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Abstract. In this paper we study reducibility of representations of split classicalp-adic groups induced
from self-contragredient supercuspidal representations of general linear groups. For a supercuspidal
representation associated via Howe’s construction to an admissible character, we show that in many
cases Shahidi’s criterion for reducibility of the induced representation reduces to a simple condition
on the admissible character.
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1. Introduction

Let F be ap-adic field of characteristic zero and odd residue characteristic. Sup-
pose thatG0 = SO4n(F ), Sp4n(F ), or SO4n+1(F ). ThenG0 has a maximal par-
abolic subgroupPmax with Levi factor isomorphic toG = GL2n(F ). Let � be
an irreducible unitary supercuspidal representation ofG. Assume that� is self-
contragredient. In [Sh], Shahidi derives a criterion for reducibility of the represen-
tation I(�) induced from the representation�
1 ofPmax. The criterion is expressed
in terms of the values of a particular twisted orbital integralI at functionsf in
C1
c (G) which represent matrix coefficients of�. If G0 = SO4n(F ), Sp4n(F ), resp.

SO4n+1(F ), then I(�) is irreducible, resp. reducible, if and only ifI(f) is nonzero
for some such functionf .

Suppose that� arises via the construction of Howe ([H2]) from an admissible
character� of the multiplicative group of a tamely ramified degree 2n extensionE
of F . As� is unitary and self-contragredient,� is unitary and satisfies� � � = ��1

for some involutive automorphism� ofE=F . In this paper, we prove that, for many
such�, Shahidi’s criterion reduces to a simple condition on�. If L is the fixed
field of �, then there are only two possibilities for the restriction of� toL�. If this
restriction is non-trivial, then it is the quadratic character ofL� associated toE by
class field theory. In the case whereE is ramified overL and� jL� is trivial, we
show that the integral in Shahidi’s criterion is nonzero for a particular choice of
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264 F. MURNAGHAN AND J. REPKA

function which represents a (sum of) matrix coefficient(s) of�. If E is unramified
overL, we get the same type of result under some additional assumptions on�;
sometimes the integral is nonzero when� jL� is non-trivial. The contents of the
paper are described in more detail below.

Properties of the Howe factorization of� relative to the automorphism� are
discussed in Section 2.

The twisted orbital integralI can be expressed as an integral over the fixed
points inG of a certain involutive anti-automorphism' of gl2n(F ). The third
section contains results describing the action of' on filtrations of the parahoric
subalgebra attached to the extensionE, and on related subgroups ofG.

The representation� is induced from an irreducible representation� of an
open, compact-mod-centre subgroupH. In Section 4 we state Shahidi’s reducibility
criterion and define a particular functionF which represents a finite sum of matrix
coefficients of�. The functionF is chosen in such a way that the corresponding
twisted orbital integralI(F) reduces to an integral of the character of� over a
certain set of'-invariant points inH.

In Section 5, we establish some properties of� and�. We prove that if� is
one-dimensional and� jL� is trivial, thenI(F) is non-zero (Proposition 5.3).

The inducing representation� is a tensor product of finitely many representa-
tions�i, i = 1; : : : ; r, corresponding to the Howe factors of�. In Section 6, we
show that if a Heisenberg representation is used in the construction of�i, then the
character of�i is real-valued on the set of'-invariant points inH. Then Section 7
is devoted to computing the sign of the character on certain'-invariant points.

In Section 8, we state a particular case of a result of Digne and Michel ([DM])
which gives a character formula for Deligne–Lusztig characters of a non-connected
finite reductive group.

Next we consider the case when�r has level one; that is,�r is an inflation
of an irreducible cuspidal representation of a general linear group over a finite
field. In the first part of Section 9, we determine the map which' induces on the
finite general linear group. Certain sums of values of Deligne–Lusztig characters
of finite general linear groups occur in the integralI(F). Using properties of'
and�r, we express these sums in terms of values of a Deligne–Lusztig character
of a non-connected finite reductive group (whose identity component is a general
linear group). In the main result of Section 9 (Proposition 9.9), we determine the
signs of the sums using the character formula from Section 8.

In Section 10, assuming that�r has level one and�i is one-dimensional for
1 6 i 6 r � 1, we derive an expression forI(F) in terms of values of� and the
sums considered in Section 9. Results of Section 9 are then applied to obtain our
main result (Theorem 10.7) in this case.

In Theorem 11.1, we show that under certain assumptions on� jL�, the integral
I(F) is nonzero (subject to the additional condition mentioned above if�r has
level one andr > 1). WhenE is ramified overL, it suffices to assume that� jL�
is trivial. WhenE is unramified overL, there exists an intermediate extension
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REDUCIBILITY OF SOME INDUCED REPRESENTATIONS OF CLASSICALp-ADIC GROUPS 265

F � E1 � E (appearing in the Howe factorization of�) such that� jL� must be
assumed to be trivial, resp. non-trivial, when[E:E1] is odd, resp. even. When�
satisfies the conditions of Theorem 11.1, the non-vanishing ofI(F) translates into
results concerning reducibility of the induced representation I(�) (Theorem 11.4).
Reducibility of the non-unitary representation I(� 
 jdet(�)j�), for � a nonzero
real number, is discussed in Corollary 11.5.

In the second part of Section 11, we formulate a conjecture giving necessary and
sufficient conditions for reducibility of I(�) in terms of the values of� jL�. The
conjecture is based on our results and on the expected relations between properties
of � and the conjectural representation of the Weil group parametrizing theL-
packetf�g of G. Shahidi ([Sh]) interpreted the reducibility of I(�) in terms of the
conjectural theory of twisted endoscopy ([KS1], [KS2]). In particular, if� satisfies
the conditions of Theorem 11.1, then theL-packetf�gofG should come via twisted
endoscopy from anL-packet of representations of SO2n+1(F ). Our conjecture can
be restated as a criterion which uses� jL� to determine whetherf�g comes via
twisted endoscopy from anL-packet of SO2n+1(F ) or of a quasi-split SO2n(F ).

Goldberg ([Go]) has expressed reducibility of certain induced representations
of unitary groups in terms of non-vanishing of sums of twisted orbital integrals
of matrix coefficients of supercuspidal representations of general linear groups.
In a forthcoming paper ([MR]), the results of this paper are adapted to obtain
reducibility results for unitary groups.

In an earlier version of this paper, in order to obtain some of our results in the
case where�r has level one, we evaluated particular sums of Green polynomials
of general linear groups. We have since found a more direct way to obtain these
results via a character formula of Digne and Michel.

2. Self-contragredient Supercuspidal Representations

LetF be ap-adic field of characteristic zero and odd residue characteristic, and let
G = GLm(F ). LetE be a tamely ramified extension ofF of degreem, and let�
be an admissible character ofE� overF .

The character� has a Howe factorization (see [H2], [Mo2])

� = (� �NE=F )�r(�r�1 �NE=Er�1
) � � � (�2 �NE=E2

)(�1 �NE=E1
): (2.1)

Here� uniquely determines the tower of fieldsF = E0 � E1 � � � � � Er = E and
�, �1; : : : ; �r are quasi-characters ofF�, E�

1 ; : : : ; E
�
r , respectively. Each quasi-

character�i is generic overEi�1 ([H2]). The conductoral exponents are unique and
satisfy

fE(�1 �NE=E1
) > � � � > fE(�r) > 0: (2.2)

For eachi, if fEi(�i) > 1, choose an elementci 2 Ei that ‘represents’�i in the
sense that

�i(1+ x) =  (trEi=F (cix)); for x 2 p
[(fEi(�i)+1)=2]
Ei

; (2.3)
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where is a character of the additive groupF with conductorpF ; we must have

ci 2 p
�fEi(�i)+1
Ei

n p
�fEi(�i)+2
Ei

(see [H2], [Mo2]). Note that the genericity of�i
implies thatci generatesEi overEi�1.

The construction of Howe ([H2], [Mo2]) associates to each equivalence class
of admissible characters� an equivalence class of irreducible supercuspidal repre-
sentations� of G. We will henceforth assume that� (and hence the corresponding
�) is unitary (see Corollary 11.6 for some results in the non-unitary case).

Suppose that the supercuspidal representation� of G attached to� is self-
contragredient (that is,� is equivalent to its contragredient). Since the contragre-
dient of � is attached to the character�� (see [Mo2]), it follows that there is a
� 2 Aut(E=F ) such that

� � � = �� = ��1: (2.4)

Here the notation Aut(E=F ) denotes the automorphisms ofE fixing F pointwise
(we are not assuming thatE=F is Galois). Using the admissibility of�, it is not
hard to see that� must have order two ([A]). In particular,m must be even.
Henceforth we will letm = 2n, and considerG = GL2n(F ). Adler ([A]) has
shown that given any tamely ramified degree 2n extensionE of F such thatE=L
is quadratic for some intermediate fieldL, there exist unitary admissible characters
� of E� satisfying (2.4) with� the non-trivial element of Gal(E=L); hence there
are self-contragredient supercuspidal representations ofG associated to every such
extension.

By comparing Howe factorizations of� and� ��, we also observe that�(Ei) =
Ei for eachi, although we shall see that� does not fixEi pointwise.

We claim thatfE(� � NE=F ) 6 fE(�1 �NE=E1
). If not, then using (2.2), (2.4)

and the fact that� � NE=F is invariant under�, we see that� � NE=F must be a
non-trivial real character on

(1+ p
fE(�1�NE=E1

)

E )=(1+ p
fE(��NE=F )

E ):

Sincep is odd, this group has odd order, which is impossible, proving the claim.
Next, we replace�1 with �1(��NE1=F ) and drop� from the notation. Note that

��NE1=F is invariant under automorphisms ofE1=F , so any element representing
� �NE1=F can be chosen to be an element ofF . Because of the claim just proved,
this shows�1(� �NE1=F ) is still a generic character ofE1.

LEMMA 2.5. The characters�i and the elementsci can be chosen so that

(i) �i is unitary,
(ii) �i �NE=Ei � � = (�i �NE=Ei)

�1,
(iii) �(ci) = �ci, if fE(�i) > 1.

Proof(i) We know that� is a character (i.e., is unitary). In particular, if we write
it as the product of a character ofO�

E and a power ofj � jE , then (2.4) shows that
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the power ofj � jE must take values inf�1g. We can adjust the power ofj � jEi
occurring in�i so that each�i is unitary; this does not affect the genericity of�i.

(ii) From (2.4), we have that�1 �NE=E1
� � = (�1 �NE=E1

)�1 on

(1+ p
fE(�2�NE=E2

)

E )=(1+ p
fE(�1�NE=E1

)

E ):

Since(1+ pE)=(1+ p
fE(�1�NE=E1

)

E ) is ap-group, it is possible to adjust�1 so that
�1 �NE=E1

� � = (�1 �NE=E1
)�1 on all of 1+ pE . Using the Chinese Remainder

Theorem, it can further be adjusted so that the same relation holds on all ofO�
E ,

and therefore on all ofE�. Then, by an inductive argument, we can assume that
for eachi, �i �NE=Ei � � = (�i �NE=Ei)

�1 onE�. This proves (ii).
(iii) Note that for anyk,

p
k
E \Ei � p

[(k�1)=e(E=Ei)]+1
Ei

;

so

fE(�i �NE=Ei) = 1+ e(E=Ei)(fEi(�i)� 1):

Let mi = [(fE(�i � NE=Ei) + 1)=2]. To finish the proof, we will need the
following technical result.

LEMMA 2.6. Suppose1 6 i 6 r; if i = r, then assumefE(�r) > 1. If x 2 p
mi
E ,

then

�i �NE=Ei(1+ x) = �i(1+ trE=Ei(x))

=  (trEi=F (ci trE=Ei(x))) =  (trE=F (cix)):

Proof. Note that

p
2mi
E \Ei � p

[e(E=Ei)(fEi (�i)�1)=e(E=Ei)]+1
Ei

= p
fEi(�i)

Ei

=) NE=Ei(1+ x) 2 1+ trE=Ei(x) + p
fEi(�i)

Ei
; for x 2 p

mi
E :

Also

trE=Ei(x) 2 p
mi
E \Ei � p

[(mi�1)=e(E=Ei)]+1
Ei

� p
[(fEi(�i)+1)=2]
Ei

;

from which the result follows. 2

Comparing with�i � NE=Ei � � = (�i � NE=Ei)
�1, we see that�(ci) 2 �ci +

(p�mi+1
E \Ei). Butci is only defined up to addition of elements ofp

�[(fEi(�i)+1)=2]+1
Ei

.

