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Abstract

The lattice of all complete congruence relations of a complete lattice is itself a complete lattice.
In an earlier paper, we characterize this lattice as a complete lattice. Let m be an uncountable
regular cardinal. The lattice L of all m-complete congruence relations of an m-complete lattice
K is an m-algebraic lattice; if K is bounded, then the unit element of L is m-compact. Our
main result is the converse statement: For an m-algebraic lattice L with an m-compact unit
element, we construct a bounded m-complete lattice K such that L is isomorphic to the lattice
of m-complete congruence relations of K . In addition, if L has more than one element, then
we show how to construct K so that it will also have a prescribed automorphism group. On the
way to the main result, we prove a technical theorem, the One Point Extension Theorem, which
is also used to provide a new proof of the earlier result.
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1. Introduction

In our earlier paper [8], we prove that the lattice L of all complete congruence
relations of a complete lattice K can be characterized as a complete lattice;
see also Theorem 8 in Section 6 of this paper. The basic technique we use,
though not formalized there, could be called the "one-point extension": we
construct a (complete) lattice in [8], the direct product of two well-ordered
bounded chains, that contains all the (complete) congruences we need; then
we adjoin an element each to a family of intervals in an obvious way. The
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58 G. Gratzer and H. Lakser [2]

resulting lattice has the required (complete) congruence lattice.
The construction in [8] is easy to follow because the lattice we deal with

(the direct product of two chains) is easy to visualize. So we dispensed with
the detailed calculation verifying that certain binary relations are (complete)
congruences.

In this paper, our goal is to extend the main results of [8] from complete
lattices to bounded m-complete lattices. To accomplish this, we have to apply
the one-point construction to lattices that are direct products of two lattices
neither of which is a chain; such lattices are much more complex than direct
products of two chains. Therefore, the construction is difficult to visualize,
and it is hard to justify the statements about congruence extensions without
detailed computation. See the discussion in Section 8 on this point.

In Section 3, we formalize this construction. The main technical result,
the "One Point Extension Theorem," gives necessary and sufficient conditions
for the extendability of a congruence relation. Theorem 3 does this under
the condition that none of the selected intervals is prime, while Theorem 6
settles the case where all selected intervals are prime. In the former case,
all extension are unique; in the latter, we characterize which extensions are
unique. The mixed case (prime and nonprime intervals) easily follows.

There is a special case of the One Point Extension Theorem, the "Colored
Product Extension Theorem" (Theorem 7); the lattice to be extended is a
direct product of two lattices, and the family of intervals comes from "color-
ing" the components. In this case, the conditions for extendability are easier
to apply.

We first use these results to give a formal proof of the main result of
[8] (Theorem 8). The reader can safely skip this section, since Theorem 13
contains Theorem 8, and its proof does not utilize Theorem 8. However, the
reader may find it somewhat difficult to apply the "Colored Product Extension
Theorem" directly to Theorem 13 without reading the proof of Theorem 8.

For an uncountable regular cardinal m, we proceed to the m-complete
case, and characterize the lattice L of all m-complete congruence relations
of a bounded m-complete lattice K as an m-algebraic lattice with an in-
compact unit element. In addition, we show how to construct such a K with
a prescribed automorphism group (Theorem 13). (This result was announced
in [7].) The lattice K we construct has some very special properties, see the
Addendum to Theorem 13 in Section 8.

2. Notation

€n denotes the n-element chain with elements 0, 1, . . . , « - 1.
If Q is an ordinal, then by an increasing chain (x \ y < a) we mean a
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chain with Xg < x whenever 0 < y < a .
Let a be an ordinal, and for each y < a, let A be a lattice. We denote

by X (Ay | y < a) the ordinal sum of the Ay; for two components A and
B, let A + B denote the ordinal sum of A and B (we place B on top of
A).

For ordinals a, /?, the ordinal product a x ft is regarded as the set
{(7, J) | 3> < a , 8 < fi) ordered by {yx ,dx) < (y2, S2) if and only if
yx < y2 or y, = y2 and 5, < S2.

For a lattice A, the congruence lattice of 4̂ is denoted by Con A . For
a complete lattice A, the complete congruence lattice of ^ is denoted by
Com A.

For an interval I — [u,v] in the lattice A, we shall denote by SA{I)
or OA(u,v) the congruence relation generated by the interval / . If A is
understood, we use the notation 0(7) or 0 ( M , V) . Note that u = v (0) is
equivalent to 0(7) < 0 . If P is a set of intervals, then 9{P) is the join of
the 0(7) , with 7 e P. Note that 0(P) < 0 means that 0 collapses all the
intervals in P.

Let m be an infinite regular cardinal. A lattice K is m-complete if \J X
and /\ X exists in K whenever X C L and 0 < \X\ < m. A congruence
relation 0 of an m-complete lattice K is an m-complete congruence relation
if the Substitution Property holds for fewer than m elements, that is, if
xt = yt ( 0 ) , for i e I, and |7| < m, then

V ( * , | 1 € 7) = VCVi•!' e / ) (O),

and dually.
An element a of a complete lattice L is m-compact if a <y X implies

that a < V X\ for some subset Xx of X with | A!", | < m. The complete
lattice L is m-algebraic if every element of L is a join of m-compact ele-
ments. We denote by comp m L the set of nonzero m-compact elements of
L.

The lattice Com m K of all m-complete congruence relations of an in-
complete lattice K is an m-algebraic lattice.

For a lattice A, let Ip A denote the the set of prime intervals in A, that
is, the set of all intervals p -[u, v], where u -< v . If there are many prime
intervals in A, then Ip A plays an important role. This is the case if A is
strongly atomic, that is, if every proper interval of A contains an atom.

The prime interior pi m 0 of an m-complete congruence relation 0 on an
m-complete lattice A is the m-complete congruence generated by all prime
intervals of A that are collapsed by 0 . For a complete lattice and for a
complete congruence 0 , we define, similarly, pi 0 .
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We refer the reader to [3] for the standard notation in lattice theory.
We shall use the convention that Condition (2) of Theorem 3 (or Lemma

3) is referred to as Condition (3.2).

3. The one point extension theorem

In this section, we present a general theorem that proves very useful in rep-
resenting congruence lattices of lattices; for some further applications of this
result, see the announcement: [11], and the papers [9] and [10] by G. Gratzer
and H. Lakser.

Let L be a lattice and let A be a set of nontrivial intervals in L. We
define a lattice l! = L[A] by adjoining the family of new pairwise distinct
elements { m ; | / s A } to L, and, for each I = [u,v]e A, requiring that
u -< ml < v .

