On Sylow intersections

Ariel Ish-Shalom

Let G be a finite group, p a prime divisor of |G|, and T a p-subgroup of G. Define $\sigma(T)$ to be the number of Sylow p-subgroups of G containing T. Call T a central p-Sylow intersection if for some $\Sigma \subseteq \operatorname{Syl}_p(G)$, $T = \bigcap\{S \mid S \in \Sigma\}$, and if, in addition, T contains the center of a Sylow p-subgroup of G. This work is inspired and motivated by work of G. Stroth [J. Algebra 37 (1975), 111-120]. Generalizing an argument of his we describe finite groups in which every central p-Sylow intersection T with p-rank(T) > 2 satisfies $\sigma(T) \leq p$.

Related methods yield the description of finite groups in which every central p-Sylow intersection T with p-rank $(T) \ge 2$ satisfies $\sigma(T) \le 2p$.

1. Introduction

Let G be a finite group, p a prime divisor of the order of G, and T a p-subgroup of G. Define $\sigma(T)$ to be the number of Sylow p-subgroups of G containing T, and p-rank(T) to be the maximal number n such that T contains an elementary abelian subgroup of order p^n . We call T a p-Sylow intersection if for some $\Sigma \subseteq \text{Syl}_p(G)$, $T = \bigcap\{S \mid S \in \Sigma\}$, and we call T a central p-Sylow intersection if, in addition, T contains the center of a Sylow p-subgroup of G.

In a previous paper [9] we proved

THEOREM 1. Let every central p-Sylow intersection T satisfy

Received 12 November 1976. Communicated by Marcel Herzog. This paper is part of the author's PhD thesis done at the University of Tel-Aviv under the supervision of Professor Marcel Herzog.

 $\sigma(T) \leq 2p$. Then there exists a non identity abelian subgroup, strongly closed in a Sylow p-subgroup of G with respect to G .

In that paper, [9], we also characterized those groups G in which $\sigma(T) \leq 6$ for every central 2-Sylow intersection T.

This work is inspired and motivated by Stroth [10]. In that paper, Stroth gives a detailed characterization of finite groups in which every intersection of two distinct Sylow 2-subgroups is of 2-rank ≤ 2 , and in which there exists such an intersection of 2-rank = 2. Generalizing an argument of his we prove:

THEOREM 2. Let every central p-Sylow intersection T with p-rank(T) > 2 satisfy $\sigma(T) \le p$. Let S be a Sylow p-subgroup of G. Then either

- (i) $\Omega(Z(S))$ is strongly closed in S with respect to G, or
- (ii) p-rank(S) = 2, or
- (iii) there exists some $x \in S$ with $C_S(x)$ elementary abelian of order p^2 .

We remark that by Lemma 6 below, the condition of Theorem 2 forces every central p-Sylow intersection T with p-rank(T) > 2 to belong to $Syl_p(G)$. We also remark that p-groups satisfying conclusion *(iii)* are discussed in [7], Kapitel III, §14. For p = 2, a subgroup S satisfying *(iii)* is dihedral or semidihedral by Lemma 4 of [11]. Thus we get

COROLLARY 3. Let every central 2-Sylow intersection $T \notin Syl_2(G)$ satisfy 2-rank $(T) \leq 2$. Let S be a Sylow 2-subgroup of G. Then either

(i) $\Omega(Z(S))$ is strongly closed in S with respect to G, or (ii) 2-rank(S) = 2.

We remark that for finite simple groups the conclusions of Corollary 3 are in fact equivalent to its assumptions. These finite simple groups were already listed in [10], namely: $L_2(q)$, $U_3(q)$, Sz(q), q even, $L_2(q)$, $L_3(q)$, $U_3(q)$, q odd, A_7 , M_{11} , and simple groups of Janko-Ree type.

In this paper we also prove a generalization of Theorem 1.

THEOREM 4. Let every central p-Sylow intersection T with $p-\text{rank}(T) \ge 2$ satisfy $\sigma(T) \le 2p$. Let S be a Sylow p-subgroup of G. Then either

- (i) there exists a non identity abelian subgroup, strongly closed in S with respect to G, or
- (ii) there exists some $x \in S$ with $C_S(x)$ elementary abelian of order p^2 .