By adding something inp
�[(fEi(�i)+1)=2]+1
Ei

, we can assume that theci’s satisfy
�(ci) = �ci. 2
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From now on we assume that�i andci are as in Lemma 2.5.

3. Filtrations and the map'

Let the notation be as in Section 2. The representation� is of the form� = IndGH�
where� is an irreducible representation of an open compact-mod-centre subgroup
H ofG = GL2n(F ). We will define an anti-automorphism' of gl2n(F ) so that the
integral we need to consider can be expressed as an integral over certain'-invariant
points in the inducing subgroupH. The fieldE will be embedded ingl2n(F ) in such
a way that the action of' onE is given by�; up to conjugation by a fixed matrix,
the mapX 7! �'(X) is the Lie algebra analogue of inverse transpose. We will
also need to consider matrix algebras over'-invariant fields intermediate between
F andE. We will consider the action of' on such algebras, and in particular will
show that the standard filtrations and parahoric subgroups are'-invariant.

Let L be the fixed field of�. We choose a basisf�1; : : : ; �ng of L=F , and let
f��1; : : : ; ��ng be the dual basis with respect to the trace form. Lets be the matrix of
the identity transformation from the basisf�jg to the basisf��j g, i.e., the transition
matrix; note thats is symmetric. Then for any� 2 L,

s�1 t�s = �:

If E = L(�), with �(�) = �� , we form a basisf�1; : : : ; �n; ��1; : : : ; ��ng of
E=F , and use it to embedE in gl2n(F ). If we let

w =

 
0 s

�s 0

!
;

thenw has a similar property for 2 E, namely

w�1 tw = �():

The relationship between left multiplication byw or w�1 and the standard
basis above and its dual will be needed in Corollary 3.5 to show that the anti-
automorphism' preserves certain lattices ingl2n(F ).

LEMMA 3.1. Suppose 2 E. Write [] for the coefficients of with respect to the
standard basis ofE=F and []� for the coefficients of with respect to the dual
basis. Then

(i) w[] = [�(�()=2�)]�.
(ii) w�1[]� = [�2��()].

Proof. We write [�]L (resp.[�]�L) for the coefficients of� 2 L with respect to
the standard (resp. dual) basis ofL=F . In particular,s[�]L = [�]�L, for � 2 L.
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Note that the basis ofE=F dual to the standard basisf�1; : : : ; �n; ��1; : : : ; ��ng is
f1

2�
�
1; : : : ;

1
2�

�
n; (1=2�)�

�
1; : : : ; (1=2�)�

�
ng.

For (i), we write = 1 + �2, with 1; 2 2 L, so

[] =

 
[1]L

[2]L

!
:

Then

w[] =

 
s[2]L

�s[1]L

!
=

 
[2]

�
L

�[1]
�
L

!
=

�
2

2
� 1

2�

��
=

�
��()

2�

��
:

This proves (i). Part (ii) is obtained by inverting (i). 2

We define the map': gl2n(F )! gl2n(F ) as follows: ForX 2 gl2n(F ),

'(X) = w�1tXw: (3.2)

If S � gl2n(F ) andc = �1, thenSc' will denote thec'-invariant points inS.
Next we discuss how' acts on matrices over different fields. We will want to

apply this idea in different contexts, especially to intermediate fieldsF � Ei �
E, but also to the map induced by' on matrices over residue fields. Consider
fieldsF 0 � N 0 � E0, F 0 � L0 � E0, with [E0:L0] = 2, and� the non-trivial
automorphism ofE0=L0. The results will often be applied to the fieldsF � Ei � E,
F � L � E or the corresponding residue fields. We letn0 = [L0:F 0]. Our goal is
to find a simple expression for the action of' on matrices overN 0.

LEMMA 3.3. SupposeF 0 � N 0 � L0 andm0 = [N 0:F 0]. Any anti-automorphism
ofgln0=m0(N 0) that fixes the scalars(i.e., theN 0-scalars) can be written as the com-
position of the transpose ingln0=m0(N 0)with an inner automorphism ofgln0=m0(N 0).

Proof. Composition with the transpose gives an automorphism ofgln0=m0(N 0)
that fixes the scalars. Composing with an inner automorphism, we can assume it
preserves the diagonal matrices and fixes the scalars. Any such automorphism is
inner. 2

Supposes0 2 GLn0(F 0) is symmetric such that for any� 2 L0, s0�1 t�s0 = �, and
define

w0 =

 
0 s0

�s0 0

!
; '0(X) = w0�1 tXw0; for X 2 gl2n0(F

0):

LEMMA 3.4. (i) If N 0 � L0, let m0 = [N 0:F 0]. Then there exists a symmetric
matrixS 2 GLn0=m0(N 0) such that

'0(X) = S�1TXS; X 2 gln0=m0(N 0):
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Here TX means the transpose overN 0.
(ii) Let F 0 � N 0 � E0 be such that�(N 0) = N 0 and � jN 0 is non-trivial.

(We will often apply this withN 0 = Ei for somei.) Let � be the non-trivial
automorphism ofE0 overL0 and let�N 0 be a generator ofN 0 overN 0

0 = N 0 \ L0
such that�(�N 0) = ��N 0 ; let m0 = [N 0

0 :F 0]. Let�N 0 be the action on a matrix
with entries inN 0 given by applying� jN 0 to each entry of the matrix. Then there
exists a symmetric matrixS0 2 GLn0=m0(N 0

0) such that

'0(X + Y �N 0) = S�1
0

T (�N 0(X + Y �N 0))S0; X + Y �N 0 2 gln0=m0(N 0):

Proof. (i) SupposeN 0 � L0. Consider the map : gln0(F 0)! gln0(F
0) defined

by  (X) = s0�1 tXs0. Because of the form ofs0,  jL0 is the identity map. As
N 0 � L0, it follows that (gln0=m0(N 0)) = gln0=m0(N 0). In fact we can say more
than that: the restriction of is an anti-automorphism ofgln0=m0(N 0) that fixes the
scalars (i.e., theN 0-scalars). Using Lemma 3.3, we see that there exists a matrix
S 2 GLn0=m0(N 0) such that

 (X) = S�1 TXS; X 2 gln0=m0(N 0) � gln0(F
0):

Since 2 is the identity map, we know thatS�1 TS is a scalar, i.e.,TS = cS, for some
c 2 N 0. But S = TTS = c2S and we find thatS is symmetric or skew-symmetric.
Let� be a generator ofL0 overN 0. Let�1; : : : ; �n0=m0 be the eigenvalues of� (in
some extensionK ofN 0). We know that these eigenvalues are distinct and nonzero
as� is regular ‘elliptic’. There existsx 2 GLn0=m0(K) such that

x�x�1 = � = diag(�1; : : : ; �n0=m0):

From� = S�1 T�S it follows that � = A�1�A, whereA = xS�1 Tx. ThusA
must centralize�. ThereforeA is diagonal. IfS were skew-symmetric, thenA
would also be. Clearly this is impossible. ThereforeS is symmetric, proving (i).

(ii) SupposeE0 = L0(�) for some� such that�(�) = �� . With these choices
we have�N 0 = !� for some! 2 L0�. If a matrix commutes with all ofN 0, then it
commutes withN 0

0 and therefore has the form 
A B

C D

!
; A;B;C;D 2 gln0=m0(N 0

0):

The above matrix must also commute with

�N 0 =

 
0 !�2

! 0

!
;

so we have!�2C = B! andD! = !A. That is, the matrix has the form 
!�1X! (!�1Y !)!�2

Y ! X

!
;
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REDUCIBILITY OF SOME INDUCED REPRESENTATIONS OF CLASSICALp-ADIC GROUPS 271

with X;Y 2 gln0=m0(N 0
0). We can easily check that mapping this matrix toX +

Y �N 0 is a Lie algebra isomorphism between the centralizer ofN 0 in gl2n0(F
0) and

gln0=m0(N 0) = gl(2n0)=(2m0)(N
0).

A simple calculation gives

'0(X + Y �N 0) =

 
s0�1tXs0 �s0�1t(!�1Y !2�2)s0

�s0�1t(Y !)s0 s0�1t(!�1X!)s0

!
:

Now, applying part (i) to matrices overN 0
0, we find there is a symmetricS 2

GLn0=m0(N 0
0) so that

'0(X + Y �N 0) =

 S�1TXS �!2�2S�1TY S!�1

�!S�1TY S !S�1TXS!�1

!
:

UsingS�1 T!S = !, we see that

'0(X + Y �N 0) = (!S�1TXS!�1)� (!S�1TY S!�1)�N 0 ;

X; Y 2 gln0=m0(N 0
0):

SetS0 = S!�1. ThenS0 is symmetric. We have shown that there exists a symmetric
matrixS0 2 GLn0=m0(N 0

0) such that for anyX + Y �N 0 2 gln0=m0(N 0),

'0(X + Y �N 0) = S�1
0

T (�N 0(X + Y �N 0))S0;

as required. 2

Now we define various subalgebras and subgroups. The parahoric ‘subalgebra’
B � g� gl2n(F ) attached to the embeddingE ,! g is defined by

B = fX 2 g jXp
k
E � p

k
E; for all kg:

The parahoric subgroupP � G = GL2n(F ) is the units

P = B�:

For any integerj, we also define

Bj = fX 2 g jXp
k
E � p

k+j
E ; for all kg

and

P0 = P; Pj = 1+ Bj; for j > 1:

We define a function� on g by �(X) = j, wherej is the unique integer such
thatX 2 BjnBj+1. Note that ifX 2 E, then�(X) = ordE(X).

comp4043.tex; 23/07/1998; 11:09; v.7; p.9

https://doi.org/10.1023/A:1000504704324 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000504704324


272 F. MURNAGHAN AND J. REPKA

At times it will be necessary to consider one of the intermediate fieldsEi

occurring in the Howe factorization of�. It is possible to embedgl[E:Ei](Ei) in
gl2n(F ) as the set of all elements ofgl2n(F ) that centralizeEi � E � gl2n(F ).
We will refer to this realization ofgl[E:Ei](Ei) asMi.

In this situation, we will define

Bj(i) = fX 2Mi jXp
k
Ei
� p

k+j
Ei

; for all kg = Bj \Mi;

Pj(i) = Pj \Mi

and

B(i) = B0(i); P (i) = P0(i) = B(i) \G:
Let ' be as in (3.2). Using Lemmas 3.1 and 3.4, we are now able to show that

the filtrations and parahoric subgroups defined above are'-invariant.

COROLLARY 3.5.

(i) '(Bj) = Bj .
(ii) '(Mi) =Mi.
(iii) '(Bj(i)) = Bj(i), j 2 Z.
(iv) '(Pj(i)) = Pj(i), j > 0.

Proof. SupposeX 2 Bj ; this meansXp
k
E � p

k+j
E , for all k.

If  2 p
k
E, we write it as a column vector as discussed at the beginning of this

section. Then by Lemma 3.1,w[] = [�(�()=2�)]�.
Now tX is the matrix ofX relative to the dual basis, sotX[�(�()=2�)]� =

[�X(�()=2�)]�. We find that

'(X)[] = w�1 tXw[] = w�1 tX

�
��()

2�

��
= w�1

�
�X�()

2�

��
:

Now�(�()=2�) 2 (1=�)pkE ; sinceX 2 Bj,�X(�()=2�)must be in(1=�)pk+jE .
So

w�1
�
�X�()

2�

��
2 w�1

�
�1
�
p
k+j
E

��
� [pk+jE ]:

This means'(X)(pkE) � p
k+j
E , which means'(X) 2 Bj, proving (i).

Part (ii) follows from Lemma 3.4, and part (iii) follows from parts (i) and (ii)
and the fact thatBj(i) = Bj \Mi. Part (iv) follows immediately from (iii). 2

We finish this section with some technical results that will be used in the
Heisenberg construction of Section 6.

LEMMA 3.6. Let 1 6 i 6 r and j > 1. Suppose thatKi is a subgroup ofP (i)
satisfying
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(i) Ki \ Pj(i� 1) = Pj(i).
(ii) Ki normalizesPj(i� 1).
(iii) '(Ki) = Ki.
(iv) E� normalizesKi.