We associate with x e L' the elements x and x of L: for x e L, set
x_ = x = x; for / = [u, v] e A and the new element m7, set mf = u and
m7 = v . We then, more formally, define the relation <L[A] on the set L[A]
as follows:

i f x = y o r X^LI>

where <L denotes the partial ordering in L. We shall write < for both <L

and <L[A].
We then have the following lemma, whose proof is straightforward, and is

left to the reader.

LEMMA 1. (L[A], <) is a lattice extending L. If X is a subset of L[A],
then \/ X exists in L[A] if and only if either there is an x e X with x > y
whenever y € X, in which case \J X = x, or there is no such x and yL(x \
x e X) exists, in which case

\JX = \J(x\xeX);
L

and dually for / \ .

By Lemma 1, if L is m-complete, then so is L[A].
We shall determine which congruence relations on L extend to L[A] and,

if L is m-complete, which m-complete congruence relations on L extend to
m-complete congruence relations on L[A].

We need the following extension of [3, Lemma 1.8].
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LEMMA 2. Let the reflexive binary relation O on the lattice L satisfy the
following two conditions whenever x, y, z € L:

(1) JC < y < z, x = y (O), and y = z (O) imply that x = z (O);
(2) x <y and x = y (O) imply that

XV z = yM z (O) and x A z = y A z (O).

Then the relation 0 defined by setting

x = y (0) (/" x A y = x V y

is a congruence relation on L.
If, furthermore, m is an infinite regular cardinal, L is m-complete, and 0

satisfies, in addition, the condition

(3) If 0 < a < m, (xy | y < a) and (y \ y < a) are increasing chains
in L, and, for all y < a, we have xy < yy and xy = yy (O), then
\/(xy\y<a) = \/(yy\y<a) (O);

and its dual, then 8 is m-complete.

PROOF. By [3, Lemma 1.8], Conditions (2.1) and (2.2) imply that 0 is a
congruence.

Now let L be m-complete and let Conditions (2.1), (2.2), (2.3), and the
dual of Condition (2.3) hold. Let 0 < a < m, and let (ay \ y < a) and
(by | y < a) be families of elements of L with a = by (8) whenever
y < a. By duality, it suffices to show that

\J(ar | 7 < a ) = \J(by \ y < a ) ( 0 ) .

Since 0 is a congruence relation, we can assume that a < b whenever
y < a.

We proceed by transfinite induction on a. Set xQ - a0, y0 - b0, and,
for each y with 0 < y < a, set

xy = \J{ap\li<y), yy = \J(bfj\fi<y).

Then, by our induction hypothesis, for each y < a, we have

xy = yy (0).

If a is a successor ordinal, a = a + 1, then

x = x , \ l a , = y , V b , = y ( 0 ) ,

since 0 is a congruence relation.
If a is a limit ordinal, then Condition (2.3) implies that xa = ya ( 0 ) ,

concluding the proof of the lemma.
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Condition (3.1) Condition (3.2)

FIGURE 1

In all of our applications, A contains no prime interval. For the sake
of simplicity, we shall make this assumption in the One Point Extension
Theorem. For the general case, see Theorem 6 and the discussion following
it. (The two conditions of the theorem are illustrated in Figure 1.)

THEOREM 3 (One Point Extension Theorem). Let A be a set of nontrivial,
nonprime intervals in the lattice L, and let 0 be a congruence relation on
L. Then 0 has an extension 0[A] to L[A] if and only if 8 satisfies the
following conditions and their duals:

(1) for [u, v] € A, y < v, and u < x,

y = v (0) implies that « v x = x (8) ;

(2) for [u, v], [u,w]eA, with v # w, and y < v,

y = v (0) implies that v A w = u (0).

The extension is unique.
If L is an m-complete lattice and 0 is an m-complete congruence relation,

then its extension 0[A] is also m-complete.

PROOF. Let us assume that the congruence relation 0 of L has an exten-
sion 0 ' to L' = L[A]. Let A, u, v , x, y be given as in Condition (3.1).
Then y = v (©'), and, taking the meet with m7, we get y A u = m{ (0 ' ) ,
since y A mf — y A u. Therefore, m{ = u (&'). Taking the join with x, we
get v V x = m{ V x = x (0 ) , since 0 ' is an extension of 0 , establishing
Condition (3.1).

Let A, u, v , w , y be given as in Condition (3.2). As in the previous
paragraph, m. , = u (0 ' ) . Take any z e L[A] with u < z < w and
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z / m[u v]. Then z V m[u v] = z v u (©'), that is, z V v = z (&'), and so
meeting with v A w we get

(*) v Aw = z Av Aw (S).

Set z = m.u . . Then we get

vAio = /n[UjU)]Au (O').

If u; ^ u , then m[u w] A v = u, and so

v A w = u (S).

If w ^ v fails, then w < v . Since the interval [w, w] is not prime in
L, there is an x e L with u < x < w. Setting z = x in (*) yields the
congruence w = x (©), and so

Since m[u >lu] A x = M , we again get

V AW = W = U (0) ,

thereby establishing Condition (3.2)
By duality, we establish the duals of Conditions (3.1) and (3.2).
Now let the congruence relation 6 on L satisfy Conditions (3.1), (3.2),

and their duals. We define a binary relation O on the pairs of comparable
elements of L1 — L[A].

For all a e l!, set a = a (<I>). For all a, b e L1, with a < b, set

a = b (<B)

if and only if the following three conditions hold:

(MaJ}) a = b(Q);

(La) a e L or a £ L and there is an

xa e L with xa > a and xa = a (0 ) ;

( Ub ) b € L or b £ L and there is a

yb e L with yb < b and yb = b (0).

We now prove that Conditions (2.1) and (2.2) hold for <I>. Let a, b,
c e L', and let

a<b <c, a = b (<J>), and b = c

Then Conditions (L a ) and ( Uc) hold, and

a = b (0) and b = c (0).
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To prove that a = c (O) , we need only verify Condition (Ma c), which is

equivalent to b = b ( 6 ) . If b e L, then this is trivial. On the other hand,
if b $ L, then by Conditions ( Ub ) and ( L b ), there are xb, yb e L with

xb>b, xb = b (8), yb<b, and yb = b (8).

Applying Condition (3.1) to [b_, b] e A , u — b_, v = b, y — yb, and
x = xb , we conclude that xb = b ( 0 ) . Thus b = xbAyb = bAb — b ( 8 ) ,
establishing Condition (2.1) for O .

Now let a, b, c e l! with a < b and a = b (O) . To establish that
a V c = by c (O) , we may assume that a < c and b £c.

If b > c, then a V c = c, bv c — b and

Since a = b (0 ) , we get that

c = c (8) and c = b (8).

Thus Condition (Mc b) holds and, since a = b (O), so does Condition
(Ub). To establish Condition (Lc), we need only observe that if c £ L,
then c > c, and so we can set xc = c. Thus c = b (O), that is, aVc = bwc
(O) in case b > c.

