lines). (b) Plug flow
model: normalized concentration profiles (2.12) for the corresponding values of α = 6β .

where β , known as the Rouse number, is defined as β = (Sc Vfall )/(κ u∗), and the
bottom concentration Φb = Φsat (0) is determined from the condition (2.7) as

Φb =
ϕ↑(τb)

Vfall

. (2.10)

Note that (2.9) differs slightly for the classical expression of the Rouse profile (Nielsen
1992) because the location at which the velocity (2.1) vanishes and the bottom
boundary condition (2.7) applies has been chosen to be z = 0 instead of z = z0.
Suspension typically occurs when Vfall < 0.8 u∗ (Fredsøe & Daigaard 1992), which
corresponds to β < 4/3 with Sc =2/3. Figure 2(a) displays the velocity profile (2.1),
normalized by ux(H ), and the concentration profile (2.9), normalized by Φb, for three
typical values of β .

2.2. A simplified plug flow model

In order to get analytical results, a simplified plug flow model will be used in the
following, which appears to provide accurate results as long as the assessment of
the relaxation equation (1.1) is pursued. This model corresponds to the uniform flow
velocity ux(z) = U and the friction velocity u∗ = U/λ, where λ is the same constant
as in the previous section. Such a plug flow model is of course a rough description,
and the velocity profile actually does not switch from zero on the bed to its average
value on a vanishing vertical distance, leading to an infinite shear. This problem is
not present in the logarithmic model, which is more realistic from this point of view.
However, as shown below, these two models do not differ much as far as the relaxation
modes are concerned, which means that what occurs very close to the bed is not very
important for the present purpose. Accordingly, a uniform particle diffusivity D0 will
be taken in the concentration equation (2.4) and boundary conditions (2.6) and (2.7),
equal to the average of the parabolic distribution given by (2.2) and (2.5). Up to a
small correction of order z0/H , the diffusivity D0 is given by

D0

u∗H
=

κ

6Sc
≡ K. (2.11)
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With this uniform diffusivity D0, the advection–diffusion equation (2.4) admits the
steady and homogeneous solution

Φsat = Φb exp
(

−α
z

H

)
with α ≡ VfallH

D0

= 6β, (2.12)

which also satisfies the boundary condition (2.6) at the free surface. The boundary
condition at the bed (2.7) determines the bed concentration (2.10). Figure 2(b) displays
the concentration profile (2.12), normalized by Φb, for three typical values of α = 6β .
It can be seen that for the same value of the Rouse number, the plug flow model
predicts a sediment concentration slightly larger than that of the logarithmic flow
model. Small values of α correspond to strong suspensions, i.e. situations for which
the sediment is distributed almost uniformly over the whole depth of the flow. This is
achieved when the settling velocity is small (very fine particles) or when the diffusivity
is large (large flow velocity). Finally, the saturated particle flux per unit width, qsat ,
normalized by the water flux UH , is given by

qsat

UH
=

1

UH

∫ H

0

ΦsatU dz =
1 − e−α

α
Φb. (2.13)

For small α, this dimensionless flux tends to Φb, as expected.

3. Non-homogeneous and unsteady flows
In this section, we successively consider a spatial and a temporal evolution problem

(§§ 3.1 and 3.2 respectively). These problems are solved using a mode analysis; i.e.
the departure of the concentration field from the saturated distribution Φsat (z) is
decomposed as a sum of terms of the form c(x, t)f (z). It is shown that, for the spatial
problem, there exists a discrete set of amplitudes cn(x) ∝ e−x/Ln , and for the temporal
problem, there exists a similar set of amplitudes cn(t) ∝ e−t/Tn . Then the sediment flux
is shown to be dominated by the mode with the largest length or time, L1 or T1. This
result demonstrates that for large-scale problems, the relaxation equation (1.1) retains
the most important features of unsaturated sediment transport, with relaxation scales
Lsat and Tsat equal to the largest scales arising from the mode analysis.