Then anyx 2 (E�KiPj(i � 1))' can be written in the formx = yz, where
y 2 (E�Ki)

', z 2 Pj(i� 1).
Proof. Write x = uv, u 2 E�Ki andv 2 Pj(i � 1). Note that'(E�Ki) =

E�Ki. This follows from (iii) and (iv) and'(E�) = E�. Then, asE�Ki normal-
izesPj(i� 1), we have

'(x) = '(v)'(u) = '(u)('(u)�1'(v)'(u)) 2 '(u)Pj(i� 1):

Therefore, using'(x) = x, we get

'(u)�1u 2 Pj(i� 1) \GL2n=[Ei:F ](Ei) = Pj(i):

Write u = '(u)(1+X), X 2 Bj(i). By definition ofX,

'(u)X = u� '(u):

Applying' to this equality results in

'('(u)X) = '(u)� u = �(u� '(u)) = �'(u)X: (3.7)

Now we writeu = $m
E�k, � 2 O�

E , k 2 Ki. We have

'(u)X 2 uPj(i� 1)X 2 $m
EO�

EKiBj(i) = Bj+em(i); e= e(E=F ):

SetB`(i)� = fY 2 B`(i) j'(Y ) = �Y g, ` 2 Z. It is easy to see that

B`(i) = B`(i)+ � B`(i)�;

Y =
Y + '(Y )

2
+
Y � '(Y )

2
:

Therefore, by (3.7) we may write'(u)X = '(X1)�X1 for someX1 2 Bj+em(i).
SetX2 = u�1X1. From (iii)

X2 2 k�1��1$�m
E Bj+em(i) � k�1Bj(i) = Bj(i):

So we have

'(u)X = '(uX2)� uX2;

which implies

u = '(u) + '(uX2)� uX2;
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or

u(1+X2) = '(u(1+X2)):

Sety = u(1+X2) andz = (1+X2)
�1v. Then'(y) = y and since 1+X2 2 Pj(i),

(i) impliesy 2 E�Ki. 2

For 16 i 6 r, write `i = [(fE(�i �NE=Ei))=2]. Set

H = E�P`r(r � 1) � � �P`2(1)P`1;

Ki = P`r(r � 1) � � �P`i+1(i); 0 6 i 6 r � 1; Kr = f1g;
Li = P`i(i� 1) � � �P`1; 1 6 i 6 r:

COROLLARY 3.8.Let x 2 H'. Let 1 6 i 6 r. Then there existy 2 (E�Ki)
'

andz 2 Li such thatx = yz.
Proof. If i = 1, apply Lemma 3.6. Ifi > 1, assume that the corollary holds for

1 6 j 6 i� 1. Then we can writex = y0z0, where

y0 2 E�Ki�1 = E�KiP`i(i� 1); z0 2 Li�1; '(y0) = y0:

The preceding lemma now can be applied toy0 to write y0 = yz00 with y 2 E�Ki

such that'(y) = y andz00 2 P`i(i� 1). Since

z = z00z0 2 P`i(i� 1)Li�1 = Li;

the corollary follows. 2

LEMMA 3.9. Let0 6 i 6 r, j > 1, and� 2 (H\Mi)
'. Then the mapx 7! x�'(x)

fromPj(i) to (�Pj(i))
' is onto.

Proof. Define'0(X) = '(�X��1) = ��1'(X)� , for X 2 gl2n(F ). Because
H\Mi normalizesBj(i), it follows from Corollary 3.5(iii) that'0(Bj(i)) = Bj(i).
Let g 2 Pj(i)

'0 ; setX = g � 1. Because'0(X) = X, there existsY1 2 Bj(i)
such thatY1+'

0(Y1) = X (for example, sincep is odd, we could takeY1 = X=2).
Then

X � (Y1 + '0(Y1) + Y1'
0(Y1)) = �Y1'

0(Y1)

is'0-invariant and, sinceBj(i)Bj(i) � B2j(i), lies inB2j(i).
Suppose thatY1, Y2; : : : ; Ym 2 Bj(i) are such that

Ys � Ys+1 2 Bsj(i);
X � (Ys + '0(Ys) + Ys'

0(Ys)) 2 B(s+1)j(i) is '0-invariant:

ChooseWm+1 2 B(m+1)j(i) such that

Wm+1 + '0(Wm+1) = X � (Ym + '0(Ym) + Ym'
0(Ym)):
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SetYm+1 = Ym +Wm+1. Then

X � (Ym+1 + '0(Ym+1) + Ym+1'
0(Ym+1))

= Ym'
0(Wm+1) +Wm+1'

0(Ym) +Wm+1'
0(Wm+1)

is '0-invariant and belongs toB(m+1)j(i)Bj(i) � B(m+2)j(i). TheBm(i)’s form
a neighbourhood base of zero in EndEi(E) and therefore theYm’s converge to
an elementY such thatY + '0(Y ) + Y '0(Y ) = X. Note thatY 2 Bj(i) since
Ym 2 Bj(i) for all m > 1. Thusy = 1 + Y satisfiesy'0(y) = g, and we have
shown that the mapy 7! y'0(y) from Pj(i)! Pj(i)

'0 is onto.
Letx12 (�Pj(i))

'. Then'(��1x1) = �(��1x1)�
�1. That is,��1x12Pj(i)'0 .

By the above, there existsx22Pj(i) such that��1x1 = x2'
0(x2) = x2�

�1'(x2)� .
Setx = �x2�

�1; then'(�) = � implies thatx1 = x�'(x) andx2Pj(i). 2

4. Shahidi’s Reducibility Criterion

In this section we set up a type of integral involving matrix coefficients of a
supercuspidal representation and state results of Shahidi relating these integrals to
the reducibility of induced representations.

LetG = GL2n(F ). Forf 2 C1
c (G), we set

Iw(f) =
Z
G=Sp2n(F )

f(gw�1 tgw)d _g =

Z
G=Sp2n(F )

f(g'(g))d _g;

wherew is the non-singular skew-symmetric matrix defined at the beginning of
Section 3.

The quotientG=Sp2n(F ) can be identified with the set of non-singular skew-
symmetric matrices inG. Here, the identification is given by_g 7! gw�1 tg, where

Sp2n(F ) = fg j gw�1 tg = w�1g = fg j tgwg = wg:
The Haar measure onG induces an invariant measure on the set of non-singular

skew-symmetric matrices; it is the canonical additive measure on the coordinates
above the diagonal divided byjdetxjn�1=2. This measure is invariant underx 7!
hxth, for anyh2G. If x = gw�1 tg = g'(g)w�1, thenhx th = h(g'(g))'(h)w�1.
So replacingg'(g) by h(g'(g))'(h) in the integral has no effect.

Let� be an irreducible supercuspidal representation ofGwhose central charac-
ter! has trivial square; letf� be a matrix coefficient of�. A functionf 2 C1

c (G)
is said torepresentf� if

(i) f�(x) =
R
Z f(zx)!

�1(z)dz; x 2 G,
(ii) The function ef defined by

ef(x) = Z
Z
f(z2x)dz; x 2 G;
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viewed as a function onG=Z2, appears in a subspace ofC1
c (G=Z2) which

is equivalent to� (viewed as a representation ofG=Z2). HereZ is the centre
of G.

Let G0 be one of the split groups SO4n(F ), SO4n+1(F ), or Sp4n(F ). Given a
maximal parabolic subgroupPmax of G0 having Levi component isomorphic toG,
extend� trivially across the unipotent radical to obtain a representation� 
 1 of
Pmax and set I(�) = IndG

0

Pmax
(� 
 1).

Define a skew-symmetric matrix inG by

w0 =

0BBBBBBBBB@

1

�1

1

�1

:

:

1CCCCCCCCCA
:

Forf 2 C1
c (G), setIw0(f) =

R
G=Sp2n(F ) f(gw

�1
0

tgw0)d _g. Shahidi has proved
the following result.

THEOREM 4.1 ([Sh], Theorem 5.3).LetG0 = SO4n(F ) or Sp4n(F ). Let � be
an irreducible unitary self-contragredient supercuspidal representation ofG. Then
I(�) is irreducible if and only if there exists a functionf 2 C1

c (G) representing a
matrix coefficient of� such thatIw0(f) 6= 0. Moreover,Iw0(f) 6= 0 implies that
! jF� � 1.

REMARK. Becausew = xw0
tx for somex2G, it follows thatIw0(f) = Iw(f 0)

wheref 0(g) = f( txg tx�1), g 2G. Clearlyf represents a matrix coefficient of�
if and only if f 0 does, soIw0 can be replaced byIw in the above theorem.

The reducibility criterion for SO4n+1(F ) is dual to that for SO4n(F ) and
Sp4n(F ).

LEMMA 4.2 ([Sh], Theorem 1.2).If � is as in Theorem4.1, thenI(�) is reducible
for G0 = SO4n+1(F ) if and only if I(�) is irreducible forG0 = SO4n(F ) (or
Sp4n(F )).

As in Sections 2 and 3, letE be a tamely ramified degree 2n extension ofF ,
and take� to be a unitary character ofE� which is admissible overF and satisfies
��1 = � � � for some involution� 2 Aut(E=F ). Note that�2 jF� � 1. If � is
the irreducible supercuspidal representation ofG associated to�, then� = IndGH�
for some irreducible representation� of the open compact-mod-centre subgroup
H defined in Section 3.
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We consider the finite sum of matrix coefficients of� defined as follows, where
�� is the character of�

f�(x) =

(
��(x); if x 2 H;
0; otherwise:

Writing e= e(E=F ), we let

S =
2e�1[
i=0

$i
E(H \ P ):

Then we let

F(x) =

(
f�(x); for x 2 S;
0; otherwise:

There exists a nonzero constantc such thatcF representsf�; soIw(F) 6= 0 if and
only if Iw(cF) 6= 0.

Then we considerIw(F) =
R
G=Sp2n(F ) F(g'(g))d _g. In particular, we will

show that, under certain conditions on�, Iw(F) is nonzero. Asw is fixed we drop
the subscript and putI(F) = Iw(F).

Note thatx'(x) is '-invariant, so the integral involves values of�� at '-
invariant points. In later sections, we will study properties of�� on points in
H'.

5. Preliminary Results

Let the subgroupsH, Ki, Li, etc. be defined as in Section 3. Recall ([H2]) that
� = IndGH� where� is an irreducible representation ofH. The representation�
is a tensor product� = �1 
 � � � 
 �r, where�i is defined using the character�i.
The representation�i is first defined onE�Ki�1 and then extended acrossLi�1

by (tr(ci(� � 1))) to get a representation on all ofH = E�Ki�1Li�1.
If fE(�r) = 1, then�r is defined in terms of a certain cuspidal representation of

P (r� 1)=P1(r � 1) parametrized by�r. This case will be discussed in Sections 9
and 10.

We remind the reader thatmi = [(fE(�i �NE=Ei) + 1)=2] and`i = [(fE(�i �
NE=Ei))=2], 1 6 i 6 r. Let deti be the determinant onMi = gl[E:Ei](Ei). If i 6
r�1, or if i = r andfE(�r) > 1, define a character!iofE�KiPmi(i�1)Li�1 � H
by

!i jE�Ki = �i � deti; and

!i jPmi(i� 1)Li�1 =  (tr(ci(� � 1))):
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The condition 2mi > fE(�i �NE=Ei) guarantees that the two definitions coincide
on the intersectionE�Ki \ Pmi(i� 1)Li�1 ([H2]).

The conductoral exponentfE(�i � NE=Ei) is even if and only ifmi = `i. In
this case,E�KiPmi(i � 1) = E�Ki and�i = !i. In particular, dim�i = 1.
Otherwise,mi = `i + 1 and a Heisenberg construction is used to define�i on
E�Ki (see Section 6) and dim�i > 1.

LEMMA 5.1. Suppose thatE is ramified overL. ThenfE(�r) > 1.
Proof. Suppose thatfE(�r) = 1. Then�rj(1+ pE) � 1. BecauseE is ramified

overL,O�
E � O�

L (1+ pE). Thus�r(O�
E) � �r(O�

L ).
Because��r = ��1

r , �r jL� has trivial square. Therefore�r(O�
E) � f�1g and

�r is not generic overEr�1. This contradiction finishes the proof. 2

Next we establish some notation that will help us work with!i. Recall the function
�(�) defined in Section 3:�(x) = j, wherex2Bj nBj+1. If E is unramified over
L andx 2 H', let

�(x) =

(
1; if �(x) is even;

$L; otherwise:

Note that ifE is unramified overLandx 2 yP0, then�(x) = �(y), so�(x) = �(y).
If E is ramified overL, fix a root of unity� 2 L that is not inNE=L(E). If

x 2 H', then, by the above lemma and Corollary 3.8, withi = r, x 2 L�P1. Let

�(x) =

(
1; if x 2 NE=L(E

�)P1;

�; otherwise:

LEMMA 5.2. Suppose thatx 2 E�KiPmi(i�1)Li�1 and'(x) = x. If fE(�r) =
1, make the additional assumption thatx 2 E�P1.