We are left with the case: a < c and b, c are incomparable. Then

<z<£. a\/c = c, and bv c - b\/c e L,

the last one from Lemma 1. Joining a = b_ (0) with c, we obtain that

(t) c = byc (0) .

If b e L, then bvc = bvc; thus

(t) bvc = b\/c = bvc (0) .

If b $ L, t hen we get the yfe f rom Cond i t ion ( Ub ). No te that bvc>b_
follows f rom c £ b. Then , applying Cond i t ion ( 3 . 1 ) t o [b, b]€ A, y = yb,
a n d x = b V c, we conclude tha t bVc = b_Vc\/b~ ( 8 ) , verifying (J). Thus ,
in ei ther event, we have (f) a n d (J), a n d so

ayc = c = bwc^ byc ( 8 ) ,

establishing Condition (MaVc bVc).
( UbVc) holds since b y c e L. I f c e L , then ( L a V c ) follows from

ayc = c, and we are done. Assume, henceforth, that c £ L. To conclude
that

c = ayc = byc
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we need only establish Condition (L c ) , that is, we have to find an xc e L
with xc > c_ and xc = c ( 0 ) .

Since b_ = a ( 0 ) , we get that

bvc = avc = c (0).

Thus if c < b_ V c , that is, if b_ £ c_, then set xc - b_ V c > c.
If h_ < c, then b £ L follows from b j£ c. By ( Ub ) , we then have yb e L

with yb < b and yb = b ( 6 ) .
Now if b_ < c, then, by Condition (3.1) applied to the interval [b_, b],

yb , and x = c_, we obtain that

b\/c = c (6),

and byc_> c. In this case, set xc- by c_.

If k = <L, then applying Condition (3.2) to [b, b], [c, c] 6 A and yb < b

(recall that yb = b (6) by Condition ( Ub )), we get that

bAc = c (6).

If b Ac > c_, then set xc = b A c. If b Ac — c, then taking the meet of (t)
with &, we conclude that

b = c (0).

Since b > b_ — c, we can set xc = b.
Therefore, if a < c and b, c are incomparable, then we conclude that

aye = bye (<J>), verifying Condition (2.2). By duality, the dual of Condition
(2.2) holds.

Consequently, setting

x = y (6[A]) if xAy = xyy (O)

yields a congruence relation ©[A] on L[A] extending 6 .
We now show that the extension of 8 to L' = L[A] is unique. Let the

congruence relation 6 ' on L1 be an extension of 0 . It suffices to show that
if a, b e L' with a < b and a = b (&'), then a = b (O), that is, that
Conditions (Ma b ), (La ), and ( Ub ) hold.

Since
a<a<b<b

and a = b (0 ' ) , we conclude that

a = a (0 ' ) , b = b (©'), and a = b (0').

Thus a = b_ (0 ) , establishing Condition (Ma b).
To verify Condition ( Ub), we need only take the case b £ L. Since the

interval [ b, b ] is not prime in L, there is a y e L with b < y < b. But
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y is a relative complement of b in the interval [ b, b ] in l! . Thus b = b
(&') implies that y = b ( 0 ) . Hence Condition ( Ub ) is established by setting

The dual argument establishes Condition (La ). Thus we conclude that
0 ' = 6[A], verifying the uniqueness of the extension 6[A].

Finally, let m > No, let L be m-complete, and let 6 be an m-complete
congruence relation on L satisfying Conditions (3.1), (3.2), and their duals.
We show that the extension 0[A] of 0 is also m-complete. Define O by
conditions (Ma b),{La ) , and ( Ub ). We need only establish Condition (2.3)
and its dual for O .

Let 0 < a < m, and let (x | y < a) and (y \ y < a) be increasing chains
in L1 with xy < yy and xy = yy (O) whenever y < a. We make two claims.

CLAIM 4. Let C be a chain of cardinality less than m in l! such that

x_ = x

whenever x e C. Then

\/{x\x&C) =

PROOF. If there is a c e C such that c > x whenever x e C, then

\JC = c.
If x < c, then x_ < c . Thus

V^L \xeC) = c.

Since c = c (O), we conclude that V U \x eC) = \JC (O).
Otherwise, for each x e C, there is a y € C with x < y; in particular,

x~ < y holds. Then

I x e C) = \/(x | x € C).

But V C = V(*" I x e C), and so

\/(x\xeC) = \/C,

concluding the proof of Claim 4.

CLAIM 5. Let C be a chain of cardinality less than m in L1 such that

x = x

whenever x e C. Then
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PROOF. If there is a c € C such that c > x whenever x e C, then

exactly as in the proof of Claim 4. Otherwise,

V C = \J{x | x e C),
concluding the proof of Claim 5.

Now let Bo = { y < a \ xy = yy } , and let 5 , = { y < a \ xy < yy } . Then

\J{xy | y e Bo) = \f(yy | y € Bo).

For y e Bx, we have Xj, < xy < y_y < yy, and so

and
x7 = yr (6).

By Claims 4 and 5,

and

Since 0 is m-complete, we also have

y y\yeBl) (0).

Thus

and so
\/(xy\y<a) = \/(yy\y<a)

establishing Condition (2.3) for O .
The dual argument holds for infinite meets, concluding the proof that if 0

is m-complete, then so is its extension 0 [A] , thereby concluding the proof
of Theorem 3.

4. The one point extension theorem in the general case

We next handle the situation where all the intervals in A are prime.
Again, we use the notation 0[A] to describe the binary relation on L[A]
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denned as follows:

x = y (0[A]) if x A y = x V y (O),

where 4> is defined on the pairs of comparable elements of L[A] by the
conditions (Ma b), (La), and ( Ub ) of Section 3.

THEOREM 6. Let A be a set of prime intervals in the lattice L, and let
0 be a congruence relation on L. Then 0 has an extension to L[A] if
and only if 0 satisfies Condition (3.1) and its dual, in which case, 0[A] is
an extension. The extension of 0 to L[A] is unique if and only if 0 also
satisfies the following condition:

(1) If [u, v] e A is such that x = v (0) implies that x > v, then there
is a y > u with y ^ v ;

and its dual.
If L is an m-complete lattice and 0 is an m-complete congruence relation,

then the extension 0[A] is also m-complete.

PROOF. In the verification of the One Point Extension Theorem, we use the
hypotheses that no interval is prime in the following steps: in the proof of the
necessity of Condition (3.2) and its dual, and in the proof of the uniqueness
of the extension. If all the intervals in A are prime, then Condition (3.2)
holds trivially. Consequently, the relation 0[A] is an extension of 0 in the
present case also, and if L and 0 are m-complete, then so is 0[A].