Again, for p = 2, we get

COROLLARY 5. Let every central 2-Sylow intersection T with 2-rank(T) \geq 2 satisfy $\sigma(T) \leq 4$. Let S be a Sylow 2-subgroup of G. Then either

- (i) there exists a non identity abelian subgroup, strongly closed in S with respect to G, or
- (ii) S is dihedral or semidihedral.

Those finite simple groups satisfying the hypothesis of Corollary 5 are: $L_2(q)$, $U_3(q)$, Sz(q), q even, $L_2(q)$, $q \equiv 3, 5 \pmod{8}$, and simple groups of Janko-Ree type, as can be verified by [4] and by Remark 8 of [9].

2. Preliminary results

LEMMA 6. (i) If T is a p-subgroup of G then $\sigma(T) \equiv 1 \pmod{p}$. (ii) Let T and T' be p-Sylow intersections in G. If $T \subseteq T'$, then $\sigma(T) \geq \sigma(T')$, and if $T \subset T'$, then $\sigma(T) > \sigma(T')$.

(iii) If T is a p-Sylow intersection satisfying $\sigma(T)$ = 1 , then $T \in {\rm Syl}_p(G)$.

(iv) If T is a p-Sylow intersection satisfying $\sigma(T) = 1 + p$, then $N_S(T)/T$ is cyclic of order p , for every Sylow p-subgroup S of G containing T.

Proof. Assertion (i) is Lemma 6 of [8]. Assertion (ii) is trivial once we notice that any *p*-Sylow intersection *T* is the intersection of those Sylow *p*-subgroups containing it. Assertion (iii) is also trivial.

Denote by Ω the set of 1 + p Sylow *p*-subgroups of *G* containing *T*, and take any $S \in \Omega$. The subgroup $N_S(T)$ acts by conjugation on $\Omega' \equiv \Omega \setminus \{S\}$. If $g \in N_S(T)$ stabilizes some $R \in \Omega'$, then being a *p*-element, $g \in N_S(T) \cap R \subseteq S \cap R$. But $S \supset S \cap R \supseteq T$ forces $S \cap R = T$ by (*i*), (*ii*), and (*iii*), so that $N_S(T)/T$ acts faithfully on Ω' . In fact, every $g \in (N_S(T)/T)^{\#}$ acts fixed point freely on Ω' , whence $|\Omega| = p$ yields assertion (*iv*).

The following result is due to Alperin. The first part is Theorem 5.2 of [1], and the second is a strengthening of the Corollary in [2], achieved by self suggestive changes in its proof.

THEOREM 7 (Alperin). Let x and y be elements of $S \in Syl_p(G)$, such that x is conjugate to y in G. Then there exist central p-Sylow intersections $H_i \subseteq S$, i = 1, ..., n, and elements $t_i \in N_G(H_i)$, i = 1, ..., n, such that $N_S(H_i) \in Syl_p(N_G(H_i))$, i = 1, ..., n, that t_i is a p-element if $H_i \subset S$, and that, setting $x_1 = x, x_2 = x^{t_1}, ..., x_{n+1} = x^{t_1 t_2 \cdots t_n}$, we get $x_i \in H_i$, i = 1, ..., n, and $x_{n+1} = y$.

Moreover, if $\ {\rm C}_S(y) \in {\rm Syl}_p\bigl({\rm C}_G(y)\bigr)$, then we can assure in addition that

(i)
$$C_{S}(x_{i}) \subseteq H_{i}$$
, $i = 1, ..., n$, and that
(ii) $|C_{S}(x_{1})| \leq |C_{S}(x_{2})| \leq ... \leq |C_{S}(x_{n+1})|$.

Let S be a Sylow p-subgroup of G. Denote by J the set of elements in $S \setminus Z(S)$, which are conjugate in G to an element of $\Omega(Z(S))$. Denote by J^* the set of those elements $j \in J$ which are conjugate to an element of $\Omega(Z(S))$ in $N_C(C_S(j))$.

LEMMA 8. (i) $J = \emptyset$ if and only if $\Omega(Z(S))$ is strongly closed in S with respect to G.

(ii) For every $j \in J$ there exists some $S' \in \operatorname{Syl}_p(C_G(j)) \subseteq \operatorname{Syl}_p(G)$,

such that $C_{S}(j) = S \cap S'$ (whence $\sigma(C_{S}(j)) > p$).

