THE TOPOLOGICAL DEGREE OF A-PROPER MAPPING IN THE MENGER PN-SPACE (II)

ZHU CHUANXI AND HUANG XIAOQIN

In the paper "The topological degree of A-proper mapping in the Menger PN-space (I)", the new concept of A-proper topological degree has been given. Now, utilising the new concept, we give the corresponding definitions of convex A-proper, P_* -compact and P_{γ} -compact in Menger PN-space. As an application of these new concepts, we prove the existence of solution for some equations.

1. Introduction

In this paper, utilising A-proper properties, we discuss the existence of solution for some equations. For the sake of convenience, we recall some definitions and properties of PN-space.

DEFINITION 1: (Chang [1].) A probabilistic normed space (shortly a PN-space) is an ordered pair (E,F), where E is a real linear space, F is a mapping of E into D (D is the set of all distribution functions. We shall denote the distribution function F(x) by F_x , $F_x(t)$ denotes the value F_x for $t \in R$.) satisfying the following conditions:

- (PN-1) $F_x(0) = 0$;
- (PN-2) $F_x(t) = H(t)$ for all $t \in \mathbb{R}$ if and only if $x = \theta$, where H(t)=0 when $t \leq 0$, and H(t)=1 when t > 0;
- (PN-3) For all $\alpha \neq 0$, $F_{\alpha x}(t) = F_x(t/|\alpha|)$;
- (PN-4) For any $x, y \in E$ and $t_1, t_2 \in R$, if $F_x(t_1) = 1$ and $F_y(t_2) = 1$, then we have $F_{x+y}(t_1 + t_2) = 1$.

LEMMA 1. (Chang [1].) Let (E, F, Δ) be a Menger PN-space with a continuous t-norm Δ , then $x_n \subset E$ is said to be convergent to $x \in E$ if for any t > 0, we have $\lim_{n \to \infty} F_{x_n-x}(t) = H(t)$.

Lemma 2. The generalised topological degree $\operatorname{Deg}(f,\Omega,p)$ has the following properties:

(i) $Deg(I, \Omega, p) = 1, \forall p \in \Omega$, where I is an identity operator;

Received 21st March, 2005

The work was supported by Chinese National Natural Science Foundation under grant No. 10461007.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

- (ii) If $Deg(f, \Omega, p) \neq \{0\}$, then the equation f(x) = p has a solution in Ω ;
- (iii) If $L: [0,1] \times \overline{\Omega} \to E$ is continuous and for any fixed $t \in [0,1]$, $L(t,.): \overline{\Omega} \to E$ is an A-proper mapping satisfying

$$\lim_{t\to t_0}\inf_{x\in\overline{\Omega}}F_{L(t,x)-L(t_0,x)}(\varepsilon)=H(\varepsilon),\quad\forall\varepsilon>0.$$

Let $p \notin h_t(\partial\Omega)$, $0 \leqslant t \leqslant 1$, where $h_t(x) = L(t,x)$, then we have

$$Deg(h_t, \Omega, p) = Deg(h_0, \Omega, p), \quad \forall \ 0 \le t \le 1;$$

(iv) If Ω_0 is an open subset of Ω and $p \notin f(\overline{\Omega} \setminus \Omega_0)$, then we have

$$\operatorname{Deg}(f, \Omega, p) = \operatorname{Deg}(f, \Omega_0, p);$$

(v) If $\Omega_{(1)}$ and $\Omega_{(2)}$ are two disjoint open subsets of Ω and

$$p \notin f(\overline{\Omega} \setminus (\Omega_{(1)} \cup \Omega_{(2)})),$$

then

$$\operatorname{Deg}(f, \Omega, p) \subseteq \operatorname{Deg}(f, \Omega_{(1)}, p) + \operatorname{Deg}(f, \Omega_{(2)}, p).$$

If either $Deg(f, \Omega_{(1)}, p)$ or $Deg(f, \Omega_{(2)}, p)$ is single-valued, then

$$\mathrm{Deg}(f,\Omega,p)=\mathrm{Deg}(f,\Omega_{(1)},p)+\mathrm{Deg}(f,\Omega_{(2)},p);$$

- (vi) If $p \notin f(\partial \Omega)$, then $Deg(f, \Omega, p) = Deg(f p, \Omega, \theta)$;
- (vii) If p varies on every connected component of $E \setminus f(\partial \Omega)$, then $Deg(f, \Omega, p)$ is a constant.

2. MAIN RESULTS

LEMMA 3. Let (E, F, Δ) be a projected complete Menger PN-space, Δ is a continuous t-norm, and $f: \overline{\Omega} \to E$ is an A-proper mapping. Then λf is also an A-proper mapping $(\lambda \neq 0)$.