We now proceed to prove that Condition (6.1) together with its dual is a
necessary and sufficient condition for the extension 0[A] to be unique. We
first establish the sufficiency.

Let Condition (6.1) and its dual hold, and let 0 ' be a congruence relation
on L' = L[A] extending 0 . We have to show that if a, b e L' with
a < b and a = b (©'), then a = b (<J>), that is, that the pair a, b satisfies
Conditions {MaJ)),{La), and ( Ub ).

Since
a<a<b<b

and a = b (0 ' ) , we get that

a = a (©'), b = b (0 ' ) , and a = b (0').

Thus a = b (0 ) , establishing Condition (Ma b ) for the pair a, b.
To establish Condition (Ub), assume to the contrary that it fails: b £ L

and there is no y < b in L with y = b (0 ) . Then the hypothesis of
Condition (6.1) holds for the interval [b_, b] e A. Consequently, there is a
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y e L with y > b_ and y ~£ b. Since b_ = b (©'), taking the join with y, we
get _

y = y \ / b = y v b = y V b ( © ' ) .

Taking the meet with b yields

yAb = b (0 ) ,

since both sides are elements of L. Since y ~£ b, we conclude that yAb < b .
Thus yb — y A b satisfies ( Ub), a contradiction. Thus Condition (Ub) is
verified.

The dual argument establishes Condition (La ) .
Therefore, a = b (<J>), proving the sufficiency of Condition (6.1) and its

dual for the uniqueness of the extension of 0 .
To prove the necessity of Condition (6.1) and its dual, we assume that

either Condition (6.1) or its dual fails, and describe two distinct extensions
of 0 . By duality, we may assume that Condition (6.1) fails: there is an
interval I = [u,v]e A satisfying, for all x e L,

(*) x = v (0) implies that x >v;
(**) x > u implies that x > v .

By Conditions (*) and ( Ub ),

Define the equivalence relation 6 j on L' by setting its only nontrivial
equivalence class to be { u, nij } . We claim that ©, is a congruence relation
on L'.

To show that 0 t preserves V, we take c € L' with c> u, c ^ mn and
show that c = cVM = cVAn/ ( 0 t ) . If c > u, then c >c>v by Condition
(**), and so c = c V w 7 . If c = u, then c $ L, and so c > u > c by
Condition (**). This contradicts the hypothesis that all members of A are
prime. Consequently, 0 , preserves V.

As for A, we need only consider c <m1. Then c <u, and so c A m , =
C A M .

Therefore, 0 , is a congruence relation on L1, which clearly is an exten-
sion of the trivial congruence relation coL on L. The congruence relation
0[A] V 0 , is distinct from 0[A] since u^rrij (0[A]). It is easy to see that

0[A] V 0 , = (0[A] o 0,) u (0 , o 0[A]),

where o denotes the relation theoretic product. Thus 0[A] V 0 1 is also an
extension of 0 . It is also easy to see that if L and 0 are m-complete, then
so is 0[A] V 0 , . Thus the nonuniqueness of the extension is established,
showing the equivalence of the uniqueness of the extension with Condition
(6.1) and its dual. This completes the proof of Theorem 6.
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In the case of an arbitrary A, set Aj equal to the set of prime intervals
in A, and set Ao equal to the set of nonprime intervals in A. Then

A congruence relation 0 on L extends to L[A] if and only if 6 extends
to 0[AQ] on L[A0], where the One Point Extension Theorem applies, and
6[A0] extends to L[A0][AJ, where Theorem 6 applies. Also, the extension
of 8 to L[A] is unique if and only if the extension of 0[AO] to L[A] is
unique.

5. Products of colored lattices

In [8], we generalized the concept of a coloring of a lattice L introduced
by S.-K. Teo [14] for chains, whereby the prime intervals of L are labelled
by the elements of some set. We further generalize this concept here by not
requiring that the intervals be prime nor that all prime intervals be labelled.

A {generalized) coloring <p of a lattice L by a set X is a surjective (onto)
mapping <p : P —> X, where P is a set of nontrivial intervals in L.

Let C be a chain with a unit 1, and let q> : P -> X be a coloring of
C, where P is a set of nontrivial intervals of C. We call cp repetitious if
I p C C P and

whenever u e C with u < 1. The coloring in Section 6 and the first coloring
in Section 7 are repetitious.

For / = 0, 1, let A{ be a lattice with a coloring (p{: Pi -> X. We define
a set A of intervals in AQ x Ax by setting

A = {/0 x /, | IQ e Po, IxeP{, and I0<p0 = Il<pl}.

Let us denote the lattice (AQ x A{)[A] by Aox A{, and the element m{ x /

by m(/ ? , / , ) .
In this section, we use the One Point Extension Theorem to determine the

congruence relations on AQ x A{ that extend to ^AQ x^ A{. Recall that any
congruence relation 0 on the lattice A = AQ x Ax is of the form 0O x 0j ,
where, for i = 0, 1, 0 ( is a congruence relation on Ai; and that A is
m-complete if and only if Ao and Ax are m-complete, and, in that event,
that 0 is m-complete if and only if 0O and 0 j are m-complete.

THEOREM 7 (Colored Product Extension Theorem). The congruence rela-
tion 0 = 0 o x 0 j on AQxAx extends to AQxipAl if and only if the following
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two conditions and their duals hold:

(1) For IoePo, / , e f , , if I0<p0 = Ii9i. then

0(7O) ^ ®o is equivalent to 6(7,) < 0 , ;

(2) For i = 0, 1, if I — [u, v] e Pt and there is a y < v with y = v
(O^then 0(7) < 0,.

In that event, the extension is unique.
If in addition, Ao and A{ are m-complete and 0 is m-complete, then so

is its extension to Aox A{.

PROOF. Since none of the intervals in A are prime, the One Point Exten-
sion Theorem applies. We note that in the present case Condition (3.1) is
equivalent to the stronger condition:
(3.1+) If [u, v] e A and there is a y < v with y = v ( 0 ) , then u = v

(0 ) .

Indeed, if u - (uQ, ux), V = (v0, vx), x = (u0, vx) then, by Condition
(3.1),

(v0, v{) = (M0 , v{) V (v0, v{) = (M0 , v{) (0 ) ,

and, similarly,

Consequently,

(Vo, Vx) = (Ko, « , ) A ( « o , Mj) = (Mo, U{) ( 0 ) ,

establishing Condition (3 .1 + ).
Note also that Condition (3.2) follows immediately from Condition (3. 1+ ).

Thus, in view of the One Point Extension Theorem, we need only show that
the conjunction of Conditions (7.1) and (7.2) is equivalent to Condition
(3.1+) .