(iii) If $J \neq \emptyset$ there exist $j \in J$ and g, a p-element of $N_G(C_S(j))$, such that:

- (1) $j \in \Omega(Z(S^{\mathcal{G}}))$;
- (2) $C_{c}(j) = S \cap S^{g}$; and

(3)
$$N_S(C_S(j)) \in \operatorname{syl}_p(N_G(C_S(j)))$$
;

in particular, $J \neq \emptyset$ implies $J^* \neq \emptyset$.

Proof. Assertion (i) is obvious. To satisfy assertion (ii), any $S' \in \operatorname{Syl}_p(C_G(j))$ containing $C_S(j)$ will do. To prove (iii) choose some $x \in J$, and some $y \in \Omega(Z(S))$ such that x is conjugate in G to y. Now quote Theorem 7. As $|C_S(y)| > |C_S(x)|$, the set $\{k \mid |C_S\{x_k\}| < |C_S(x_{k+1})|\}$ is not empty; let i_0 be its maximal element, and set $j = x_{i_0}$, $g = t_{i_0}^{-1}$, and $H \equiv H_{i_0}$. Clearly $j \in J$, $j^{g^{-1}} \in \Omega(Z(S))$, and $C_S(j) \subseteq H$. Now j is conjugate in $N_G(H)$ to $j^{g^{-1}}$ which is an element of $H \cap Z(S) \subseteq Z(H)$. Thus $H \subseteq C_S(j)$ and we are done.

COROLLARY 9. Let S be a Sylow p-subgroup of G. If $\sigma(T) \leq p$ for every central p-Sylow intersection T with p-rank $(T) \geq 2$, then $\Omega(Z(S))$ is strongly closed in S with respect to G.

Proof. If $j \in J$, then $T \equiv C_S(j)$ is a central *p*-Sylow intersection with *p*-rank $(T) \ge 2$ and $\sigma(T) > p$ by *(ii)* of Lemma 8. Thus $J = \emptyset$ and we are through by *(i)* of Lemma 8.

We remark that the results of Herzog and Shult [6] and those of Gomi [5] follow from Corollary 9 and Goldschmidt [4].

3. Proof of Theorem 2

By Lemma 8 (i) and (iii), either conclusion (i) of our theorem holds, or

or $J^* \neq \emptyset$. Thus we may assume the existence of $i \in \Omega(Z(S))$ and $j \in J$ such that i is conjugate to j in $N_G(C_S(j))$. By Lemma 8 (*ii*), $\sigma(C_S(j)) > p$; hence, $C_S(j)$ being a central p-Sylow intersection, p-rank $(C_S(j)) = 2$ by the assumption of the theorem. As $Z(C_S(j))$ contains the subgroup $\langle i, j \rangle$, which is elementary abelian of order p^2 , it follows that

(*)
$$\Omega(C_{S}(j)) = \langle i, j \rangle ,$$

and that $\Omega(Z(S)) = \langle i \rangle$.

As $C_S(\langle i, j \rangle) = C_S(j)$, and $N_S(\langle i, j \rangle) \supseteq N_S(C_S(j))$, we have that $N_S(C_S(j))/C_S(j)$ is a subgroup of $N_S(\langle i, j \rangle)/C_S(\langle i, j \rangle)$, which is isomorphic to a subgroup of GL(2, p) - the automorphism group of an elementary abelian group of order p^2 . Thus, being a non-trivial p-group, $N_S(C_S(j))/C_S(j)$ is cyclic of order p.

Now $N_G(C_S(j))$ acts by conjugation on Ω , the set of all cyclic subgroups of $\langle i, j \rangle$, and we claim that this action is transitive. Indeed, take any $g \in N_S(C_S(j)) \setminus C_S(j)$. As g is a p-element which does not centralize any element of $\langle i, j \rangle \langle i \rangle$, it follows that g acts fixed point freely on $\Omega \setminus \{\langle i \rangle\}$. Hence $|\Omega| = p + 1$ yields that g acts transitively on $\Omega \setminus \{\langle i \rangle\}$. Concluding the fact that i is conjugate to jin $N_G(C_S(j))$ implies that $\langle i \rangle$ is conjugate to $\langle j \rangle$ in $N_G(C_S(j))$ and our claim is proved.