PROOF: For any sequence $\{x_{n_k}\}\in\overline{\Omega}_{n_k}$, we have

$$\lim_{k\to\infty} F_{Q_{n_k}\lambda f(x_{n_k})-Q_{n_k}(y)}(t) = H(t) \qquad \forall \ t>0.$$

Because $y \in E$, E is a linear space and $\lambda \neq 0$, then we have $y/\lambda \in E$. Hence the above is equal to

$$\lim_{k\to\infty}F_{Q_{n_k}f(x_{n_k})-Q_{n_k}(y/\lambda)}(t/\lambda)=H(t)=H(t/\lambda)$$

Because f is an A-proper mapping, then by the definition, there exists a convergent subsequence $\{x_{n_{k_i}}\}$ of $\{x_{n_k}\}$ such that $x_{n_{k_i}} \to x \in \overline{\Omega}$, $f(x) = y/\lambda$. So $\lambda f(x) = y$. Therefore λf is an A-proper mapping.

Lemma 4. Let (E, F, Δ) be a projected complete Menger PN-space, Δ be a continuous t-norm, $f: \overline{\Omega} \to E$ be an A-proper mapping, $C: \overline{\Omega} \to E$ be a continuous compact mapping, and (f+C)(x) = f(x) + C(x). Then f+C is an A-proper mapping.

PROOF: If for any sequence $\{x_{n_k}\}\in\overline{\Omega}_{n_k}$, we have

$$\lim_{k\to\infty} F_{Q_{n_k}\left(C(x_{n_k})+f(x_{n_k})\right)-Q_{n_k}(y)}(t) = H(t) \qquad \forall t>0$$

Because C is a continuous compact mapping and $x_{n_k} \in \overline{\Omega}_{n_k} \subset \overline{\Omega}$, then there exists a subsequence (shortly, we assume that it is $\{x_{n_k}\}$ itself) such that $C(x_{n_k}) \to y_0 \in E$. Because Q_{n_k} is continuous and linear, then we have $Q_{n_k}C(x_{n_k}) \to Q_{n_k}(y_0)$. Because

$$\begin{split} F_{Q_{n_k}f(x_{n_k})-Q_{n_k}(y-y_0)}(t) &= F_{Q_{n_k}f(x_{n_k})+Q_{n_k}C(x_{n_k})-Q_{n_k}C(x_{n_k})-Q_{n_k}(y-y_0)}(t) \\ &\geqslant \Delta\bigg(F_{Q_{n_k}f(x_{n_k})+Q_{n_k}C(x_{n_k})-Q_{n_k}y}\Big(\frac{t}{2}\Big), F_{Q_{n_k}y_0-Q_{n_k}C(x_{n_k})}\Big(\frac{t}{2}\Big)\bigg), \end{split}$$

taking limit between the two sides, we have

$$\lim_{k \to \infty} F_{Q_{n_k} f(x_{n_k}) - Q_{n_k} (y - y_0)}(t) = H(\frac{t}{2}) = H(t).$$

By the A-proper properties of f, there must exist a convergent subsequence $\{x_{n_{k_i}}\}$ of $\{x_{n_k}\}$ such that $x_{n_{k_i}} \to x \in \overline{\Omega}$ and $f(x) = y - y_0$. By the continuity of C, we have $C(x_{n_{k_i}}) \to C(x)$. Therefore $C(x) = y_0$ and f(x) + C(x) = y. Hence f + C is an A-proper mapping.

LEMMA 5. I is an A-proper mapping.

PROOF: If for any sequence $\{x_{n_k}\}\in\overline{\Omega}_{n_k}$, we have $\lim_{k\to\infty}F_{Q_{n_k}I(x_{n_k})-Q_{n_k}(y)}$ (t)=H(t), then $\lim_{k\to\infty}\left(Q_{n_k}(x_{n_k})-Q_{n_k}(y)\right)=0$. Because $Q_nx\to x$, $(n\to\infty)$, then we have $\lim_{k\to\infty}(x_{n_k}-y)=0$ that is, $\lim_{k\to\infty}x_{n_k}=y$, hence there exists a subsequence $\{x_{n_{k_i}}\}$ of $\{x_{n_k}\}$ such that $x_{n_{k_i}}\to y$. Because I(y)=y, then I is an A-proper mapping.

LEMMA 6. A and B are two nonempty number sets. If for any $x \in A$ and $y \in B$, we have x < y, then $SupA \le \inf B$. In particular, when $A = \{a\}$ the conclusion still holds.

PROOF: It is obvious.