Then!i(x) = �i �NE=Ei(�(x)).

REMARK. In the casefE(�r) = 1, the above result may not hold for certain points
in E�P (see Lemma 10.2).

Proof. A minor variant of Corollary 3.8 shows that it is possible to writex = yz,
with y2E�Ki andz 2Pmi(i � 1)Li�1, and such that'(y) = y. Sincex is also
'-fixed, a simple calculation shows that'(z) = yzy�1.

Since'(ci) = �(ci) = �ci, we find that

'(ci(z � 1)) = '(z � 1)'(ci) = (yzy�1� 1)(�ci);

so becausey 2 Mi commutes withci, tr(ci(z � 1)) = tr'(ci(z � 1)) =
�tr(ci(z � 1)), and tr(ci(z � 1)) = 0. This shows that!i(x) = �i(deti(y)).

Since y 2 E�Ki and '(y) = y, we can assume thaty 2 L�Ki. Write
y = tv, with t 2 L� and v 2 Ki � P1(i). Since'(tv) = tv, we find that
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'(v) = tvt�1 and'(deti(v)) = deti('(v)) = deti(v). So deti(v) 2 L. But since
v 2 P1(i), we have deti(v) 2 1+ pEi\L. Since 1+ pEi\L = NEi=(Ei\L)(1+ pEi),
we find that�ij1+pEi\L

= �i � NEi=(Ei\L)j1+pEi
� 1. So�i(deti(v)) = 1 and

!i(x) = �i(deti(y)) = �i(deti(tv)) = �i(deti(t)). This reduces us to considering
x 2 L�.

Whether or notE is ramified overL, x 2 �(x)NE=L(E
�). The result follows

from the observation that�i �NE=Ei is trivial onNE=L(E
�) by Lemma 2.5(ii).2

PROPOSITION 5.3.If dim� = 1 and if � jL� � 1, thenI(F) > 0.
Proof. Since dim� = 1, then for eachi, dim�i = 1 andmi = `i. So

E�KiPmi(i� 1) = E�Ki�1 and�i = !i.
Now, with the functionF defined as in Section 4

I(F) =

Z
G=Sp2n(F )

F(gw�1 tgw)d _g =

Z
G=Sp2n(F )

F(g'(g))d _g:

The support ofF is S =
S2e�1
i=0 $i

E(H \ P ) � H. Since'(g'(g)) = g'(g),
the above lemma applies withx = g'(g) and we find that wheneverg'(g) 2 S,

F(g'(g)) = f�(g'(g)) = ��(g'(g)) =
rY
i=1

�i(g'(g))

=
rY
i=1

�i �NE=Ei(�(g'(g))) = �(�(g'(g))):

Since�(g'(g)) 2 L�, we see that�(�(g'(g))) = 1 and the integrand is positive.
Now for largej, the'-fixed elements ofPj have positive measure, so the integral
is positive. 2

The following results allow us to identify certain cases where dim� = 1.

LEMMA 5.4. Suppose thatF � N1 � N2 � E, �(Nh) = Nh, h = 1;2, but
�jNh 6� 1. Assume thatN2 is ramified overN2 \ L. ThenN1 is ramified over
N1 \ L ande(N2=N1) is odd.

Proof. SupposeN1 is unramified overN1\L. By the uniqueness of unramified
extensions,f((N2 \ L)=(N1 \ L)) is odd. Butf(N2=(N1 \ L)) = 2f(N2=N1)
andf(N2=(N1\L)) = f((N2\L)=(N1\L)), sinceN2 is ramified overN2\L.
Therefore,N1 must be ramified overN1 \ L.

Now suppose e(N2=N1) is even. LetM be the maximal unramified extension of
N1\L contained inN2\L. Then e(N2\L=M) = e(N2\L=N1\L) = e(N2=N1),
so e(N2 \ L=M) is even.

We can writeN1 = (N1 \ L)(p$N1\L) for some prime element$N1\L in
N1 \ L. Since e(M=N1 \ L) = 1, we can assume that$M = $N1\L.
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Since e(L=M) is even andL is totally ramified overM , there must exist a
quadratic ramified extensionN of M contained inN1 \ L. Since

p
$N1\L =p

$M =2 L, we must haveN =M(
p
"M
p
$M ) for some non-square"M 2 O�

M .
But since

p
$M and

p
"M
p
$M 2 N2, we find that

p
"M 2 N2. Since

p
"M =2

M , f(E=M) must be even. In particularf(N2=M) > 1.
But by the definition ofM ,N2 is ramified overM , contradictingf(N2=M) > 1.

Therefore e(N2=N1) cannot be even. 2

LEMMA 5.5. SupposeE=L is ramified. Thendim� = 1.
Proof. If dim �i = 1 for eachi, then dim� = 1. But dim�i = 1 is equivalent

to saying that there is no Heisenberg construction for�i sincefE(�r) > 1, by
Lemma 5.1.

Lemma 5.4 shows thatEi is ramified overEi \ L, for 1 6 i 6 r, and that
e(E=E1) is odd.

Since e(Ei=Ei \ L) = 2 and�(ci) = �ci, we see thatci must generateEi

overEi \ L. This meansci 2 p
t
Ei
n p

t+1
Ei

for somet, which must be odd. But

ci 2 p
�fEi(�i)+1
Ei

n p�fEi(�i)+2
Ei

. ThereforefEi(�i)� 1 is odd.
Combining these facts, we see that

fE(�i �NE=Ei)� 1 = e(E=Ei)(fEi(�i)� 1) is odd:

ThusfE(�i � NE=Ei) is even and a Heisenberg construction is not necessary for
�i. 2

COROLLARY 5.6. If a Heisenberg construction is required for one of the�i’s,
thenE is unramified overL.

For future reference, we include the following result.

LEMMA 5.7. If fE(�r) = 1 ande(Er�1=(Er�1 \ L)) = 2, thendim�i = 1 for
1 6 i 6 r � 1.

Proof. Let 16 i 6 r�1. By Lemma 5.4, e(Ei=(Ei \L)) = 2 and e(Er�1=Ei)
is odd. BecausefE(�r) = 1, E is unramified overEr�1. Therefore e(E=Ei) =
e(Er�1=Ei) is odd. As shown above, e(Ei=(Ei \L)) = 2 implies thatfEi(�i)� 1
is odd. ThusfE(�i �NE=Ei)� 1 is odd. 2

6. The Heisenberg construction: part one

Fix i such that 16 i 6 r. Suppose thatfE(�i � NE=Ei) is odd and greater than
one. Then a Heisenberg construction is required for the representation�i. In this
section and the next, we compute the sign of the character value of�i at certain
'-invariant elements in the inducing subgroupH. By Lemma 5.1, we must assume
thatE is unramified overL. In [Mo2], Moy assumes thatp does not divide 2n. The
results from [Mo2] which we use still hold under our assumptions; that is, whenp
is odd and does not divide the ramification degree e= e(E=F ).
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Let the subgroupsH,Ki,Li, etc., be as defined in Section 3. As we are assuming
thatfE(�i �NE=Ei) is odd,

mi = `i + 1 =
(fE(�i �NE=Ei) + 1)

2
:

SetHi = F�(1+ pE)(KiP`i(i� 1) \ P1). Then

Hi =

(
F�(1+ pE)KiP`i(i� 1); if fE(�r) > 1;

F�P1(r � 1)P`r�1(r � 2) : : : P`i(i� 1); if fE(�r) = 1:

SetH 0
i = F�(1 + pE)(KiPmi(i � 1) \ P1). Let !i be the character ofE�Ki

Pmi(i � 1)Li�1 defined in Section 5. As!i does not extend to a character ofH,
a Heisenberg construction is used to produce an irreducible representation�i of
H. The technical difficulties occur in defining�i onE�Ki�1 = E�KiP`i(i� 1).
After that, if i > 2, �i is extended by (tr(ci(� � 1))) on Li�1 to produce a
representation ofH. Let x be a'-invariant element ofH. By Corollary 3.8, we
may writex = yz with y 2 E�Ki�1 such that'(y) = y andz 2 Li�1. Arguing
as in the proof of Lemma 5.2, we see that'(z) = yzy�1 implies tr(ci(z�1)) = 0.
Therefore, denoting the character of�i by �i, it follows that�i(x) = �i(y). That
is, it suffices to compute�i on '-invariant elements inE�Ki�1. In this section,
we deal with the'-invariant elements inE�Hi. We remark that iffE(�r) > 1,
thenE�Hi = E�Ki�1. For the purposes of this paper, we do not require values
of �i whenfE(�r) = 1, but, as the proofs do not differ (for points inE�Hi), in
this section and the next we do not place a restriction onfE(�r).

We now discuss the construction of�i (see Sections 3.5–6 of [Mo2] for more
details). BothHi andH 0

i are normal subgroups ofE�Ki�1. The quotientHi=H
0
i

can be made into a symplectic vector space overFp by defining

hx0; y0i = !i(x
�1y�1xy); x0; y0 2 Hi=H

0
i;

wherex andy are representatives for the cosetsx0 andy0, respectively. The conju-
gation action ofE�Hi preserves the symplectic formh�; �i. This is used to translate
to the setting of [H1]. The induced representation IndHi

H0
i
!i is a multiple of a single

irreducible representation�0i ([H1]). As indicated in [H1], the oscillator (Weil)
representation singles out a unique extension of�0i to E�Hi parametrized by the
character!i on E�H 0

i. In particular, the extension�i has the property that if
x 2 E�H 0

i, then�i(x) is equal to�!i(x) times the square root of the order of the
subspace ofHi=H

0
i fixed byx (Proposition 2 of [H1]). In addition,�i vanishes on

all elements ofE�Hi whose conjugacy class does not intersectE�H 0
i.

In the process of calculating"-factors, Moy computes certain of the values of
�i. In the simplest case, wheni = r = 1 andn is prime (see Section 3.5 of
[Mo2]), Moy shows that all but one of the extensions of�0i to E�Hi have the
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same multiplicity in the induced representation IndE�Hi

E�H0
i
!i, and he computes the

character of the exceptional component. From the properties of its character (see
remarks above), it follow that this component is actually�i.

Moy handles the general case as follows (see [Mo2] (3.6.30), (3.6.31)). The
vector spaceVi = Hi=H

0
i decomposes into a direct sum of subspacesVi(N),

whereN runs over all subfields ofE=Ei�1 which do not containEi

Vi = �NVi(N):

Let Hi(N) be the inverse image ofV (N) in Hi. For eachN , Moy constructs a
representation�Ni ofE�Hi(N). The character�Ni of �Ni is computed via the same
type of argument as in the above mentioned case, and�Hi satisfies [Mo2] (3.6.51)

�Ni (x) =

8>><>>:
0 if x is not conjugate to an element ofE�H 0

i;

q
D(N)
Ei�1

!i(x); if x 2 N�H 0
i;

sgn(N)!i(x); if x 2 E�H 0
i �N�H 0

i:

HereqEi�1 is the cardinality of the residue class field ofEi�1, D(N) is a positive
integer, and sgn(N) = �1. The representation�i jE�Hi is a central tensor product
of the�Ni ’s asN runs through those intermediate fields containingEi�1 but not
containingEi [Mo2] (3.6.31).

LEMMA 6.1 ([Mo2]). Letx 2 E�Hi. Then

�i(x) = q
�fN jx2N�H0

i
gD(N)

Ei�1

0@ Y
fN jx=2N�H0

ig
sgn(N)

1A!i(x);
if x 2 E�H 0

i

and�i(x) = 0 if x is not conjugate to an element ofE�H 0
i.

Letx 2 (E�Hi)
'. If x 2 E�H 0

i then by Lemma 5.2,!i(x) = �i(NE=Ei(�(x))).
If x =2 E�H 0

i buty�1xy 2 E�H 0
i for somey 2 E�Hi, then�i(x) is a multiple of

!i(y
�1xy). The elementy�1xy is not necessarily'-invariant. Our goal is to show

that�i(x) is real valued and to determine its sign. To do this, we must evaluate
!i(y

�1xy) and determine the sign
Q
fN j y�1xy=2N�H0

ig sgn(N).

The next part of this section is devoted to computing!i(y
�1xy). Recall that

Mi = gl[E:Ei](Ei), 06 i 6 r. Let tri and deti denote the trace and determinant on
Mi. For 16 i 6 r, set

M?
i = fX 2Mi�1 j tri�1(XY ) = 0 8Y 2Mig:

LEMMA 6.2. Let1 6 i 6 r. Then'(M?
i ) =M?

i .
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Proof. Note that it follows Lemma 3.4(ii) that tri�1('(Y )) = �(tri�1(Y )) for
Y 2Mi�1.