Proceeding with our proof, let us assume first that $N_S(C_S(j)) \subset S$. Take any $g \in N_S(N_S(C_S(j))) \setminus N_S(C_S(j))$ to get $C_S(j) \neq C_S(j^g) \subseteq N_S(C_S(j))$, whence $j^g \notin \langle i, j \rangle$ implies that $\langle j^g \rangle^{\#} \subseteq N_S(C_S(j)) \setminus C_S(j)$. As $N_S(C_S(j))/C_S(j)$ is cyclic of order p, no element of $\langle j^g \rangle^{\#}$ has any p-roots in $C_S(j^g)$. Hence, by the preceding paragraph, no element of $\langle i, j \rangle^{\#}$ has any p-roots in $C_S(j)$. It follows by (*), that $C_{S}(j) = \langle i, j \rangle$, and conclusion (*iii*) holds.

Assume then that $N_S(C_S(j)) = S$, so that $|S : C_S(j)| = p$. Let K be an elementary abelian subgroup of S of maximal order. If $|K \cap C_S(j)| \ge p^2$, then (*) forces $j \in K \cap C_S(j)$, whence $K \subseteq C_S(j)$, and (*) yields $|K| \le p^2$. If $|K \cap C_S(j)| \le p$, then $|K : K \cap C_S(j)| \le p$ implies that again $|K| \le p^2$. Anyhow, conclusion (*ii*) holds and we are done.

4. Proof of Theorem 4

If $p-\operatorname{rank}\{Z(S)\} > 1$, then by our assumption $\sigma(Z(S)) \leq 2p$, whence conclusion (i) holds by Theorem 1. Hence we may assume that $p-\operatorname{rank}\{Z(S)\} = 1$, whence $\Omega(Z(S))$ is cyclic of order p, say, $\Omega(Z(S)) = \langle i \rangle$.

If $j \in J$, then $p-\operatorname{rank}(C_S(j)) \ge 2$. Thus, being a central p-Sylow intersection, $p < \sigma(C_S(j)) \le 2p$. Hence Lemma 6 (i) yields that $\sigma(C_S(j)) = 1 + p$, and Lemma 8 (iii) that $N_S(C_S(j))/C_S(j)$ is cyclic of order p.

We claim that

(*) if $j_1 \in J^*$, $j_2 \in J$, and $|C_S(j_1) : C_S(j_1) \cap C_S(j_2)| = p$, then (*ii*) holds.

Indeed, $C_S(j_1) \cap C_S(j_2)$ is a central *p*-Sylow intersection strictly contained in $C_S(j_1)$. Thus $1 + p = \sigma(C_S(j)) < \sigma(C_S(j_1) \cap C_S(j_2))$ by Lemma 6 *(ii)*. Hence, by Lemma 6 *(ii)*, $2p < \sigma(C_S(j_1) \cap C_S(j_2))$, so that $p-\operatorname{rank}(C_S(j_1) \cap C_S(j_2)) = 1$, and $\Omega(C_S(j_1) \cap C_S(j_2)) = \Omega(Z(S))$. Now $(j_1)^{\#} \cap \Omega(Z(S)) = \emptyset$, so that by the assumption of (*), no element of $(j_1)^{\#}$ has any *p*-roots in $C_S(j_1) \cdot As \ j_1 \in J^*$, so is the case with the elements of $\Omega(Z(S))^{\#}$. Thus, the fact that $\Omega(C_S(j_1) \cap C_S(j_2)) = \Omega(Z(S))$

implies that $C_S(j_1) \cap C_S(j_2) = \Omega(Z(S)) = \langle i \rangle$, so that $C_S(j_1)$ is elementary abelian of order p^2 , and claim (*) is proved.

By Lemma 8 (i) and (iii), either conclusion (i) of our theorem holds, or $J^* \neq \emptyset$. Thus we may assume the existence of some $j_0 \in J^*$. If $C_S(j_0)$ is not normal in S, take $g \in N_S(N_S(C_S(j_0))) \setminus N_S(C_S(j_0))$. Then. $j_0^g \in J$, and $C_S(j_0) \neq C_S(j_0^g) \subseteq N_S(C_S(j_0))$. As $N_S(C_S(j_0))/C_S(j_0)$ is cyclic of order p, it follows that $|C_S(j_0) : C_S(j_0) \cap C_S(j_0^g)| = p$, and (ii) holds by (*). Hence we may assume that $C_S(j_0)$ is normal in S, so that $|S : C_S(j_0)| = p$. By the same argument we may assume now that $C_S(j_0)$ is normal in $N_G(S)$, for otherwise we take any $g \in N_G(S) \setminus N_G(C_S(j_0))$, and repeat the process, to show that (ii) holds. We may also assume that $J^* \subseteq C_S(j_0)$. If this is not the case, take in (*) any $j \in J^* \setminus C_S(j_0)$ as j_1 , and j_0 as j_2 , and conclude that (ii) holds.