The analytical calculations presented below use the plug flow model because of its
simplicity, in the spirit of the work of Mei (1969). Calculations for the logarithmic
model are not reported in detail, but the corresponding results are plotted for
comparison in some of the figures.

3.1. Spatial evolution and the relaxation lengths

We consider the situation in which, for the given flow conditions and the corresponding
saturated concentration profile Φsat (z), the actual concentration profile at some point,
say x = 0, is Φsat (z) − φ(x = 0, z), where φ(x, z) is a ‘concentration defect’. We search
for the distance at which the saturated distribution Φsat (z) is recovered, corresponding
to vanishing φ(x, z). Looking for normal modes of relaxation of the concentration
defect of the form

φ(x, z) = Φbf (z) exp(−x/L), (3.1)

we get from the advection–diffusion equation (2.4)(
λu∗

L
+

D

L2

)
f +

d

dz

(
D

df

dz
+ f Vfall

)
= 0. (3.2)
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Figure 3. (a) Variation with α of the three smallest roots of (3.6). (b) Corresponding relaxation
normalized lengths Ln/Ld for λ/K = 50: solid lines, plug flow; dashed lines, logarithmic flow.

At the free surface, the zero flux condition (2.6) gives

D
df

dz
+ f Vfall = 0 at z = H. (3.3)

On the bed the friction velocity u∗ is assumed to be uniform. The erosion flux ϕ↑,
which depends only on u∗, is uniform too. Hence, the disturbance of ϕ↑ is zero, so
that, from (2.7),

df

dz
= 0 at z = 0. (3.4)

The above differential problem is solved numerically for parabolic D (logarithmic
flow model) and analytically for uniform D = D0 (plug flow model). For uniform D0,
(3.2) has solutions of the form f (z) ∝ exp(Kz/H ), where K has to satisfy a q uadratic
equation with roots K+ and K− given by

K± = −α

2
± iKi with Ki =

√
λ

K
H

L
+

H 2

L2
− α2

4
. (3.5)

Then the boundary conditions (3.3) and (3.4) select a discrete set of relaxation lengths
L, satisfying

tan Ki =

(
Ki

α
− α

4Ki

)−1

. (3.6)

This equation has an infinite number of real positive solutions Kin, n � 1. Figure 3(a)
shows the variation with α of the three smallest ones (n= 1, 2, 3). For small α, these
solutions behave as Ki1 ∼

√
α and Kin ∼ (n − 1)π for n � 2.

The corresponding relaxation lengths Ln are found from (3.5):

H

Ln

=
1

2

⎛
⎝− λ

K ±

√(
λ

K

)2

+ α2 + 4K2
in

⎞
⎠ , n � 1. (3.7)

They are displayed for n= 1, 2, 3 in figure 3(b) as a function of α (solid lines),
normalized with the characteristic deposition length

Ld ≡ U

Vfall

H. (3.8)
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Figure 4. Profile of the three first eigenfunctions fn(z), for α = (a) 0.1 and (b) 1: solid lines,
plug flow; dashed lines, logarithmic flow.

It can be seen that L1 is much larger than the higher-order relaxation lengths –
typically by one order of magnitude. Remarkably, in the limit of small α (large
flow velocity or small settling velocity), the largest length L1 tends to Ld , whereas
higher-order lengths remain of the order of the flow depth H :

L1 ∼ Ld, Ln ∼ λ/K
(n − 1)2π2

H for n � 2. (3.9)

Figure 3(b) also displays the normalized relaxation lengths obtained from the
logarithmic flow model (dashed lines), from numerical integration of (3.2) with
parabolic D. It can be seen that these lengths are close to those from the plug
flow model, especially for the largest length L1. Note that Ln/Ld is weakly sensitive
to the value of λ/K: doubling this ratio does not bring any visible change, at least
for α � 2.