THEOREM 1. Let (E, F, Δ) be a projected complete Menger PN-space, Δ be a continuous t-norm, $f: \overline{\Omega} \to E$ be an A-proper mapping, $C: \overline{\Omega} \to E$ be a continuous compact mapping and (f-C)(x) = f(x) - C(x), $p \notin f(\partial \Omega)$, $p \notin C(\partial \Omega)$. For any $\varepsilon > 0$, $\lambda \in R$, $x \in \partial \Omega$, $F_{f(x)+\lambda C(x)}(\varepsilon) \geqslant F_p(\varepsilon)$. Then $\mathrm{Deg}(f, \Omega, p) = \mathrm{Deg}(C, \Omega, p)$.

PROOF: Let L(t,x) = tf(x) + (1-t)C(x). Because f and C are continuous, then L(t,x) is also continuous. Because f is an A-proper mapping, by Lemma 3, tf is an A-proper mapping. Because C is continuous and compact, then (1-t)C is still continuous

and compact. By Lemma 4, tf(x) + (1-t)C(x) is an A-proper mapping. Because f is an A-proper mapping and C is continuous and compact, then f - C is continuous and bounded. Hence when $t \to t_0$, we have $t(f(x) - C(x)) \to t_0(f(x) - C(x))$. Hence

$$\lim_{t\to t_0} F_{t(f(x)-C(x))-t_0(f(x)-C(x))}(\varepsilon) = H(\varepsilon), \quad \forall \varepsilon > 0, \quad \forall x \in \overline{\Omega}.$$

Then for any $\lambda > 0$, we have $F_{t(f(x)-C(x))-t_0(f(x)-C(x))}(\varepsilon) > 1-\lambda$ $(t \to t_0)$. By Lemma 6, we have $\inf_{x \in \overline{\Omega}} F_{t(f(x)-C(x))-t_0(f(x)-C(x))}(\varepsilon) \geq 1-\lambda$. By the arbitrariness of λ , we have

$$\inf_{x\in\overline{\Omega}}F_{t(f(x)-C(x))-t_0(f(x)-C(x))}(\varepsilon)=1\ (t\to t_0).$$

Therefore

$$\lim_{t\to t_0}\inf_{x\in\overline{\Omega}}F_{t(f(x)-C(x))-t_0(f(x)-C(x))}(\varepsilon)=H(\varepsilon).$$

Next, we prove $p \notin h_t(\partial\Omega)$. Using reduction to absurdity, we assume there exist $x_0 \in \partial\Omega$ and $t_0 \in [0,1]$ such that $h_{t_0}(x_0) = p$. Because $p \notin f(\partial\Omega)$, then $t_0 \neq 1$. Because $p \notin C(\partial\Omega)$, then $t_0 \neq 0$. Hence $t_0 \in (0,1)$. By $p = t_0 f(x_0) + (1-t_0)C(x_0)$, we have $p/t_0 = f(x_0) + (1-t_0)/(t_0)C(x_0)$. Taking $\lambda = (1-t_0)/(t_0)$, we have

$$F_{f(x_0) + \lambda C(x_0)}(\varepsilon) = F_{f(x_0) + (1-t_0)/(t_0)C(x_0)}(\varepsilon) = F_{(p/t_0)}(\varepsilon) = F_p(\varepsilon t_0) < F_p(\varepsilon).$$

It contradicts known conditions. Hence we have $p \notin h_t(\partial\Omega)$. By the Lemma 2 (iii), we have $\operatorname{Deg}(h_1, \Omega, p) = \operatorname{Deg}(h_0, \Omega, p)$. Hence $\operatorname{Deg}(f, \Omega, p) = \operatorname{Deg}(C, \Omega, p)$.

DEFINITION 2: Let (E, F, Δ) be a projected complete Menger PN-space. Δ is a continuous t-norm. Ω is the bounded open set of E:

- (i) If for any $\lambda \geqslant 0$, $f + \lambda I : \overline{\Omega} \to E$ is A-proper, then f is called P_* -compact mapping;
- (ii) For given $\gamma > 0$, if for any $\lambda \geqslant \gamma$, $f \lambda I : \overline{\Omega} \to E$ is A-proper, then f is called P_{γ} -compact mapping.

DEFINITION 3: Let (E, F, Δ) be a projected complete Menger PN-space. Δ is a continuous t-norm. Ω is a bounded open neighbourhood of E, which is symmetric about $\theta \in \Omega$. $f: \overline{\Omega} \to E$ is said to be a convex A-proper mapping, if for $L: [0,1] \times \overline{\Omega} \to E$, we have $L(t,x) = h_t(x) = (1/1+t)f(x) - (t/1+t)f(-x)$ is A-proper.

THEOREM 2. Let (E, F, Δ) be a projected complete Menger PN-space. Δ is a continuous t-norm. Ω is a bounded open set of E, $f: \overline{\Omega} \to E$ is a P_* -compact mapping, $\theta \in \Omega$, we assume that $F_{x-f(x)}(\varepsilon) > F_x(\varepsilon), \forall \varepsilon > 0, \forall x \in \partial \Omega$, then there must exist an $x^* \in \Omega$ such that $f(x^*) = \theta$.