The equality

tri�1('(X)Y ) = �(tri�1('(Y )X))

and the fact that'(Mi) =Mi (Corollary 3.5(ii)) yield the desired result. 2

COROLLARY 6.3.Let1 6 i 6 r. Then'(Bj(i� 1) \M?
i ) = Bj(i� 1) \M?

i .

LEMMA 6.4. Let 1 6 i 6 r. Assume thatmi = `i + 1. That is, a Heisenberg
construction is needed for�i. Letx 2 E�KiP`i(i� 1) be such that'(x) = x and
y�1xy 2 E�KiPmi(i � 1) for somey 2 E�KiP`i(i � 1). Then!i(y�1xy) =
�i(NE=Ei(�(x))).

Proof. Writey�1xy = u(1+W ),u 2 E�Ki,W 2 Bmi(i�1). Because ([H2])

Bj(i� 1) = (Mi \ Bj(i� 1))� (M?
i \ Bj(i� 1)); j 2 Z;

we may writeW =W1+W2, whereW1 2Mi\Bmi(i�1),W2 2M?
i \Bmi(i�1).

As M?
i is invariant under multiplication by elements ofMi, and(1 +W1)

�1 2
Pmi(i), it follows that(1+W1)

�1W2 2 M?
i \ Bmi(i� 1). After replacingu by

u(1+W1) and 1+W by 1+(1+W1)
�1W2, we assume without loss of generality

thatW 2M?
i . Thus!i(y�1xy) = �i � deti(u).

Next we observe that!i(y�1xy) = !i('(y
�1xy)) and use this to show that

�i(deti(u)) = �1. AsE�KiPmi (i� 1) is a'-invariant set, we have

'(y�1xy) = '(y)x'(y)�1 2 E�KiPmi(i� 1):

The character!i is constant on the set of conjugates ofxwhich lie inE�KiPmi(i�
1). Therefore!i(y�1xy) = !i('(y)x'(u)

�1).
Observe that

'(y�1xy) = '(u(1+W )) = '(u)(1+ '(u)�1'(W )'(u)):

From'(u) 2 E�Ki � Mi;W 2 Bmi(i � 1) \M?
i and Corollary 6.3, it follows

that '(u)�1'(W )'(u) 2 Bmi(i � 1) \ M?
i . Thus, using Lemma 3.4 and the

properties of�i (Lemma 2.5), we get

!i('(y
�1xy)) = �i � deti('(u)) = �i � �(deti(u)) = �i(deti(u))

�1:

Equality of!i aty�1xy and'(y)x'(y)�1 yields�i(deti(u)) = �i(deti(u))�1.
We want to show that�i(deti(u)) must equal�i(NE=Ei(�(x))). Using Lem-

ma 3.6, writex = vz, v 2 E�Ki such that'(v) = v, and z 2 P`i(i � 1).
Now y�1xy = (y�1vy)(y�1zy) 2 v0P`i(i � 1) for some conjugatev0 of v in
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E�Ki. Observe that'(v) = v implies that deti(v0) = deti(v) 2 Ei \ L. We have
u(1+W ) 2 v0P`i(i� 1). Henceu 2 v0P`i(i). Therefore

deti(u) 2 deti(v)deti(P`i(i)) � deti(v)(1+ pEi):

From deti(v) 2 Ei \ L and the fact that the square of�i j (Ei \ L)� is trivial, it
follows that�i(deti(v)) = �1. We have shown above that�i(deti(u)) = �1. Thus

�i(deti(u)) 2 �i(NE=Ei(�(v)))(�i(1+ pEi) \ f�1g):

As �i is trivial on 1+ p
fEi(�i)

Ei
and(1+ pEi)=(1+ p

fEi(�i)

Ei
) is ap-group, oddness of

p does not allow�i to take the value�1 on 1+ pEi. Therefore�i(deti(u)) =
�i(NE=Ei(�(v))). Observe that�(x) = �(v). Thus !i(y�1xy) = �i(NE=Ei
(�(x))). 2

Set

Si = fN jEi�1 � N;Ei 6� Ng:

Suppose thatx 2 E�Hi�E�H 0
i is such thaty�1xy 2 E�H 0

i for somey 2 E�Hi.
We want to compute the quantityY

fN2Si j y�1xy=2N�H0
ig

sgn(N):

Suppose thatF � N � E. Let �N denote the set of roots of unity inN
of order prime top. We assume that a uniformizer$N 2 N is chosen so that
$

e(N=F )
N 2 $�F , where$ is a uniformizer inF . LetCN be the subgroup ofN�

generated by$N and�N .

LEMMA 6.5. Letx andy be as above. Assume that'(x) = x. Then there exists a
uniquecL(x) 2 CL such thatx 2 cL(x)(Hi\P1). Furthermore, given any subfield
N ofE containingF ,

y�1xy 2 N�H 0
i () cL(x) 2 N�:

Proof. By Lemma 3.6, there existsu 2 L� such thatx 2 u(Hi \P1). By [H2],
p. 438, there exists a uniquecL(x) 2 CL, the ‘standard representative’ ofx, such
thatu 2 cL(x)(1+ pL). Since 1+ pL � Hi \ P1, we have

x 2 cL(x)(1+ pL)(Hi \ P1) = cL(x)(Hi \ P1):

Setz = cL(x)
�1x. LetN be an intermediate extension. Then

y�1xy = cL(x)(cL(x)
�1y�1xy) = cL(x)(cL(x)

�1y�1cL(x)y)(y
�1zy)
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andcL(x)�1y�1cL(x)y, y�1zy 2 Hi \ P1. Together withy�1xy 2 E�H 0
i, this

implies thatcL(x)�1(y�1xy) 2 H 0
i \ P1. Therefore

y�1xy 2 N�H 0
i () cL(x) 2 N�(H 0

i \ P1) \E� = N�(1+ pE):

The standard representative of an elementv of N�(1 + pE) in E� is just the
standard representative inN of anyv0 2N� such thatv2 v0(1+pE). By uniqueness
of standard representative, it follows thatcL(x)2N�(1 + pE) if and only if
cL(x)2CN � N�. 2

By the above lemma, we must determine

sgn(�) def
==

Y
fN2Si j�=2N�g

sgn(N); � 2 CL:

This will be done in the next section.

7. The Heisenberg construction: part two – computing signs

Let the notation be as in the previous section. We continue to assume thatmi =
`i + 1, andfE(�r) > 1 if i = r. In this section we compute sgn(�) for � 2 CL.
In Proposition 7.12, we give a formula for the character�i on'-fixed elements in
E�Hi.

We begin with a brief summary of definitions and results from [Mo2] which
will be used later. We remark that results in [Mo2] are stated for the casei = 1,
that is,Ei�1 = F . To apply them, we must replaceF byEi�1. Recall that

Vi = Hi=H
0
i ' P`i(i� 1)=P`i(i)P`i+1(i� 1)

' B`i(i� 1)=(B`i(i) + B`i+1(i� 1)):

Given a subfieldN of E=Ei�1, letR(N) be the residue class field ofN , let BNj
be the set of matrices inBj which commute withN . Note thatEi�1 � N implies
thatBNj � Bj(i� 1). Set


i(N) = (BN`i + B`i+1(i� 1))=B`i+1(i� 1) ' BN`i =BN`i+1:

The set
i(N) is anR(N)-vector space and aUi = E�=E�
i�1(1 + pE)-module.

For future reference, we note that

dimR(N) 
i(N) = e(E=N)f(E=N)2 = f(E=N)[E :N ]: (7.1)

The setVi(N) is defined to be theUi-complement in
i(N) of theR(N)Ui-moduleX
fM jN�M�Eg


i(M):
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DefineA(N) = dimR(N) (Vi(N))=2. If N � Si, then by [Mo2] (3.6.45),Vi(N)
can be identified with a subspace ofVi. The following result [Mo2] (3.6.43) is
useful for computing dimensions


i(N) = Vi(N)
M M

fM jN�M�E;N 6=Mg
Vi(M): (7.2)

LEMMA 7.3 ([Mo2] Proposition 3.6.55, 3.6.60).LetN 2 Si.
(i) If f(E=N) > 2, thensgn(N) = 1.
(ii) If f(E=N) = 2, thensgn(N) = (�1)A(N).
(iii) If f(E=N) = 1 andf(E=Ei�1) is even, thensgn(N) = 1.
(iv) If f(E=N) = 1 andf(E=Ei�1) is odd, then

(a) If [E :N ] is divisible by two distinct odd primes, or by4 and an odd prime,
thensgn(N) = 1.

(b) If [E :N ] = `r or 2`r for some odd primè, thensgn(N) is the Legendre

symbol
� qE

i�1
`

�
.

(c) If [E :N ] = 2m, thenm > 2 and

sgn(N) =

8><>:
1 if m > 2;

1 if m = 2 and qEi�1 � 1 mod 4;

�1 if m = 2 and qEi�1 � �1 mod 4:

REMARK. In general, sgn(N) depends oni. Therefore, so does sgn(�), � 2 CL.

Recall thatE must be unramified overL by Lemma 5.1. Let� be the nontrivial
element of Gal(E=L). The notationLun will be used to denote the unramified
extension ofF of degreef(E=F )=2. Choose" 2 �Lun such that" is not a square
in Lun. ThenE = L(

p
"). Let$L be a uniformizer inL.

LEMMA 7.4. LetN 2 Si be such thatf(E=N) = 1. Thensgn(N) = 1.
Proof. If i = 1, thenf(E=Ei�1) = f(E=F ) is even, so by Lemma 7.3(iii),

sgn(N) = 1. Similarly if i > 1 andf(E=Ei�1) is even.
Assume thati > 1 andf(E=Ei�1) is odd. Thenf(E=(Ei�1 \ L)) = 2f(L=

(Ei�1\L)) = f(E=Ei�1)f(Ei�1=(Ei�1\L)) implies thatEi�1 is unramified over
Ei�1 \ L. ThusqEi�1 = (qEi�1\L)

2 andqEi�1 � 1 mod 4. Apply Lemma 7.3(iv)
to complete the proof. 2

LEMMA 7.5. Assume thate(E=F ) is even andF � N � E. LetL0 = Lun($L
p
").

(i) If [E :N ] = f(E=N) = 2 and�(N) = N , thenN 2 fL;L0g.
(ii) If �(N) = N andN 6� L, thenN � L0 if and only ife(E=N) is odd andN

is ramified overN \ L.

Proof. LetN be as in (i). If� jN � 1 then, sinceL = E� , N � L. Because
[E :L] = [E :N ] = 2, we must haveN = L. Suppose that� jN 6� 1. Then
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N� = N \ L and [N :N \ L] = 2. Becausef(E=N) = 2, we haveLun � N .
ButLun � L. ThusLun � N \ L. Fromf(E=F ) = 2f(N=(N \ L))f(L=F ), it
follows thatN is a ramified quadratic extension ofN \ L.

Note thatLun($2
L) is a totally ramified extension ofLun of degree e(E=F )=2 =

e(L=Lun)=2. Since($L
p
")2 = $2

L" is a uniformizer inLun($2
L),L

0 = Lun($Lp
") is a ramified quadratic extension ofLun($2

L) which is not contained inL and
is fixed by�. Note that[E :L0] = f(E=L0) = 2.

BecauseN \L is a totally ramified extension ofLun of degree e(L=Lun)=2, we
must haveN \L = Lun($

2
L). As there are only two ramified quadratic extensions

of Lun($2
L), that is,L andL0, the condition� jN 6� 1 forcesN = L0.

(ii) Assume thatN 6� L butN � L0. By Lemma 5.4, sinceL0 is ramified over
L0 \N ,N is ramified overN \ L and e(L0=N) = e(E=N) is odd.

Now assume thatN is ramified overN \ L and e(E=N) is odd. Observe that
f(E=N) = f(E=(N \ L)) = 2f(L=(N \ L)) guarantees thatf(E=N) is even.
LetN 0 be an unramified extension ofN of degreef(E=N)=2. From�(N) = N
and uniqueness of unramified extensions, it follows that�(N 0) = N 0. Note that
e(E=N) = e(E=N 0). As a consequence off(E=N 0) = 2, we haveLun � N 0 \ L
and thereforef(E=(N \ L0)) = 2 = f(E=N 0). ThusN 0 is a ramified quadratic
extension ofN 0 \ L. BecauseN � N 0 andN 0 satisfies the hypotheses, there
is no loss of generality in replacingN by N 0. Therefore we may assume that
f(E=N) = 2, soLun � N \ L. Note that e(L=(N \ L)) = 2 e(E=N). Set
m = e(E=N). Both Lun($2m

L ) andN \ L are totally ramified extensions of
Lun of degree e(L=Lun)=(2m) contained inL. ThereforeN \ L = Lun($

2m
L ).