The eigenfunctions fn(z) are given by

fn(z) =

[
cos

(
Kin

z

H

)
+

α

2Kin

sin
(
Kin

z

H

)]
exp

(
−α

2

z

H

)
, n � 1, (3.10)

with the normalization condition fn(0) = 1. These eigenfunctions are displayed in
figure 4 for n=1, 2, 3 (solid lines), for α =0.1 (figure 4a) and α = 1 (figure 4b).
It can be seen that f1(z) decreases slightly and monotonically from the bottom to
the top, whereas higher-order eigenfunctions oscillate, more and more strongly with
increasing n. Figure 4 also displays the eigenfunctions from the logarithmic flow
model (dashed lines). It can be seen that for the mode associated with the largest
length L1 (n= 1), eigenfunctions of both models remain very close to each other and
that differences become larger as n increases.

Let us turn to the sediment flux. The contribution of the nth eigenmode to the
sediment flux Qn, normalized with the characteristic sediment flux UHΦb and the
exponential x-dependence, is

1

exp(−x/Ln)

1

ΦbUH
Qn =

1

H

∫ H

0

fn(z) dz. (3.11)

Table 1(a) displays the contribution of each of the first three modes to the sediment
flux, i.e. the right-hand side of the above equation. It can be seen that the contribution
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(a)
α 1 2 3

0.1 0.9836 0.0099 0.0025
1 0.8533 0.0832 0.0240

(b)
α A1 A2 A3 A4

0.1 0.967 0.020 0.005 0.002
1 0.724 0.150 0.047 0.022

Table 1. (a) Contribution of the three lowest-order eigenmodes to the normalized sediment
flux (right-hand side of (3.11)), for α = 0.1 and 1. (b) Normalized coefficients An = an/δΦb of
the expansion (4.2), computed from a projection over four modes.

of the first mode n= 1 strongly dominates. The smallness of the contribution of the
higher-order modes is due to the oscillations of the eigenfunctions, as shown in
figure 4. For small α, the normalized flux is close to 1 for n= 1 and decreases as
α/((n − 1)π)2 for n � 2.

The general form of the concentration defect finally is

φ(x, z) = Φb

∞∑
n=1

anfn(z) exp(−x/Ln), (3.12)

where the relaxation lengths Ln are given by (3.6) and (3.7); the eigenfunctions fn(z)
are given by (3.10); and the coefficients an have to be determined by the concentration
profile imposed at x = 0. Such a determination will be illustrated in § 4.

3.2. Temporal evolution and relaxation times

We now consider an unsaturated concentration profile at initial time t = 0, say
Φsat (z) − φ(z, t = 0), uniform in the streamwise x-direction, and search for the time
needed for relaxation to the saturated distribution Φsat (z) given by (2.12), i.e. vanishing
concentration defect φ(z, t). Calculations go along the same lines as in the previous
subsection, so they are only briefly sketched here. Looking for normal modes of the
form

φ(t, z) = Φb g(z) exp(−t/T ), (3.13)

we get from (2.4) the equation governing the eigenfunctions g(z):

1

T
g +

d

dz

(
D0

dg

dz
+ g Vfall

)
= 0. (3.14)

This equation has solutions of the form g(z) ∝ exp(Kz/H ), where K has to satisfy a
quadratic equation with roots K+ and K− defined as

K± = −α

2
± iKi with Ki =

√
H

Ku∗T
− α2

4
. (3.15)

The boundary conditions at z =0 and z = H are the same as in the previous section,
so that Ki still satisfies (3.6), with same solutions Kin, n � 1. The corresponding
relaxation times Tn are then given by

H

Ku∗Tn

= K2
in +

α2

4
, n � 1. (3.16)
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Introducing the characteristic deposition time

Td ≡ H

Vfall

=
Ld

U
, (3.17)

the relaxation times are, in the limit of small α,

T1 ∼ Td, Tn ∼ αTd

(n − 1)2π2
∼ Ln

U
for n � 2. (3.18)

As for the spatial problem, the sediment dynamics is dominated by the largest time
T1, equal to the deposition time Td for strong suspensions.