Let Conditions (7.1) and (7.2) hold. Let [(M0, MJ), {V0, V{)] e A, and let
(y0, yj < (v0, vx) with (>>0, >>,) = (vQ, vj ( 0 ) . Without loss of generality,
we may assume that y0 < vQ . Since y0 = vQ (0O), it follows from Condition
(7.2) that M0 = v0 (0O). Since [M0 , vo](po = [M, , v{]<px, it follows from Con-
dition (7.1) that ul = Uj ( 0 j ) , which, by symmetry, establishes Condition
(3.1+) .

Now let Condition (3 .1 + ) hold. Let [M0, vo](po = [M, , vx](px, and let
M0 = v0 (0O). Then [{u0, ux), (vQ, vj] e A, <MO,V,) < (VQ^J, and
{uo,vx) = (v0, u,) ( 0 ) . Thus by Condition (3 .1 + ), («0, ux) = (vQ, vx)
(0 ) , and so «, = vx (0 j ) ; by symmetry, this establishes Condition (7.1).

Let / = 0, [uo,vo] £ Po, y < v0, and y = v0 (0O). Since <px is
surjective, there is an interval [M, , vx] e 7>

1 with [uQ, vQ]<p0 = [M, , vl]<pl ,
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that is, with [(M0, M,) , (V0, vj] e A. Now (y,vx) < (v0, u,) and (y, w,) =
(vo,vx) ( 0 ) . Then, by Condition (3 .1 + ), (u0, w,) = (v0, «,) (0 ) , and so
u0 = vQ (6 0 ) , establishing Condition (7.2) for / = 0. By symmetry, we get
the proof for the case i = 1.

Thus the conjunction of Conditions (7.1) and (7.2) is equivalent to Condi-
tion (3 .1 + ). Theorem 7 then follows by the One Point Extension Theorem.

6. An application to complete lattices

In [8], we proved the following result:

THEOREM 8. Every complete lattice L is isomorphic to the complete con-
gruence lattice of a suitable complete lattice K.

In this section, we recall the construction of K, and show how the One
Point Extension Theorem and the Colored Product Extension Theorem can
be applied to prove this result.

In [8], we construct a well-ordered bounded chain C, with smallest ele-
ment 0 and largest element l c , and a coloring

with [ 0 c , ac](p — 1, where ac is the cover of 0 c . Furthermore, for each
nonempty subset X of L - { 0 } , there is an interval X^ - [0*, 1*] in C
such that [0*, jx]<p = \JL X, where j x is the cover of 0x, and, such that the
coloring <p restricted to [jx, lx] is repetitious, that is, (Ip[«, \X])<p = X
whenever 0x < u < \ x . In addition, 1* has no lower cover. Finally, if
X / Y, then X^ n F t contains at most one element. (In [8], we actually
have X+ n 7 f = 0 .) We then set

and define the set of intervals A in C{q>) by

A = { X] x {0C} | 0 / X C L - {0} }.

We then define the complete lattice K as follows:

K = C(<p)[A].

In [8], we proved the following result.

LEMMA 9 ([8, Lemma 1]). In a strongly atomic complete lattice A, the
equality
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holds for any complete congruence relation & of A.

To determine Com K, we prove the following two lemmas.

LEMMA 10. A complete congruence relation O on C2 has an extension to
C{q>) if and only if O = O2 where 0 is a complete congruence relation on
C satisfying the condition:

(1) If p, q are prime intervals in C with p0> = qp, then

0(p) < 6 is equivalent to ©(q) < ©.

The extension is unique.

PROOF. This lemma follows immediately from the Colored Product Ex-
tension Theorem. Since Po — P, = Ip C and C is a chain, it follows that
Condition (7.2) and its dual hold. Moreover, since any well-ordered chain
is strongly atomic, we can apply Lemma 9 to prove that Condition (10.1) is
equivalent, in this case, to Condition (7.1).

LEMMA 11. A complete congruence relation O on C2 has an extension
to K = C{(p)[A] if and only if O = 0 2 , where © is a complete congruence
relation on C satisfying the condition:

(1) If P is a set of prime intervals in C, q is a prime interval in C with
W <VLP<p, and e(P) < ©, then ©(q) < ©.

The extension is unique.

PROOF. Let O = ©2 and © e Com C; let us assume that Condition (11.1)
holds for 0 . Note that the special case P = {p} of (11.1) implies that
Condition (10.1) holds. Thus O extends uniquely to a complete congruence
©(p) on C(<p). We now apply the One Point Extension Theorem to show
that Q(<p) extends uniquely to K.

Note that Condition (3.2) and its dual hold trivially. Thus we need only
establish Condition (3.1) and its dual.

Let 0 ^ X CL- {0} . We have to show that the interval

of C((p) satisfies Condition (3.1) and its dual. Let y < {lx, 0 c ) with y =
(\x, 0c) (8 (p) ) . We shall prove that this implies that

<0*,0C) = ( l * , 0 C )

a statement stronger than Condition (3.1).

https://doi.org/10.1017/S1446788700032869 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032869


74 G. Gratzer and H. Lakser [18]

Indeed, there is a y0 e C , with j x < yQ < \ x and y < (yo,O
c). For

each x 6 X, there is a p e IpLVg, 1*] with p<p — x . Since y0 = 1* (6) , it
follows that 0(p) < ©. Thus by (10.1), 0(q) < 0 for each prime interval
q of C with qtp <
we conclude that
q of C with qtp € X. Since (lp [jx, lx])tp = X and C is strongly atomic,

(0).
X X

Since [0 , j ] is a prime interval and

we conclude by Condition (11.1) that

0* = / (0).

Thus 0x = lx (0), and so (0*, 0c) = (1*, 0c) (S{<p)), as claimed.
To establish the dual of Condition (3.1) for the interval

we again prove a stronger statement: if y > (0x, 0c) and y = (0x, 0c)
(S(<p)), then (0*, 0c) = (lx, 0c) (8(p)) . Note that if y > (0x, 0 c ) , then
y > ( / , 0 c ) , or y > (0x,ac), or V * = 1 and

y>m([0x,jx],[0C,ac]).

Therefore,
y = (0X,0C) (e(<p))

implies that either 0* = j x (0) or 0c = ac (0).
Let 0 c = aC (0). Since [0c, ac]q> = 1, we conclude from Condition

(10.1) that 0(p) < 0 whenever p e IpC; just set P = {[0c, ac]}. Then
certainly (0*, 0c) = (1^, 0c) (©(?»)), as claimed.