The fieldLun($m
L ) = (N \ L)($m

L ) is a ramified quadratic extension ofN \ L
contained inL. The other ramified quadratic extension ofN \L isLun($m

L

p
") =

(N \ L)($m
L

p
"). ThusN = Lun($

m
L

p
"). As m = e(E=N) is odd, we have

($L
p
")m = ($m

L

p
")"(m�1)=2, which implies that$m

L

p
" 2 Lun($L

p
") =

L0. 2

PROPOSITION 7.6.Assume thatN 2 Si andf(E=N) = 2.

(i) If [E :N ] = 2, thensgn(N) = �1.
(ii) If [E :N ] > 2 and�(N) = N , thensgn(N) = 1.

Proof. By definition,
i(E) = Vi(E) ' p
`i
Ei
=p`i+1

Ei
. Sincef(E=N) = 2, we

have dimR(N)(Vi(E)) = 2.
Assume that[E :N ] = 2. By (7.1) and (7.2),

dimR(N) (Vi(N)) = dimR(N) (
i(N))� dimR(N) (Vi(E)) = 4� 2 = 2:

ThusA(N) = 1 and therefore by Lemma 7.3(ii), sgn(N) = �1.
Assume thatN is as in (ii). By Lemma 7.3(ii), we must show that dimR(N)

(Vi(N)) � 0 mod 4. We will prove a slightly more general result

Ei�1 � N � E; [E :N ] > 2; f(E=N) = 2; �(N) = N

=) dimR(N) (Vi(N)) � 0 mod 4: (7.7)
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Even thoughN may not belong toSi (N might containEi), Vi(N) is still defined
becauseEi�1 � N . By (7.1), dimR(N) (
i(N)) � 0 mod 4. Therefore, by (7.2), it
suffices to show thatX

fM jN�M�E;N 6=Mg
dimR(N) (Vi(M)) � 0 mod 4:

Suppose thatEi�1 �M � E andfE(E=M) = 1. By Lemma 3.6.58 of [Mo2],

dimR(M) (Vi(M)) = �(e(E=M));

where� denotes the Euler�-function. If in addition,M � N , thenf(E=N) = 2
implies[R(M) :R(N)] = 2, so

dimR(N) (Vi(M)) = 2�(e(E=M)):

If e(E=Ei�1) is even, letN0 denote the unique extension ofEi�1 in E such that
f(E=N0) = 1 and e(E=N0) = 2. In this case,N � N0 is equivalent to e(E=N)
being even. By the above remarks

M � N; f(E=M) = 1; dimR(N) (Vi(M)) � 2 mod 4

=)M 2
( fE;N0g; if e(E=N) is even;

fEg; if e(E=N) is odd:

If M � N and�(M) 6=M , then�(M) � �(N) = N . It is not difficult to see
that dimR(M) (Vi(M)) = dimR(�(M)) (Vi(�(M))). If in addition,f(E=M) = 2,
then dimR(M) (Vi(M)) is even ([Mo2]). AlsoR(M) ' R(�(M)) = R(N). Thus

dimR(N) (Vi(M)� Vi(�(M))) � 0 mod 4;

�(M) 6=M; f(E=M) = 2; M � N:

We may now conclude that what we need to show isX
fM jN�M�E;N 6=M;f(E=M)=2;�(M)=Mg

dimR(N) (Vi(M))

� 2 e(E=N) mod 4: (7.8)

Suppose that e(E=N) = ` is prime. LetM be as in (7.8). If such anM exists,
then[E:M ] = f(E=M) = 2, and as we saw in the proof of (i), dimR(N) (Vi(M)) =
dimR(M) (Vi(M)) = 2.

Supposè = 2. Then we may apply Lemma 7.5(i) to conclude thatM 2
fL; L0 g. If N 6� L, thenM 6= L. However, since e(E=N) = 2, Lemma 7.5(ii)
impliesN 6� L0. Therefore there are noM as in (7.8) when e(E=N) = 2 and
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N 6� L. Hence (7.8) must hold. If e(E=N) = 2 andN � L, then it is easy to see
thatN = Lun($

2
L) � L0. Hence the left side of (7.8) equals

dimR(N) (Vi(L)) + dimR(N) (Vi(L
0)) = 4 = 2 e(E=N):

Assume that̀ is odd. IfN 6� L, thenf(E=N) = 2 implies thatN is ramified
overL\N . Thus e(E=F ) is even and Lemma 7.5 applies. By Lemma 7.5,N � L0
and henceM = L0. The left side of (7.8) equals 2, and 2` = 2 e(E=N) � 2 mod 4,
so (7.8) (hence (7.7)) holds. IfN � L, and e(E=F ) is even, then Lemma 7.5(i)
applies, andM 2 fL; L0g. However e(E=N) odd andN � L imply thatN 6� L0.
ThusM = L, and (7.8) holds. Finally, if e(E=F ) is odd, thenL is the only�-stable
subfield ofE of whichE is a quadratic unramified extension. ThusM = L, and
again (7.8) holds.

We have shown that (7.7) holds for allN � Ei�1 such that e(E=N) is prime,
f(E=N) = 2, and�(N) = N .

Now by induction, we assume that(7:7) holds for allM as in (7.8) such that
1 < e(E=M) < e(E=N). Then the left side of (7.8) is congruent modulo 4 to
twice the quantity

#fM jN �M � E; f(E=M) = [E :M ] = 2; �(M) =Mg ;
where # denotes cardinality. To complete the proof, it suffices to show that this
cardinality has the same parity as e(E=N).

If e(E=F ) is odd, then, as we saw in the case e(E=N) prime,N � L and the
onlyM as above isL.

If e(E=F ) is even and e(E=N) is odd, then it is easy to check thatN belongs to
precisely one ofL andL0. Similarly, if e(E=F ) is even and e(E=N) is even, then
by Lemma 7.5(ii),N belongs toL if and only ifN belongs toL0. 2

LEMMA 7.9.

(i) If E1 is unramified overE1 \ L, thene(E1=F ) must be odd.
(ii) If Ej is unramified overEj \L for somej 6 r� 1, thenf(E=Ej) is odd and

Eh is unramified overEh \ L for j 6 h 6 r.

Proof. (i) Let c01 = cE1(c1) 2 CE1 be the standard representative ofc1. Choose
" 2 �E1\L which is not a square inE1\L. ThenE1 = (E1\L)(

p
") and� jE1 6� 1

imply �(
p
") = �p". Because�(c1) = �c1, and standard representatives are

unique, it follows that�(c01) = �c01. Choose a uniformizer$E1 in E1 which is also
a uniformizer inE1 \ L. Then we have

c01 = $m
E1
�
p
";

for some� 2 �E1\L and some integerm.

Sincec01 2 c1(1 + pE1), it follows thatc01 represents�1 on 1+ p
fE1(�1)�1
E1

and
hence genericity of�1 implies thatc01 generatesE1 overF .
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Suppose that e(E1=F ) is even. ThenfE1=F (�1) � 1 = �m must be prime to
e(E1=F ) (otherwisec01 wouldn’t generateE1 overF ), som must be odd. Because
E1 is unramified overE1\L, we can apply Lemma 7.5 withE,L and$L replaced
byE1, E1 \ L, and$E1, respectively. LetL1 be the unramified extension ofF of
degreef(E1=F )=2. Then as we saw in the proof of Lemma 7.5(ii),L1($

m
E1

p
") is

a subfield of the proper subfieldL1($E1

p
") of E1. But this is impossible because

E1 = F (c01) = F ($m
E1

p
"�) and� 2 �E1\L = �L1 implies thatE1 = L1($

m
E1

p
").

(ii) From f(E=Ej) = f(E=(Ej \ L))=2 = f(L=(Ej \ L)), it follows that if
f(E=Ej)were even, then there would be a quadratic unramified extension ofEj\L
contained inL. By uniqueness of unramified extensions, this is impossible asEj

is a quadratic unramified extension ofEj \ L which is not contained inL. Thus
f(E=Ej) is odd. Suppose thatj < h < r. Thenf(E=(Eh\L)) = 2f(L=(Eh\L))
andf(E=Eh) odd forcesf(Eh=(Eh \ L)) = 2. 2

We are now ready to compute sgn(�) for� 2 CL. If �(N) 6= N , then from�(�) =
�, it follows that� =2 N if and only if� =2 �(N). As sgn(N) = sgn(�(N)),

sgn(�) =
Y

fN2Si j�=2N; �(N)=Ng
sgn(N):

PROPOSITION 7.10.Let� 2 CL. If e(E=F ) is even, defineL0 as in Lemma7.5.

(i) If e(E=F ) is odd, thensgn(�) = 1.
(ii) If e(E=F ) is even andL0 =2 Si, thensgn(�) = 1.
(iii) If e(E=F ) is even andL0 2 Si, thensgn(�) = (�1)�(�).

Proof. By Lemma 7.4 and Proposition 7.6,

sgn(�) = (�1)#fN2Si j f(E=N)=[E:N ]=2; �(N)=N; �=2Ng:

If e(E=F ) is odd, then the only field such thatf(E=N) = 2 = [E :N ] and
�(N) = N isN = L. Since� 2 N , sgn(�) = 1.

If e(E=F ) is even, then by Lemma 7.5(i), there are two possibilities forN ,
namelyL andL0. Note that� 2 L0 if and only if �(�) is even. Since� 2 L, (ii)
and (iii) now follow. 2

COROLLARY 7.11.

(i) Suppose that one of the following holds
(a) e(E=F ) is even,i = 1, andE1 is unramified overE1 \ L,
(b) i = 1,E1 is ramified overE1 \ L, ande(E=E1) is even,
(c) i > 1, e(E=Ei�1) is odd,Ei�1 is ramified overEi�1 \ L, andEi is

unramified overEi \ L.
Thenmi = `i + 1 andsgn(�) = (�1)�(�), � 2 CL.

(ii) If none of the three conditions(a)–(c)holds, butmi = `i+1, thensgn(�) = 1
8� 2 CL.
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Proof. If (a) holds, then by Lemma 7.9(i), e(E1=F ) must be odd. Hence e(E=
E1) is even. If (b) holds, then e(E=E1) is even by assumption. Thus if (a) or (b)
holds, we have

fE(�1 �NE=E1
) = e(E=E1)(fE1(�1)� 1) + 1

is odd. That is,m1 = `1 + 1.
If (c) holds, then it suffices to show thatfEi(�i) is odd, because that implies

fE(�i �NE=Ei) = e(E=Ei)(fEi(�i)� 1) + 1

is odd.
The argument is similar to that in the proof of Lemma 7.9(i). LetLi;un be the

maximal unramified extension ofEi�1\L contained inEi\L. Choose" 2 �Li;un
such that" is not a square inEi\L. ThenEi = (Ei\L)(

p
") and�(

p
") = �p".

Let $i be a prime element inEi \ L. Let c0i = cEi(ci) 2 CEi be the standard
representative ofci. Then�(c0i) = �c0i andEi�1(c

0
i) = Ei. Write c0i = $h

i

p
"�,

whereh = �fEi(�i) + 1 and� 2 �Ei\L = �Li;un . LetL0i = Li;un($i
p
").

Assume thath is odd. Then($i
p
")h = ($h

i

p
")"(h�1)=2 and� 2 Li;un imply

that $h
i

p
" 2 L0i. Also, � 2 Li;un � L0i. Thereforec0i 2 L0i. We can apply

Lemma 7.5 withE, L, F , Lun andL0 replaced byEi, Ei \ L, Ei�1 \ L, Li;un
andL0i, respectively. By Lemma 7.5(i), since e(Ei=(Ei�1 \ L)) = 2 e(E=Ei), it
follows thatf(Ei=L

0
i) = [Ei :L0i] = 2. Also, sinceEi�1 is ramified overEi�1\L

and e(Ei=Ei�1) is odd,Ei�1 � L0. ThusEi = Ei�1(c
0
i) � L0i. Contradiction.

Thereforeh = �fEi(�i) + 1 must be even if (c) holds.
For the remainder of the proof, we may suppose thatmi = `i+1. As we already

know that sgn(�) equals 1 if e(E=F ) is odd (Proposition 7.10(i)), we assume that
e(E=F ) is even.

If i = 1, thenEi�1 = F � L0. ThereforeL0 2 S 01 if and only if E1 6� L0. By
Lemma 7.5(ii),E1 6� L0 if and only ifE1 is unramified overE1 \ L, or e(E=E1)
is even andE1 is ramified overE1 \ L. ThusL0 2 S 01 if and only if one of (a) and
(b) holds.