4. Two illustrations, and comparison with experiments
4.1. Effect of a change in the bed slope

Consider the situation depicted in figure 1(a), of a flow with the saturated
concentration profile Φ0(z) which experiences a small variation δS in the bottom
slope at x = 0, either positive or negative. This variation leads to a small change of
the water depth and friction velocity, according to δH/H = − δu∗/u∗ = − (1/2)δS/S.
This change occurs on a hydrodynamic length scale Lh given by the balance between
the acceleration UδU/Lh and the force gδS, i.e. Lh/Ld = UVfall/2u2

∗ = λKα/2. The
present analysis is valid for small Lh/Ld , a condition which is fulfilled for small α.

The change in the saturated concentration profile due to the slope variation δS is,
at the linear order in δu∗,

δΦ(z) = δΦb exp
(

−α
z

H

)
with δΦb =

ϕ′
↑(u∗)δu∗

Vfall

, (4.1)

where ϕ′
↑(u∗) is the derivative of the erosion rate ϕ↑(u∗). The concentration defect at

x = 0 corresponds to this change (φ(0, z) = δΦ(z)), so that the coefficients an of the
expansion (3.12) must satisfy

δΦb exp
(

−α

2

z

H

)
=

∞∑
n=1

an

[
cos

(
Kin

z

H

)
+

α

2Kin

sin
(
Kin

z

H

)]
. (4.2)

These coefficients can be determined from the projection of the above equation on
the eigenfunctions, i.e. truncation of the sum on the right-hand side to p terms,
multiplication by each eigenfunction and integration of both sides from 0 to H .
A linear system of p equations is obtained, whose solution gives the coefficients
a1, . . . , ap . Table 1(b) displays the normalized coefficients An = an/δΦb resulting from
the projection over p = 4 modes, for two values of α. One can see that the first mode
captures most of the weight; the contribution of the second one is smaller but still
significant, and higher modes are negligible. We have checked that considering more
terms in the expansion has negligible effect on the dominant coefficients. The small
weight of the oscillating modes is consistent with the slow variation with z of the
initial concentration profile (4.1).

Figure 5 displays profiles of the concentration defect φ(x, z) at the location of the
slope change, x/Ld = 0, and three positions downstream, for α =0.1 (figure 5a) and
α = 1 (figure 5b). It can be seen that at the position x/Ld = 3, the concentration
defect is nearly zero. The flux defect, i.e. the depth-integrated profiles of the
concentration defect, correspondingly decays towards zero (not shown) and does
so almost exponentially with relaxation length Ld , as predicted by (1.1). This confirms
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van Rijn (1986a) Ashida & Okabe (1982) Jobson & Sayre (1970)
Run 5 Run 6 Runs FS1 and FS1A

Erosion Erosion Deposition Deposition

Symbol ∗ � � �

H (cm) 25 4.3 40.7
U (cm s−1) 67 37.3 29.1
u∗ (cm s−1) 4.77 3.63 4.48
Vfall (cm s−1) 2.2 1.85 1.0–2.0
Ld (m) 7.6 0.87 5.9–11.9
α – 3.1 2.5 1.2
Sc – 0.41 0.33 0.18–0.36

Table 2. Hydraulic parameters H , U , u∗ and Vfall of the experiments, Ld = (U/Vfall )H , α
from the exponential fit of the downstream concentration profile and Sc = καu∗/6Vfall .

0.5 1.00

0.2

0.4

0.6

0.8

1.0

3 1 0.3 x/Ld = 0

φ

3 1 x/Ld = 0

z/
H

(a)

0.5 1.00

0.2

0.4

0.6

0.8

1.0

φ

(b)

0.3

Figure 5. Relaxation of the concentration defect φ(x, z) after a slope change as sketched in
figure 1(a), with summation over the three first modes (plug flow model). Profiles of φ(x, z) at
the four downstream positions x/Ld = 0, 0.3, 1 and 3, for α = (a) 0.1 and (b) 1.

that the dominant mode with the relaxation length Ld captures most of the sediment
flux variations. For this example, as well as for the next ones, the question of the plug
flow limit is not crucial: as far as the relaxation modes are concerned, the logarithmic
and plug models do not differ much (figure 4).