We claim now, that $\Omega(Z(C_S(j_0)))$ is strongly closed in S with respect to G. To prove it, suppose that there exist $j' \in S \setminus \Omega(Z(C_S(j_0)))$, and $k' \in \Omega(Z(C_S(j_0)))$, such that j' is conjugate to k' in G. By Theorem 7 we may assume that there exists a central p-Sylow intersection H and elements $j \in H \setminus \Omega(Z(C_S(j_0)))$ and $k \in H \cap \Omega(Z(C_S(j_0)))$, such that j is conjugate to k in $N_G(H)$.

Assume first that $k \notin \Omega(Z(S))$. Then $\langle k, \Omega(Z(S)) \rangle \subseteq H \cap C_S(j_0) \subseteq H$ yields that $1 \leq \sigma(H) \leq \sigma(H \cap C_S(j_0)) \leq 2p$ by the assumption of the theorem. Thus, by Lemma 6, either $\sigma(H) = 1$, whence H = S, or $\sigma(H) = \sigma(H \cap C_S(j_0)) = \sigma(C_S(j_0))$, and $H = C_S(j_0)$. But $\Omega(Z(C_S(j_0)))$ is normal in $\langle N_G(S), N_G(C_S(j_0)) \rangle$, a contradiction.

Thus we may assume that $k \in \Omega(Z(S))$ so that $j \in J$. Moreover, $(j, \Omega(Z(S))) \subseteq H \cap C_S(j) \subseteq H$ yields as before that either H = S or

 $H=C_S(j)$. The first case is impossible as $j\notin \Omega\bigl(Z(S)\bigr)$ and $k\in \Omega\bigl(Z(S)\bigr)$.

Thus $j \in J^*$, and as $J^* \subseteq C_S(j_O)$, we have

$$\langle j, \Omega(Z(C_S(j_0))) \rangle \subseteq C_S(j) \cap C_S(j_0) \subseteq C_S(j)$$
.

Using again the above argument yields $C_S(j) = C_S(j_0)$, so that $j \in \Omega(Z(C_S(j_0)))$, a contradiction. Thus our claim is proved and conclusion (*i*) of our theorem holds.

We remark that the condition $\sigma(T) \leq 2p$ in the assumption of the theorem is needed only to assure that if $T \subset T' \subseteq S \in \text{Syl}_p(G)$, where T' is a p-Sylow intersection, then

- (i) $N_S(T)/T$ is cyclic of order p , and
- (ii) T' = S (see Lemma 6).

References

- [1] J.L. Alperin, "Sylow intersections and fusion", J. Algebra 6 (1967), 222-241.
- [2] J.L. Alperin, "Up and down fusion", J. Algebra 28 (1974), 206-209.
- [3] J.L. Alperin, Richard Brauer, Daniel Gorenstein, "Finite simple groups of 2-rank two", Scripta Math. 29 (1973), 191-214.
- [4] David M. Goldschmidt, "2-fusion in finite groups", Ann. of Math. (2)
 99 (1974), 70-117.
- [5] Kensaku Gomi, "Finite groups with central Sylow 2-intersections", J. Math. Soc. Japan 25 (1973), 342-355.
- [6] Marcel Herzog and Ernest Shult, "Groups with central 2-Sylow intersections of rank at most one", Proc. Amer. Math. Soc. 38 (1973), 465-470.
- [7] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

- [8] Ariel Ish-Shalom, "On 2-Sylow intersections", Israel J. Math. 18 (1974), 235-242.
- [9] Ariel Ish-Shalom, "On central 2-Sylow intersections", submitted.
- [10] G. Stroth, "Eine Kennzeichnung der 2I-Gruppen", J. Algebra 37 (1975), 111-120.
- [11] Michio Suzuki, "A characterization of simple groups LF(2, p) ", J. Fac. Sci. Univ. Tokyo Sect. I 6 (1951), 259-293.

Department of Mathematics, Tel-Aviv University, Tel-Aviv, Israel.