On the other hand, let 0* = j x (0). Then set P = {[0x, jx]} . For each
p € l p [ / \ 1*], we have

P<P<\JX = [0X ,jx)<p,

and so 0(p) < 0 by Condition (11.1). Since C is strongly atomic, we con-
clude that j x = \ x (0). Thus 0* = \ x (0), and so (0x, 0c) = (1*, 0c)

, as required.
Thus Condition (11.1) implies that O extends uniquely to K.
Now assume that <l> extends to K. Then <J> certainly extends to C(q>),

and thus O = 0 2 . We observe first that 0 satisfies Condition (10.1). Thus
to prove that 0(p) < 0 for a prime interval p, it suffices to find a prime
interval p' satisfying 0(p') < 0 and p'tp - pep .
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We now establish Condition (11.1) for 8 . Set X = Pip , Y = X U { q<p } .
Since O(P) < 8 whenever p is a prime interval in [jx, lx], we see that
6(p) < 6 . Thus by Lemma 9, j x = \ x (8) and so

We apply Condition (3.1) to the interval [ (0*, 0 c ) , (lx, 0 c ) ] 6 A , y =
(jx, 0 c ) , x = (0* , ac), to conclude that

( 0 X , a C ) = ( l X , a C )

and so 0^ = j x (6 ) . Since

we conclude by (10.1) that

V Y

There is a prime interval [a, b] in [j , 1 ] with [a, £]#> = qip . Note that
b < 1 , since 1 has no lower cover. By the dual of Condition (3.1), applied
to the interval [(0y , 0 c ) , ( l y , 0c)] e A, y = ( / , 0 c ) , x = {b, 0c), we
conclude that

<0y,0C) = (6,0C) (6(p)),
and thus a = b (©). Consequently, 8(q) < 8 , thereby establishing Condi-
tion (11.1) for 6 .

The proof of Lemma 11 is thus concluded.

The following isomorphism completes the proof of Theorem 8.

LEMMA 12. ComK^L.

PROOF. As in [8], for each x € L, we define a binary relation $>x on C
as follows:

for M , v e C with u < v , we set

u = v (<&x) if pip < x for every p e Ip [u, v].

Since C is a complete chain, it is clear that O* is a complete congruence
relation on C, and equally clearly, O* satisfies Condition (11.1). Thus the
complete congruence relation (<!>*) of C extends uniquely to a complete
congruence relation 8* of K. Define

y/ : L —> Com AT

by setting
= 8 .
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From the definition of O*, if x < y, then Ox < <t?, and so 9* < &.
Thus y is isotone.

By Lemmas 9 and 11, y/ is surjective; if S2 on C2 extends to K, then
6 = 0>x , where x = \J{pq> | 6(p) < 0 ) .

Finally, we claim that

<D* < $/ implies that x < y.

This is clear if x = 0. Otherwise, there is a prime interval [u, v] in C with
[u, v](p = x, and so u = v (O*). Therefore, u = v (O^), which implies
that x < y by the definition of <^ . In other words,

xy/ <yy/ implies that x < y.

Consequently, y/ is an isomorphism. This concludes the proof of the
lemma, and of Theorem 8.

7. The main result

In this section, we state and prove the main result of this paper. The
construction we are about to present is similar to, but more complicated
than, the construction in Section 6, even if we ignore automorphisms.

Let K be an m-complete lattice. Then the lattice of all m-complete con-
gruence relations of K is an m-algebraic lattice, in which, for any a, b 6 K,
the smallest m-complete congruence relation collapsing a and b is an in-
compact element. In particular, if K is bounded (that is, K has a zero, 0,
and a unit, 1), then / is m-compact.

Our main result is the converse statement.

THEOREM 13. Let m be an uncountable regular cardinal. Let L be an
m-algebraic lattice with more than one element whose unit element 1 is m-
compact, and let G be a group. Then there exists a bounded m-complete
lattice K whose lattice of m-complete congruence relations is isomorphic to
L, and whose automorphism group is isomorphic to G.

Let Sm(L) denote the set of nonempty subsets X of comp m L with \X\ <
m. Let X e Sm(L). Since L has more than one element, it follows that
Sm(L) / 0 . We define a chain Cx with unit 1* and zero j x as follows.

Well-order X by setting X = { xy \ y < C,x } , where £x < m, and set

Cx = {a>xX) + it..
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We define the coloring q>x of Cx ,

<pX : Ip CX -* X

by setting
[(i,xy), u]q>x = xy,

where
f< '»W' if ? + l < C ;

" ~ \ < i + l , x 0 ) ; if y+ 1 = CJf-

Note that p x is a repetitious coloring (see Section 5) of Cx . (Observe that
the chain X^ of [8] can be obtained by adjoining a new zero element to
Cx.)

Let us call a lattice {automorphism) rigid if it only has the trivial automor-
phism. We shall use the following result.

LEMMA 14. There are arbitrarily large sets ofpairwise nonisomorphic rigid
lattices of length 3.

PROOF. Let <& = (V, E) denote a symmetric graph (with no loops), where
V is the set of vertices and E is the set of edges. <& is (automorphism) rigid
if it only has the trivial automorphism. In A. Pultr and V. Trnkova [12,
Chapter II.4], arbitrarily large sets of pairwise nonisomorphic rigid graphs
are constructed.

Following R. Frucht [2], with any symmetric graph (3 we associate a lattice
H(<&) of length 3 by setting

H(Q) = F u £ u { 0 , 1};

we partially order H(<£>) as follows: for v € V and e e E, let 0 < v < 1,
0 < e < 1, and let v < e if v € e. Any automorphism of the lattice H(<&)
yields an automorphism of the graph 0 ; thus the only automorphism of the
lattice H{<8) is the identity mapping. Similarly, H(<&0) = //(©,) implies
that <80 = 0 , . The lemma is thus proved.

Using Lemma 14, for each X e Sm(L), we choose a rigid lattice Mx of
length 3 such that if X, Ye Sm(L) and X / Y, then Mx and MY are not
isomorphic. Let the lattice X* be constructed by adding the chain Cx to
the top of Mx, identifying the unit element of Mx with j x (see Figure 2).
Denote the zero element of X* by 0* . To put it into the context of Section
6, X* is obtained by inserting Mx into the prime interval [ 0*, j x ] of the
chain Art.
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i* 0

[22]

We shall construct two lattices Ao and Ax . The lattice Ao will contain
the constructs that force the infinite joins to work properly. The lattice Ax

has only one role: for each color x, to have a prime interval of that color.
Unfortunately, since we color with compm L, we cannot make Ax into a
chain.

We first construct the lattice An :

Ao = (j(X*\XeSJL))U{O,l},

where we set 0 < a < 1 whenever a e Ao - { 0, 1 }, and, if a, b € Ao -
{ 0, 1 } , then a < b if and only if a, b € X* for some X and a < b in
the lattice X* (see Figure 3).