PROOF: Let $h_t(x) = L(t,x) = (1-t)f(x) + tx$, then $L: [0,1] \times \overline{\Omega} \to E$ is continuous. When $t \neq 1$, we have $h_t = (1-t)f + tI = (1-t)(f+(t/1-t)I)$. Because $(t/1-t) \geq 0$, by the P_* -compact property of f, $h_t: \overline{\Omega} \to E$ is A-proper. Because $h_1 = I$ is A-proper,

then for any $t \in [0,1]$, h_t is A-proper. Because f is a P_* -compact mapping, then f(x) is bounded. Because $\overline{\Omega}$ is a bounded closed set, I(x) is bounded. Hence f(x)-x is bounded. Thus for any $t, t_0 \in [0,1]$, $x \in \overline{\Omega}$, when $t \to t_0$, we have $t(f(x)-x) \to t_0(f(x)-x)$. Thus $\lim_{t \to t_0} F_{t(f(x)-x)-t_0(f(x)-x)}(\varepsilon) = H(\varepsilon)$. By Lemma 6, we have

$$\lim_{t\to t_0}\inf_{x\in\overline{\Omega}}F_{t(f(x)-x)-t_0(f(x)-x)}(\varepsilon)=H(\varepsilon).$$

In the following, we prove $\theta \notin h_t(\partial \Omega)$ $(t \in [0,1])$. Assuming there exist an $x_0 \in \partial \Omega$ and a $t_0 \in [0,1]$ such that $h_{t_0}(x_0) = \theta$ that is, $(1-t_0)f(x_0) + t_0x_0 = \theta$. Because $\theta \in \Omega$, then $t_0 \neq 1$. Thus

$$f(x_0) = (t_0/t_0 - 1)x_0, \ F_{x_0 - f(x_0)}(\varepsilon) = F_{x_0 - (t_0/t_0 - 1)x_0}(\varepsilon) = F_{(1/1 - t_0)x_0}(\varepsilon) = F_{x_0}((1 - t_0)\varepsilon).$$

Because $t_0 \in [0,1)$, then $(1-t_0)\varepsilon \leqslant \varepsilon$. By the properties of distribution function, we have $F_{x_0}((1-t_0)\varepsilon) \leqslant F_{x_0}(\varepsilon)$. It contradicts known conditions. Thus $\theta \notin h_t(\partial\Omega)$. By the Lemma 2 (iii), we have

$$\operatorname{Deg}(f, \Omega, \theta) = \operatorname{Deg}(h_0, \Omega, \theta) = \operatorname{Deg}(h_1, \Omega, \theta) = \operatorname{Deg}(I, \Omega, \theta) = \{1\}.$$

Therefore, there exists an $x^* \in \Omega$ such that $f(x^*) = \theta$.

THEOREM 3. Let (E, F, Δ) be a projected complete Menger PN-space. Δ is a continuous t-norm. Ω is a bounded open neighbourhood of E, which is symmetric about $\theta \in \Omega$. If $f: \overline{\Omega} \to E$ is an A-proper mapping and

$$f(-x) = -f(x), \ f(x) \neq \theta, \quad \forall x \in \partial\Omega,$$

then there exists an $x_0 \in \Omega$ such that $f(x_0) = \theta$.

PROOF: Because f(-x) = -f(x), then f(-x) + f(x) = 0. Because Q_{n_k} is continuous and linear, then $Q_{n_k}(f(-x) + f(x)) = 0$ and $Q_{n_k}f(-x) = -Q_{n_k}f(x)$. Hence $Q_{n_k}f$ is an odd mapping. By the properties of topological degree in finite dimensional space, $\deg(Q_{n_k}f,\Omega_{n_k},\theta)$ is an odd integer (see Chang [2]). By the definition $\operatorname{Deg}(f,\Omega,\theta) = \{\gamma \in Z^* \mid \text{there exists a subsequence } \{n_k\} \text{ of } \{n\} \text{ such that } \deg_R(Q_{n_k}f,\Omega_{n_k},\theta) \to \gamma\}$, then there exists an $x_0 \in \Omega$ such that $f(x_0) = \theta$.

REFERENCES

- [1] S.S. Chang, Fixed point theory and application (Chongqing press, Chongqing, 1984).
- [2] S.S. Chang and Y.Q. Chen, 'Topological degree theory and fixed point theorems in PM-spaces', Appl. Math. Mech. 10 (1989), 495-505.

Institute of Mathematics Nanchang University Nanchang 330047 China

e-mail: zhuchuanxi@sina.com

Department of Mathematics Xi'an Jiaotong University Xi'an 710049 China

e-mail: sjzhxq@163.com