Joint meeting of the Société Française de Nutrition and The Nutrition Society, 6–7 December 2007

Effects of combined supplementation with EPA and vitamin E on the inflammatory response and oxidative capacity of male basketball players

A. Djazayery, R. Ghiasvand, M. Djalali, M. Hosseini and S. A. Keshavarz School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

The objective of the present study was to investigate the effects of vitamin E and EPA supplementation on the blood levels of proinflammatory cytokine TNF α , anti-inflammatory cytokine IL-2 and the erythrocyte antioxidant enzyme glutathione reductase (GR) in male basketball players.

In a randomized double-blind placebo-controlled clinical trial thirty-six healthy well-trained male basketball players (17–35 years old) were randomized into four groups to take daily 2 g EPA (plusEPATM; Minami Nutrition, Edegem, Belgium), 400 mg vitamin E, a combination of the two or a placebo. Venous blood samples for analysis were taken from the subjects between 17.00 and 18.00 hours after exercising for 2 h and at the beginning and after 6 weeks of supplementation. Serum IL-2 and TNF α were measured with Bender Medsystems kits (Vienna, Austria) using ELISA and GR was determined by the Sauberlich method⁽¹⁾.

The Table shows that for the EPA + vitamin E group when compared with the vitamin E, EPA and placebo groups there was a decrease in the serum TNF α level (P<0.005; paired *t* test) and an increase in the serum IL-2 level (P<0.05). The erythrocyte GR level increased significantly in both the EPA + vitamin E (P=0.04) and vitamin E groups (P=0.01).

Group	1				2				3				4			
	Initial		Final		Initial		Final		Initial		Final		Initial		Final	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
IL-2 (pg/ml)	18.9	9.2	25.1*	13.3	19.1	8.7	28.9	2.9	20.7	12.1	26.1	1.3	31.5	2.1	33.4	5
TNFα (pg/ml)	10.9	6	7.4***	4.3	10.4	5.0	6.1	0.9	7.8	2.6	4.2	1.4	8.7	5.1	7.6	0.4
GR (U/ml)	2.9	1.4	3.9**	1.7	3.4	1.4	4.8	0.6	2.0	1.9	5.4†	1.5	3.9	1.5	4.1	0.2

Group 1, EPA + vitamin E; group 2, EPA; group 3, vitamin E; group 4, placebo.

Mean values were significantly different from the initial value: *P = 0.05, **P = 0.04, ***P = 0.005, $\dagger P = 0.01$.

Adding EPA to vitamin E supplements can result in desirable changes in the inflammatory response and antioxidant capacity of male basketball players. This effect would have implications from a practical point of view, since exercise produces inflammatory and oxidative effects.

1. Sauberlich HE, Judd JH Jr, Nichoalds GE, Broquist HP & Darby WJ (1972) Am J Clin Nutr 25, 756-762.