To construct the lattice Ax, let us now fix an element of comp m L, say 1.
For each x e comp m L, x ^ 1, choose a rigid lattice Nx of length 3 such
that if x ^ y, then Nx is not isomorphic to N , and such that no Nx is
isomorphic to any Mx whenever x e compm L, x ^ 1 and X e Sm(L).
Finally, by the results of R. Frucht [1] and G. Sabidussi [13], we can represent
the group G as the automorphism group of a symmetric graph <S. Define the
lattice Nx as H{<&). Then Nx is a lattice of length 3 whose automorphism
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FIGURE 3

group is isomorphic to G. It is obvious that N{ can also be taken so as not
to be isomorphic to any other Nx nor to any Mx whenever x G comp m L
and X G Sm(L). Let ux denote the zero of Nx and let vx denote the unit
of Nx.

We construct the lattice A, as follows:

=\J(Nx\ x e c o m p m L ) 0 { 0 , 1 } ;

we partially order A{ as follows: for a e Al - { 0, 1 }, we set 0 < a < 1; for
a, b e Al — { 0, 1 } , let a < b if and only if there exists an x € comp m L
with a, b € Nx and a < b in the lattice Nx (see Figure 4).

Note that A{ has length 5 and that all chains in Ao are of cardinality less
than m. It then follows from Condition (2.3) that all m-complete congruence
relations on Ao and Ax are complete. Since both AQ and Ax are strongly
atomic, we get the following consequence of Lemma 9.

LEMMA 15. For / = 0 or 1, the equality

holds for any m-complete congruence relation 0 on Ar
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FIGURE 4

We color the lattices Ao and Ax . Let

and set

Define the coloring

by setting, for X e S (L),

»0 = (lp^0)u{[0 , 1 ] | X e

P{=\VAV

q>Q : Po -> comp m L

and setting, for pelpA0 and X e Sm(L),

P<P0=

ifpelp[/., \x\;

= [ l x , 1].

Note that q>0 maps Po onto comp m L.
The coloring

comp m L

is defined by setting

P<Pi =
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for p e I p^ , and x e compm L. Note that <pl maps Px onto compm L.
For i = 0, 1, we observe that the following condition (f\) and its dual

(V) hold:
(A) if [M, u>] € lpAi and y < w, then there is a v with y < v -< w

and [v, w]tpt = [u, w]<pr

For strongly atomic lattices, Condition (V) is equivalent to the following
condition:

if u -< v and u -< w , then [u, v]q> = [u, w]<p .

In this condition, <p is a coloring such that all prime intervals are in P. We
call this condition (V) because the elements u, v , and w form a V.

The dual condition ( /\ ) combines the dual of the above condition with a
weak version of dual strong atomicity.

The coloring of the prime intervals in Ao and A{ are depicted in Figures
2-4 by labels to the right of the covering edges.

LEMMA 16. An m-complete congruence relation 6 = 6 0 x 6 j on AQx Ax

has an extension to AQ x Al if and only if the following two conditions hold:

(1) 7 / p 0 e I p ^ 0 , p; G l p ^ , , and Po^o = Pi^i ' then

©(p0) < ©o is equivalent to 6(p,) < 6 , ;

(2) If PC I p ^ 0 , q e lpA0, and q^0 < M P(f>0, then

S(P) < O0 implies that 6(q) < 6 0 .

In that event, the extension is unique and m-complete.

PROOF. We use the Colored Product Extension Theorem; we have to show
the equivalence of the conjunction of Conditions (16.1) and (16.2) with the
conjunction of Conditions (7.1), (7.2), and the dual of (7.2).

Let Conditions (16.1) and (16.2) hold.
By Condition (16.1), Condition (7.1) holds for a prime interval IQ. Let

X e Sm(L); it is sufficient to consider an interval of the form /0 = [0*, 1 * ] .
Choose an element u in Mx covering 0x , and a prime interval / , of Ax

with Ixq>x =\jX. Since

we conclude by (16.1) that

©([0*, «]) < 6 0 is equivalent to 0(7,) < 6 , .

But, setting P = {[0x, u]} , we conclude by (16.2) and Lemma 15 that

©([0*, u\) < 6 0 is equivalent to 8([0*, I*]) < 6 0 .
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Thus 0(7O) < 0O if and only if 0(7j) < 0 ( , concluding our verification of
Condition (7.1).

We now establish Condition (7.2) and its dual. By Conditions ( / \ ) , (V) ,
and (16.1), Condition (7.2) and its dual hold for a prime interval I. On the
other hand, for X e Sm{L), if 7 = [0*, 1*] and y < \ x , then there is a
u > y with j x < u < lx . Therefore, y = \ x (0O) implies that

u=lX (0O).

Since <p0 is repetitious, this congruence, Condition (16.2) with 7J = Ip[M, 1*],
and Lemma 15 imply that 0x = \ x (0O) , establishing (7.2).

As for the dual of (7.2), if y > 0x with y = 0x (0O), then there is in
Mx a cover u of 0* with u < y. Then, as above, taking P = {[0*, u]} ,
we again get 0x = 1* (0O) , establishing the dual of (7.2).

Now let Conditions (7.1), (7.2), and the dual of (7.2) hold. Condition
(16.1) then follows immediately. Condition (7.1) implies that

(+) If 7, J e P( and lq>i = J<pt, then

0(7) < 0 . is equivalent to 0 ( / ) < 0, .

Now we verify Condition (16.2). Since q<p0 is m-compact, there is a non-
empty subset P' of P with \P'<po\ < m and q<p0 < \JP'<p0. Set X = P'<p0,
Y = XU{ q<p0 } ; then X, Ye SJL). Since 0(7^) < 0 O , we get S(P') < 0O .
By Conditions (7.1) and (+), and by Lemma 15, we conclude that

j x = \ x (0O).

Then, by (7.2) with y = j x , we get that

0* = l* (0O).

Consequently, by (+),

0 r = l y (0O).

Since q0 e Y = ( I p [ ; r , lY])q>0, there is a p e I p [ ; y , lY] with p<p0 - q<pQ.
Thus, again by Condition (+), we get that q € 0 O , establishing (16.2) and
concluding the proof of Lemma 16.

We now prove Theorem 13. Set K = AQ x Ax. We first show that
Comm K is isomorphic to L. We proceed as in the proof of Theorem 8.

For x e L - { 0 } and / = 0, 1, define a congruence relation <J>* on At

by setting, for u < v ,

u = v (O^) if p<Pj<x whenever p e Ip[«, v].
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By Lemma 2, it is easy to see that Of is indeed a congruence relation and
that it is m-complete. Note also that the pair OQ , Of satisfies Conditions
(16.1) and (16.2). Thus the m-complete congruence relation OjJ x Of on
Ao x A{ extends uniquely to an m-complete congruence relation 0* on K.
Define

y/ : L —> CommK

by setting
xyi = 0 .

From the definition of Of , if x < y, then Of < O^, and so 0* < 0* .
Thus y/ is isotone.