4.2. Net erosion experiments

Another situation of interest is that of a flow of clear fluid on a non-erodible
bed (Φ0(z) = 0) reaching an erodible bed lying in x > 0, as sketched in figure 1(b).
Suspension develops downstream until the saturated concentration profile Φsat (z)
is reached. The analysis goes along the same lines as for the slope change. The
concentration defect φ(x, z), can be decomposed on the eigenfunctions (3.10), with
the coefficients an determined by the concentration profile at x = 0. The equation
to be satisfied turns out to be the same as (4.2) with Φb instead of δΦb. Thus the
coefficients are an = AnδΦb with the normalized coefficients An given in table 1(b).

The prediction that the eigenmode with the largest relaxation length captures most
of the sediment flux can be assessed from the experimental observations of van Rijn
(1986a) and Ashida & Okabe (1982) – non-Japanese readers can access these latter
data from the paper of Celik & Rodi (1988). These experiments precisely correspond
to the sketch depicted in figure 1(b). Their hydraulic parameters are given in table 2.
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q s
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H

(a)

0

1
(b)

Figure 6. Net erosion experiments. (a) Concentration profile at the farthest location
x/Ld = 8.1, measured by Ashida & Okabe (1982, run 5), normalized with the depth-averaged
concentration Φref : solid line, Φsat given by (2.12) with α = 3.2. (b) Relaxation to saturation
of the normalized sediment flux versus x/Ld : symbols, van Rijn (1986a) and Ashida & Okabe
(1982) (see table 2); solid line, exponential relaxation (4.3).

The spatial evolution of the concentration profiles has been measured at different
locations downstream of the transition point at x =0. The corresponding sediment
flux q , which is zero for x < 0, increases downstream until it reaches the saturated
value qsat . We determined this flux from integration of the measured concentration
profile at each x-location. From the hydraulic parameters, the deposition length can
be computed as Ld =(U/Vfall )H – in the following we will not distinguish between
L1 and Ld , although they can differ by ≈20 % for α of the order of unity (figure 3b).
It appeared that for Ashida & Okabe (1982) the location of the farthest downstream
measurements corresponds to x/Ld = 8.1, which is large enough for the sediment flux
to be saturated. Figure 6(a) displays the corresponding concentration profile, and an
exponential fit providing, from (2.12), the value of the parameter α reported in table 2.
For van Rijn (1986a), we found x/Ld = 1.3, not large, preventing any straightforward
determination of the parameter α. For both experiments, the saturated flux qsat was
estimated as that providing the best fit to the exponential curve,

q

qsat

= 1 − exp(−x/Ld). (4.3)

Figure 6(b) displays the variation of q/qsat with x/Ld; it can be seen that the data
points fall quite well on the exponential curve. Note that the deposition lengths Ld

differ by one order of magnitude between the two experiments. The data collapse
therefore supports a first-order relaxation process with characteristic length equal
to Ld .

4.3. Net deposition experiments

Ashida & Okabe (1982) have also performed experiments in which the initial
concentration profile is over-saturated (run 6); i.e. the initial sediment flux q0 at
x = 0 is larger than qsat , so that the sediment settles until the saturated regime is
reached further downstream. Figure 7(b) displays the sediment flux, obtained from
the measured concentration profiles, together with the exponential relaxation curve
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Figure 7. Net deposition experiments of Ashida & Okabe (1982) (run 6; see table 2). (a)
Concentration profiles at x = 0 normalized with the depth-averaged concentration Φref : solid
line, Φ0 reconstructed from Φsat and one single mode for the concentration defect. (b)
Normalized sediment flux versus x/Ld , experiments and exponential relaxation (4.4).

now given by

q

qsat

= 1 +

(
q0

qsat

− 1

)
exp(−x/Ld), (4.4)

where q0 and qsat were determined by curve fitting and Ld is given in table 2. Again,
the agreement is quite good, showing that the mode with relaxation length Ld captures
most of the deposition process.

