Maximal sum-free sets in abelian groups of order divisible by three: Corrigendum

Anne Penfold Street

The last step of the proof in [2] was omitted. To complete the argument, we proceed in the following way. We had shown that $H=H(S)=H(S+S)=H(S-S)$, that $|S-S|=2|S|-|H|$ and hence that in the factor group $G^{*}=G / H$ of order $3 m$, the maximal sum-free set $S^{*}=S / H$ and its set of differences $S^{*}-S^{*}$ are aperiodic, with

$$
\begin{equation*}
\left|S^{*}-S^{*}\right|=2\left|S^{*}\right|-1=2 m-1, \tag{1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|S^{*} \cup\left(S^{*}-S^{*}\right)\right|=\left|G^{*}\right|=1=3 m-1 . \tag{2}
\end{equation*}
$$

By (1) and Theorem 2.1 of [1], $S^{*}-S^{*}$ is either quasiperiodic or in arithmetic progression.

In the former case, $S^{*}-S^{*}=T^{\prime} \cup T^{\prime \prime}$ where $T^{\prime}=T^{\prime}+K^{*}$ and $T^{\prime \prime} \subseteq t+K^{*}$ for some subgroup K^{*} of G^{*} and for some $t \in T^{\prime \prime}$. But $S^{*}-S^{*}=-\left(S^{*}-S^{*}\right)$, so $T^{\prime \prime} \subseteq K^{*}$. If $S^{*} \cap K^{*} \neq \emptyset$, then the sum-freeness of S^{*} implies that no complete coset of K^{*} is contained in S^{*}. This fact, together with (2), contradicts the quasiperiodicity of $S^{*}-S^{*}$. So $S^{*} \cap K^{*}=\emptyset$, but this forces S^{*} to be periodic with period K^{*} and again we have a contradiction.

Hence $S^{*}-S^{*}$ is in arithmetic progression with difference d and, by (1), the order of d is 3 m . But now by Lemma 4.3 of [1], S^{*} is also in arithmetic progression with difference d, so that $\left|S^{*}+S^{*}\right|=2\left|S^{*}\right|-1$ which proves Yap's conjecture. Also G^{*} is the

Received 13 June 1972.
cyclic group $Z_{3 m}$ and the automorphism of G^{*} which maps d to 1 maps S^{*} to the set $\{m, m+1, \ldots, 2 m-1\}$.

References

[1] J.H.B. Kemperman, "On small sumsets in an abelian group", Acta Math. 103 (1960), 63-88.
[2] Anne Penfold Street, "Maximal sum-free sets in abelian groups of order divisible by three", BuZZ. AustraZ. Math. Soc. 6 (1972), 439-441.

Department of Mathematics, University of Queensland, St Lucia, QueensIand.