Suppose thati > 1. By Lemma 7.5(ii),L0 2 S 0i if and only if Ei�1 is ram-
ified overEi�1 \ L, e(E=Ei�1) is odd, andEi is unramified overEi \ L. By
Proposition 7.10(ii) and (iii), sgn(�) = (�1)�(�) if and only if (c) holds. 2

PROPOSITION 7.12.Assume thatmi = `i + 1, andfE(�r) > 1 if i = r. Suppose
thatx 2 (E�Hi)

'. There exists a positive integerdx such that

(i) If i = 1 ande(E=E1) is even, or ifi > 1, e(E=Ei�1) is odd, andf(Ei=(Ei \
L)) = e(Ei�1=(Ei�1 \ L)) = 2, then

�i(x) =

8>><>>:
qdxEi�1

(�1)�(x) �i(NE=Ei(�(x)));

if x is conjugate to an element ofE�H 0
i;

0; otherwise:
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(ii) In all other cases,

�i(x) =

8>><>>:
qdxEi�1

�i(NE=Ei(�(x)));

if x is conjugate to an element ofE�H 0
i;

0; otherwise:

Proof. By Lemma 6.1, ifx is not conjugate to an element ofE�H 0
i, then

�i(x) = 0.
Otherwise, choosey 2 E�Hi such thaty�1xy 2 E�H 0

i. Next, setdx =P
fN j y�1xy2N�H0

ig D(N). By Lemmas 6.1, 6.4 and 6.5 and the definition of
sgn(cL(x)), we have

�i(x) = qdxEi�1
sgn(cL(x)) �i(NE=Ei(�(x))):

Suppose thati = 1. By Lemma 7.9(i), ifE1 is unramified overE1 \ L, then
e(E1=F ) is even. Thus in this case, e(E=F ) is even if and only if e(E=E1) is even.
From this it follows that, ifi = 1, then one of (a) and (b) of Corollary 7.11(i) holds
if and only if e(E=E1) is even.

Therefore the conditions of (i) are precisely the conditions (a)–(c) of Corol-
lary 7.11(i), and the proposition is a consequence of Corollary 7.11 and�(x) =
�(cL(x)). 2

There is a simple way to determine exactly when the type of behaviour in Propo-
sition 7.12(i) can occur for some�i.

LEMMA 7.13. Suppose thatE is unramified overL. If Er�1 is ramified over
Er�1 \ L, assume thatfE(�r) > 1.

(i) If [E:E1] is even, then there exists exactly onei, 1 6 i 6 r, such that one of
the conditions of Proposition7.12(i) holds. Furthermore, for thisi, mi must
equal`i + 1.

(ii) If [E:E1] is odd, then neither of the conditions of Proposition7.12(i)hold for
anyi, 16 i 6 r.

Proof. Suppose that e(E=E1) is even. By Lemma 7.9(ii), ifE1 is unramified
overE1\L, thenEh is unramified overEh\L for 2 6 h 6 r. By Corollary 7.11(i),
m1 = `1 + 1. Then (i) follows by Proposition 7.12(i).

Assume that e(E=E1) is even andE1 is ramified overE1 \ L. By Corol-
lary 7.11(i),m1 = `1 + 1. By Lemmas 5.4 and 7.9(ii), there exists a unique
j, 2 6 j 6 r, such thatEj is unramified overEj \ L andEj�1 is ramified over
Ej�1\L. Furthermore, by Lemma 5.4, e(Ej�1=E1) is odd. This forces e(E=Ej�1)
to be even. Thus the conditions of Proposition 7.12(i) apply only fori = 1.

Assume that e(E=E1) is odd. Then the conditions of Proposition 7.12(i) do
not apply fori = 1. If f(E=E1) is even, then by Lemma 7.9(ii),E1 cannot be
unramified overE1 \ L. Thus there exists a uniquej, 2 6 j 6 r, as above. By
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assumption, e(E=Ej�1) is odd and therefore the conditions of Proposition 7.12(i)
apply fori = j. By Corollary 7.11(i),mj = `j + 1.

Assume that[E :E1] is odd. Then the conditions of Proposition 7.12(i) cannot
apply fori = 1. Fromf(E=E1)f(E1=(E1\L)) = 2f(L=(E1\L)) andf(E=E1)
odd, it follows thatE1 must be unramified overE1 \ L. By Lemma 7.9(ii),Ei is
unramified overEi \ L for 1 6 i 6 r. Thus the conditions of Proposition 7.12(i)
cannot apply fori > 1. 2

8. Deligne–Lusztig characters

Digne and Michel ([DM]) have developed a Deligne–Lusztig theory for complex
characters of non-connected reductive groups over finite fields. Below we state a
particular case of a character formula of theirs which will be applied in the case
fE(�r) = 1 in Sections 9 and 10.

Fix an integerd > 2. Forq a positive integral power of the odd primep, let
G� = GLd(Fq ), whereFq is the finite field of orderq. Suppose� is an automorphism
of G� of order two. SetG = G� o h�i. Given an�-stable maximal torusT � in
G�; T = T �

o h�i is a maximal torus inG (cf. Definition 1.2, [DM]). Fix an
�-stable character�� of T � and an extension�� to T (note:��(�) = �1). LetRG

T (��)
denote the corresponding Deligne–Lusztig (virtual) character ofGdefined by Digne
and Michel (Definition 2.2, [DM]).

The following notation is needed for the character formula forRG
T (��). If T 0 is

the group ofFq -rational points of a maximal torus of a connected reductive group
over Fq with Fq -rational pointsG0, let T 0� andG0� be theFq -rational points of
their identity components. Denote the Green function attached toT 0� andG0� by
QG0�
T 0� : UG0� ! C , whereUG0� is the unipotent subset ofG0�. Given a semisimple

elements 2 G0, let G0s be the centralizer ofs in G0. For x 2 G0; xT 0 denotes
xT 0x�1. If � is a character ofT 0, let x� be the character ofxT 0 defined by
x�(s) = �(x�1sx), for s2 xT 0.

PROPOSITION 8.1 ([DM], Proposition 2.6(i)).Let g 2 G have Jordan decompo-
sitiong = su. Then

RG
T (��)(g) = jT j�1j(Gs)�j�1

X
fx2Gjs2xT g

Q
(Gs)�
((xT )s)�(u)

x��(s):

REMARK. It follows immediately from a comparison of the Deligne–Lusztig
character formula for connected groups ([DL], Theorem 4.2) and the restriction of
the above formula toG� that

RG
T (��)

���G� = RG�
T �(��);

whereRG�
T �(��) is the Deligne–Lusztig (virtual) character ofG� corresponding to

the restriction of�� to T �.
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9. The casefE(�r) =1: part one

In this section and the next, we consider the casefE(�r) = 1. After stating the
definition of �r, we discuss properties of the map induced by' on P (r � 1)=
P1(r � 1). Then we prove some results concerning certain types of elements in
general linear groups over finite fields. At the end of the section, these results are
applied to compute the signs of certain sums of values of the character�r of �r.

LetE andEr�1 denote the residue class fields ofE andEr�1. By the definition
of H andP

(H \ P )=(H \ P1) �= P (r � 1)=P1(r � 1) �= GL[E:Er�1](Er�1):

Let H = GL[E:Er�1](Er�1). SincefE(�r) = 1, the character�r determines a

character��r of the elliptic maximal torusE
�

. The character��r corresponds (via
Deligne–Lusztig induction) to an irreducible cuspidal representation�r of H. The
restriction of�r toH \ P is the unique representation ofH \ P which is trivial
on H \ P1 and induces�r on H. To define�r on all of H, set�r($r�1) =
�r($r�1)�r(1), where$r�1 is a prime element inEr�1.

Our definition of the matrixs (see Section 3) depended on a choice of basis of
L overF . WhenfE(�r) = 1, it is convenient to choose a basis that makes it easy
to determine the map induced by' onP (r � 1)=P1(r � 1).

SupposeF1 � F2 � F3 is a tower of fields, and let� = faig be a basis of
F2 overF1 and� = fbjg a basis ofF3 overF2. Write �� = fa�i g, �� = fb�i g
for the corresponding dual bases. Then�� = fb1a1; b1a2; : : : ; b2a1; b2a2; : : :g is
a basis forF3 over F1, and the corresponding dual basis is easily seen to be
(��)� = fb�1a�1; b�1a�2; : : : ; b�2a�1; b�2a�2; : : :g. Lets� be the transition matrix from the
basis� to the dual basis��, and similarly fors� ands��.

LEMMA 9.1. (i) The entries ofs� are given by(s�)ij = trF2=F1
(aiaj). In particu-

lar, s� is a symmetric matrix.
(ii) The transition matrices defined above are related as follows

s�� =

0BBBBBB@

s� 0

:

:

:

0 s�

1CCCCCCA s�;

where there are[F3 :F2] diagonal blocks in the matrix on the left ands� is inter-
preted as a matrix overF using the basis�.

Proof. (i) (s�)ij = hs�(ai); (a�j )�i = hs�(ai); aji = trF2=F1
(aiaj).

(ii) Using (i), we see that the(ij); (k`)-entry of the transition matrixs�� is
given by
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trF3=F1
(biajbka`)

= trF2=F1
(aja`trF3=F2

(bibk)) = trF2=F1
(aja`(s�)ik)

= trF2=F1

 
aj
X
r

(s�)r`a
�
r(s�)ik

!
=
X
r

(s�)`r[(s�)ik]
�
rj :

(Here we wrote[(s�)ik]�rj for therjth entry of the matrix with respect to the basis
� of the element(s�)ik 2 F2 and also used the symmetry ofs�).

This last formula is precisely the required entry in the matrix product. 2

Recall thatfE(�r) = 1 implies thatE is unramified overL (Lemma 5.1) and
overEr�1. Fix " 2 �L such that" is not a square inL. As before,� denotes the
non-trivial element of Gal(E=L). Let $0 be a prime element inEr�1 \ L. Let
f0 = f

�
Er�1=(Er�1 \ L)

�
, e0 = e(Er�1=(Er�1 \ L)).

If e0 = 1, set$E = $L = $0. If e0 = 2, then$E =
p
$0 is a prime element

in E which generatesEr�1 overEr�1 \ L and such that�($E) = �$E. The
element$L =

p
"$0 =

p
"$E is a prime element inL. Note that in the above

definition of�r we can take$r�1 = $E .
Let d0 = f

�
L=(Er�1 \ L)

�
. Let M � L be the unramified extension of

Er�1 \ L of degreed0. We will use bars to denote residue class fields. Choose a
basis� = f�1; : : : ; �d0g of M overEr�1 \ L such that�j 2 O�

M and the images
of �1; : : : �d0 in M form a basis ofM overEr�1 \ L. If L = M , set� = �.
Otherwise,e0 = e(Er�1=(Er�1 \ L)) = e(L=(Er�1 \ L)) = [L:M ] = 2, and

�
def
==f�1; : : : �d0;$L�1; : : : $L�d0g is a basis ofL overEr�1 \ L. If r > 1, let
� = fa1; : : : ; akg be a basis ofEr�1 \ L overF .

Applying Lemma 9.1 in the case wherer > 1, withF3 = L, F2 = Er�1 \ L,
F1 = F , and bases as defined above, we find that the corresponding transition
matrices are related as follows

s = s�� =

0BBBB@
s� 0

:
:
:

0 s�

1CCCCA s�;

where there ared = [E :Er�1] diagonal blocks in the matrix on the left ands� is
interpreted as a matrix overF using the basis�. If r = 1, thenEr�1 \L = F and
we lets = s�.

Becauses� has been chosen so thats�1
�

txs� = x, wherex is an element
of Er�1 \ L viewed as a matrix overF via the basis�, it follows that if X 2
gld(Er�1 \ L), then

s�1 tXs = s�1
�

TXs�;
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whereTX refers to the transpose overEr�1 \ L. Whenr = 1, the two transposes
tX andTX are the same, ands = s�.

Whenr > 1, we compare this situation with that of Lemma 3.4(ii), withN 0 in
that lemma replaced byEr�1 andN 0

0 replaced byEr�1\L. The above expression
says that the matrixS given in Lemma 3.4 can be taken to bes�.