As a confirmation, figure 7(a) compares the concentration profile measured at the
location x = 0 with its projection over one single mode. This projection is computed
from an empirical representation of this initial profile, using the expansion (3.12) and
the saturated flux Φsat (z) measured from the concentration profile at x = 8.1 Ld , fitted
by the exponential form (2.12) with α = 2.5. It can be seen that the resulting profile
is in good agreement with the measurements. Note that α = 2.5 corresponds to the
Schmidt number Sc =ακu∗/6Vfall = 0.33, which is slightly below the usual range 0.5–1
(Coleman 1970; Celik & Rodi 1988; Nielsen 1992).

Other net deposition experiments have been performed by Jobson & Sayre (1970).
In this work, the particles were released near the water surface, so that the initial
concentration profiles exhibit a peak close to z = H , as shown in figure 8(a). In
contrast to the experiments of Ashida & Okabe (1982), expanding the concentration
defect over one single mode is not sufficient to get a good representation of this
profile; an expansion over four modes provide a much better description, as shown
in figure 8(a). However, the high-order modes are expected to vanish over a short
distance, of the order of a few flow depths H , and the exponential relaxation to be
recovered at large distances. This scenario is evidenced in figure 8(b), which displays
the normalized flux versus x/H , measurements and the exponential curve (4.4). Here,
owing to uncertainties in the falling velocity (see table 2 of the present paper and
figure 6a of Jobson & Sayre 1970), the deposition length Ld was determined, together
with q0 and qsat , by fitting the experimental data points. We found Ld = 5.2 m, which
is close to the range of the expected values displayed in table 2, although slightly
smaller. We finally note that in the course of the reconstruction of Φ0(z), we found
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Figure 8. Net deposition experiments of Jobson & Sayre (1970) (see table 2). (a) Measured
concentration profile at x = 0 normalized with the depth-averaged concentration Φref : dashed
and solid lines, Φ0 reconstructed with one single mode and four modes, respectively, and
α = 1.2. (b) Relaxation to saturation of the normalized sediment flux versus x/Ld : solid line,
exponential relaxation (4.4) with Ld = 5.2 m.

α = 1.2 from the saturated concentration profile, which corresponds to the Schmidt
number in the range 0.18–0.36, slightly smaller, again, than the usual range.

5. Concluding remarks
In this paper, we have discussed the conditions under which a first-order relaxation

equation for the sediment flux q can be derived for turbulent flows, when suspension
is the dominant mode of transport. From a mode analysis of the linear advection–
diffusion equation for the particle concentration, it was shown that the sediment
flux is dominated by the mode corresponding to the largest relaxation length for
spatially varying flows, or the largest relaxation time for time-dependent flows. These
relaxation scales were identified as the deposition length HU/Vfall and the deposition
time H/Vfall , where H is the flow depth, U the mean flow velocity and Vfall the
sediment settling velocity. This result is expected to be particularly relevant for the
case of sediment transport in slowly varying flows, for which the flux is never far
from saturation. Predictions of the sediment flux were shown to be in quantitative
agreement with flume experiments, for both net erosion and net deposition situations,
and deposition lengths spanning over one order of magnitude.

As discussed in the Introduction, the relaxation equation (1.1) allows for the
description of both bed and suspended loads. However, these modes of transport
correspond to very different physical length scales. For bed load, the relaxation length
Lsat is of the order of 10 grain diameters (Fourrière et al. 2010). As soon as the
flow depth H is larger than a few Lsat , the ‘unstable’ flat bed is insensitive to the
presence of the free surface, and current ripples emerge at a centimetric wavelength
(≈10Lsat ). When suspended load is the dominant type of transport, we have shown
that the relaxation length Lsat is of the order of 10–100 H , which is typically four to
five orders of magnitude larger than for bed load. Suspended transport thus prevents
the formation of bedforms with a wavelength smaller than H , and patterns such
as bars, anti-dunes and meanders can be expected to emerge from linear instability,
with large wavelengths of the order of 100–1000 H . Further work is required for the
experimental and theoretical investigations of these instabilities.
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