It is easy to see that y/ is surjective: if 0O x 0 j extends to 0 on K, then
set

Then, by (16.2) and Lemma 15, 0O = OQ . Again, by (16.1) and Lemma 15,
0 , = Of . Thus 0 = 0* .

Finally, we claim that

0* < 0^ implies that x < y.

If x = 0, this implication is clear. Otherwise, there is a prime interval [u, v]
in Ao with [M , v]tp0 = x, and so with u = v (OjJ). Then

u = v

By the definition of O^ , the fact that [u, v] is prime and [u, v]<p0 — x, this
congruence implies that x < y. Thus

xyi < yyt implies that x < y,

concluding the proof that y/ is an isomorphism. Thus

We now determine the group of automorphisms Aut K of K. With each
automorphism g of ,/V,, we associate an automorphism ~g of K by setting,
for (M0, «,) eAoxAlt

and

It follows easily that the mapping a defined by ga = g is an embedding of
the group Aut N{ into Aut K.
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Now let g' be an automorphism of K. Since the only doubly irreducible
elements of K are the m(I0, / , ) , it follows that g restricts to an automor-
phism of Ao x Ax. The atoms of Ao x Ax are all of the form (0*, 0) with
X e Sm(L), or of the form (0, ux) with JC € compm L. Under g , an
atom must map to an atom. Now each (0*, 0) lies below a join-irreducible
element (lx, 0) of infinite height of Ao x A{, while no (0, ux) lies be-
low any join-irreducible element of infinite height. Consequently, for each
X e SJL), there i s a F e SJL) with (0*, 0}g' = {0Y, 0); and for each
x e comp m L, there is a y e comp m L with (0, UX)Q' = (0, u ) .

Each {jz, 0) in Ao x Ax is of height 4. Therefore,

By their choice, no two distinct Mx and MY are isomorphic. Thus for each

(0X, 0)g' = (0X, 0) and ( / ,0)g' = ( / , 0>.

For every X e Sm(L), the lattice Mx has only one automorphism; we con-
clude that g is the identity on each interval [(0*, 0), {jx, 0>]. Finally, the
intervals [{jx, 0), (1 , 0)] are well-ordered chains; thus we conclude, further,
that g is the identity mapping on all of Ao x { 0 } .

Similarly, g' is the identity mapping on { 0} x (A{ - N}), and so there
is a g e AutN, such that for all u e Nx we have (0, u)g' = (0, ug).
It follows easily that g = ~g . Thus a is an isomorphism of Aut Nx with
Aut K. Consequently,

G^AutK.

This concludes the proof of the main result.

8. Concluding remarks

Observe that the main result of this paper, Theorem 13, contains the main
result of [8] (Theorem 8 of Section 6). Indeed, if K is a complete lattice and
m > \K\ , then K is m-algebraic and the unit element of K is m-compact,
hence Theorem 13 applies and yields Theorem 8.

It is a very important restriction that m be an uncountable regular cardinal.
Indeed, if m = No, then an m-complete lattice K becomes a lattice K.
Similarly, the lattice of m-complete congruence relations of K becomes the
congruence lattice of K. Hence if m = No, then L must be distributive.
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If one is interested in the lattice of m-complete congruences only (and not
in automorphism groups), then the proof of Theorem 13 can be simplified
by taking Mx = Nx = <£2 whenever X e Sm(L) and x e comp m L.

The lattice K we constructed in Section 7 has many interesting properties.
We now list some of them:

ADDENDUM TO THEOREM 13. The lattice K in Theorem 13 can be chosen
to have the following additional properties:

(1) K is complete,
(2) every chain in K is of cardinality less than m;
(3) K is atomic and dually atomic;
(4) every m-complete congruence relation of K is a complete congruence

relation;
(5) every m-compact congruence relation of K can be generated by a

prime interval;
(6) Every m-complete congruence relation other than i leaves 0 and 1

isolated; that is, for every © / i, we have [O]0 = {0} and [1]0 =

The Independence Theorem of Related Structures, due to G. Gratzer and
W. A. Lampe, states that the three related structures of an infinitary alge-
bra are independent; see Appendix 7 of G. Gratzer [4]. In G. Gratzer [6],
a "lattice theoretic" proof was presented for the case of complete lattices.
The proof presented in [6] works whenever the lattice to be represented as
the congruence lattice of an algebra can be represented as the lattice of com-
plete congruence relations of a complete lattice having property (6) of the
Addendum. Thus we obtain:

INDEPENDENCE THEOREM OF RELATED STRUCTURES. Let m be an un-

countable regular cardinal. Let Lc and Ls be m-algebraic lattices with more
than one element, let the unit element of Lc be m-compact, and let G be a
group. Then there exists an infinitary algebra 2t of characteristic m such that
the congruence lattice of 21 is isomorphic to Lc, the subalgebra lattice of 21
is isomorphic to Ls, and the automorphism group of 21 is isomorphic to G.

The idea of the proof in Section 6 is easy to visualize since we deal with
the direct product of two chains. In fact, in [8], we left most of the proof to
the reader. Is there an advantage to the more formal approach in Section 6?
As the reader will recall, we colored the interval [0 c , ac] by 1. In [8], this
never comes up in the discussion. In the proof in Section 6, the condition
[0 , a ](p = 1 enters the computation when we prove in Lemma 11 the dual
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of Condition (3.1). It is interesting to note that if the interval [ 0 c , ac] is
colored by anything other than 1, then the construction fails. The formal
approach in Section 6 may clarify this and many other similar points to the
reader.

We deal with very wide lattices in Section 7 since we do not know how
to arrange all the chains Cx , X e Sm(L), in one chain and still control the
m-complete congruences. We first hoped that the techiques we developed in
[8] will apply to two lattices which are not chains. A simple coloring of (£2)
and <£3 show that this is not true. This forced us to develop Sections 3-5.

It is curious that even though the techniques developed in this paper do not
apply to the congruence lattice characterization problem of finitary algebras
(and to the finitary case of the Independence Theorem of Related Structures
of G. Gratzer and W. A. Lampe), they have applications to finite lattices.
For instance, we apply the One Point Extension Theorem and the Colored
Product Extension Theorem to show that every finite distributive lattice D
can be represented as the congruence lattice of a finite planar lattice L, and
this planar lattice has O(n3) elements, while older proofs (R. P. Dilworth,
G. Gratzer, E. T. Schmidt, and J. Berman) produced lattices with O(22n) el-
ements, where n is the number of join-irreducible elements in D. A number
of such results were announced in G. Gratzer and H. Lakser [11]; see also
the papers of G. Gratzer and H. Lakser [9] and [10].

We conclude by mentioning the main open problem: Can every m-alge-
braic lattice be represented as the lattice of m-complete congruence relations
of a suitable m-complete lattice?
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