Continuing the comparison, we see that� in Lemma 3.4 corresponds to
p
"

while �N corresponds to
p
$0 if e0 = 2 and to

p
" otherwise. Since$L =

p
$0",

we see that! in the proof of Lemma 3.4(ii) corresponds to$L"
�1 if e0 = 2 and

to 1 otherwise. Recall thatf0 = f(Er�1=(Er�1 \ L)).
LEMMA 9.2. (i) If f0 = 1, then the map induced by' on GLd(Er�1) is '(x) =
w�1 txw, withw a skew-symmetric matrix.

(ii) If f0 = 2, then the map induced by' onGLd(Er�1) is'(x) = h�1 t�(x)h,
with h a matrix that is hermitian relative toEr�1=(Er�1 \ L).

Proof. (i) The case wherer = 1 is immediate from the original definition of'.
Now supposer > 1 ande0 = 2. If we write ["] for the matrix of" with respect to
the basis�, then the matrix of" with respect to the given basis ofL overEr�1\L
is
�
["]
0

0
["]

�
, while the matrix of$L is

�
0
I

["]$0
0

�
; (here I means thed0�d0 identity

matrix).
Accordingly, the matrix of"$�1

L is
�

0
$�1

0 I
["]
0

�
. Using the lemma above and also

the analogous result obtained by applying Lemma 9.1 withEr�1 \ L � M � L
asF1 � F2 � F3, we find that, in the notation of Lemma 3.4

S0 = S!�1 = s�"$
�1
L =

 
s� 0

0 s�

!
sf1;$Lg"$

�1
L

=

 
s� 0

0 s�

! 
2I 0

0 2[$2
L]

!�
0 ["]

$�1
0 I 0

�

=

 
s� 0

0 s�

! 
0 2["]

2["] 0

!
:

Without loss of generality, we can remove the constant 2 and let

S0 =

 
0 s�["]

s�["] 0

!
:

So forX 2 gld(Er�1), '(X) = S�1
0

T�(X)S0, where T(�) means the transpose
overEr�1 and� = �r�1 is the non-trivial conjugation ofEr�1 overEr�1 \ L,
applied to the entries of a matrix. Note thatS0 is symmetric.

To realizeMr�1 in a form in which it will be easy to reduce modulo the prime
idealpEr�1, we consider conjugating elements ofMr�1 by the diagonal matrix

D =

 
$E 0

0 I

!
2 gl2d(Er�1);
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here I is thed0 � d0 identity matrix. Note that

�(D�1)S0 =

 �$�1
E 0

0 I

! 
0 s�["]

s�["] 0

!
=

 
0 �$�1

E s�["]

s�["] 0

!

=

 
0 �s�["]

s�["] 0

! 
I 0

0 $�1
E

!

=

 
0 �s�["]

s�["] 0

!
D

 
$�1
E 0

0 $�1
E

!
:

If X 2 gld(Er�1), then

'(D�1XD) = S�1
0

T�(D�1XD)S0 = S�1
0 �(D) T�(X)�(D�1)S0

= D�1

"�
0 �s�["]

s�["] 0

��1
T�(X)

�
0 �s�["]

s�["] 0

�#
D:

This shows that conjugation byD takes' into the map given by composing
the transpose overEr�1, the automorphism� = �r�1, and conjugation by the
skew-symmetric matrix

�
0

s� ["]
�s�["]

0

�
. Because of the way we chose the basis

�, we find that not only doess� have integer entries, but it is an element of

GLd0(OEr�1\L) � GLd0(OEr�1). So
�

0
s�["]

�s�["]
0

�
is an element of GLd(OEr�1)

(sinced = 2d0). We can also think of its reduction modulo 1+ gld(pEr�1) as
a skew-symmetric element of the finite group GLd(Er�1). Since� is trivial on
OEr�1=pEr�1, this finishes the proof of (i).

(ii) Supposef0 = 2; thene0 = 1, M = L and� = �. As remarked above,
S = s�, ! = 1, so

S0 = S!�1 = s� = s�:

Note thatS0 2 gld0(Er�1\L) is symmetric, and as above,s� 2 GLd0(OEr�1\L) �
GLd0(OEr�1). In particular,S0 is fixed by�r�1. So its reduction modulopEr�1 is
a symmetric matrix that is fixed by�r�1, and in particular it is hermitian. 2

SetG� = GLd(Fq ), whereq = qEr�1 is the cardinality ofEr�1. ThenT � = E
�

is a maximal torus inG�. Recall that�r is the irreducible cuspidal representation
of G� �= H corresponding via Deligne–Lusztig induction to��r. The notation�r,
which has already been used for the character of�r, will also be used to denote the
character of�r. Then in the notation of Section 8, using Theorems 4.2 and 7.1 of
[DL] to obtain the sign

�r(x) = (�1)d�1RG�
T �(��r)(x); x 2 G�: (9:3)
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Let � be the automorphism ofG� = H given by�(x) = '(x�1). Comparing
character formulas ([DL]) results in

RG�
T �(��r)(�(x)) = RG�

T �(��r � �)(x); x 2 G�:
Also, by properties of�r (Lemma 2.5(ii)),��r is fixed by�. Thus�r = �r � �,

that is,� is equivalent to�r � �. Choosing an operatorA� which intertwines�r
with �r � � and whose square is the identity, we extend�r to a representation of
G = G� o h�i by setting�r(�) = A� .

Since the maximal torusT � is �-stable and��r is fixex by �, ��r extends (in
two ways) to a character (also denoted��r) of the (non-abelian) maximal torus
T = T �

o h�i of G. Let RG
T (��r) be the Deligne–Lusztig virtual character ofG

defined by Digne and Michel ([DM], Definition 2.2). From the character formula of
Digne and Michel (Proposition 8.1), remarks following, and (9.3),(�1)d�1RG

T (��r)
is a virtual character ofG which coincides with�r onG�. Thus, replacing��r(�) by
���r(�) if necessary, we may assume that(�1)d�1RG

T (��r) is the character of the
extension of�r to G given by�r(�) = A�.

LetCE , resp.CL, be the set of elements inH whose semisimple part is conjugate

to an element ofE
�

, resp.L
�

. The images of" and
p
" in L andE will also be

denoted by" and
p
". Similarly,� will be used to denote the non-trivial element of

Gal(E=L).

LEMMA 9.4. Let g 2 H
'
. Then the semisimple part of g belongs toH

'
. If

 2 CE, thenfx�1x :x 2 Hg \E� � L
�

. In particular, g 2 CL.
Proof. If g = u is the multiplicative Jordan decomposition ofg, theng =

+(u�1) is the additive Jordan decomposition, i.e.,(u�1) is nilpotent, because
 andu commute. The additive Jordan decomposition of'(g) is'(+(u�1)) =
 + (u� 1), so equating semisimple parts, 2 H'

.
First we assume thatf0 = 1. By Lemma 9.2(i), there exists a skew-symmetric

w 2 H such that'(g) = w�1tgw; g 2 H. Choosex 2 H such that1 =

x�1x 2 E
�

. Let y = '(x)x. If � 2 Er�1(1), thenz�x�1 2 Er�1() implies
that'(x�x�1) = x�x�1. That is,'(�) = y�y�1. The action of' onE

�
is given

by �, so

y�y�1 = �(�); � 2 Er�1(1): (9.5)

Assume that1 62 L. Then1 � �(1) = a
p
" 2 Er�1(1) for somea 2 L

�
.

Note that'(y) = '('(x)) = y. Thereforeyw�1 is skew-symmetric. By (9.5)
with � = a

p
", ya

p
" 2 H

'
, and henceya

p
"w�1 is also skew-symmetric. As

the determinant of a skew-symmetric matrix inH is a square inE
�
r�1, it fol-

lows that det(a
p
") 2 (E

�
r�1)

2. Observe that det(a
p
") = NL=Er�1

(�a2") =

(�1)d=2NL=Er�1
(a)2NL=er�1

("). As " 62 (L
�
)2, we haveNL=Er�1

(") 62 (E
�
r�1)

2.

Therefore(�1)d=2 62 (E
�
r�1)

2. In particular,d=2 is odd.
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As d=2 is odd, there existsb 2 Er�1 such thatb
p
" generates a quadratic

extension ofEr�1 (which is not contained inL). It follows from (9.5) that

yw�1t(b
p
")wy�1 = b

p
": (9.6)

There exists a matrixz 2 GLd(Er�1(b
p
")) such that

zb
p
"z�1 =

 
b
p
"I)d=2 0

0 �bp"Id=2

!
;

where Id=2 denotes the(d=2) � (d=2) identity matrix. Sincewy�1 is skew-
symmetric, the matrixA = zwy�1tz 2 GLd(Er�1(b

p
")) is skew-symmetric.

However, it is a consequence of (9.6), and the definitions ofz andA thatA com-
mutes with the (symmetric) matrixzb

p
"z�1. That isA 2 GLd=2(Er�1(b

p
")) �

GLd=2(Er�1(b
p
")). This is a contradiction, asd=2 odd implies such matrices

cannot be skew-symmetric. Thus1 2 L.
Now assume thatf0 = 2. In this case,Er�1 = (Er�1 \ L)(

p
"), and� jEr�1

generates the corresponding Galois group. Suppose thatx 2 H and1 = x�1x 2
E. By Lemma 3.4(ii)

det(1) = det() = det('()) = det(�()) = �(det());

which implies that det(1) = NE=Er�1
(1) 2 Er�1\L. If 1 62 L, thenE = L(1)

implies thatNE=Er�1
(E

�
) � Er�1 \ L, which is impossible. Thus1 2 L. 2

LEMMA 9.7. Supposee0 = 2. Recall thatq = jEr�1j. Then

(i) (G�)� is thed� d symplectic groupSpd(Fq ).
(ii) (G

p
"�)� is thed� d special orthogonal group ofFq -rank equal to(d=2)� 1.

(iii) If g 2 H�' \ (CEnCL), theng = x
p
"'(x), for somex 2 H.

(iv) If g 2 H
�'

is not of the formg = x
p
"'(x), for somex 2 H, then the

G-conjugacy class ofg� does not intersectT .

Proof. Sincef0 = 1, part (i) follows from Lemma 9.2(i).
For (ii), note thatg 2 (G

p
"�)� if and only if g(

p
"w�1)tg =

p
"w�1, where

w is the skew-symmetric matrix given by Lemma 9.2(i). Observe that
p
" 2 H�'

implies that
p
"w�1 is symmetric. Fix a non-square� 2 F

�
q . By [C], a symmetric

matrix determines the special orthogonal group ofFq -rank (d=2) � 1 if and only
if its determinant belongs to(�1)d=2�(F�q )2. It is simple matter to check that the

fact that" is a non-square inL
�

implies that det(
p
") 2 (�1)d=2�(F�q )2. Sincew

is skew-symmetric, det(w) 2 (F�q )2.
By Lemma 9.4,g2 2 CL. Therefore, asg 2 CEnCL, the semisimple part

of g is conjugate to an element of
p
"(L

�
)2. This implies that det(gw�1) 2
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det(
p
"w�1)(F�q )2. Note that by Lemma 9.2(i),g 2 H

�'
implies thatgw�1 is

symmetric. Therefore,gw�1 and
p
"w�1 belong to the same equivalence class of

symmetric matrices. Part (iii) now follows from Lemma 9.2(i).
SinceT is �-stable, theG-conjugacy class ofg� intersectsT if and only if

theH-conjugacy class ofg� intersectsT . Suppose thatxg�x�1 2 T , for some
x 2 H. Thenxg�x�1��1 = xg'(x) 2 T � = E

�
. But xg'(x) 2 H

�'
, so

xg'(x) 2 p"L�. Since det(x'(x)) = det(x)2 2 (F�q )2, it follows that det(g) 2
det(

p
")(F�q )2. Arguing as above, this implies thatg = x

p
"'(x), for somex 2 H,

a contradiction. 2

LEMMA 9.8. Letg 2 H. ThenX
x2H

�r(xg'(x)) = jH j�r(g�)�r(�)�r(1)�1:

Proof. Note that for x; g 2 H;xg'(x) = xg�x�1��1. The operatorP
x2H �r(xg�x

�1) commutes with�r, so by Schur’s Lemma is a scalar multi-
ple� of the identity operator. Evaluating the trace gives� = jHj�r(g�)�r(1)�1.
Thus

X
x2H

�r(xg'(x)) = trace

0@X
x2H

�r(xg�x
�1��1)

1A

= trace

0@X
x2H

�r(xg�x
�1)�r(�

�1)

1A
= trace(jH j�r(g�)�r(1)�1�r(�

�1))

= jHj�r(g�)�r(1)�1�r(�
�1): 2

PROPOSITION 9.9.

(i)
P

g2H' �r(g) > 0.
(ii) Suppose thate0 = 2. Then

�r(
p
")

X
g2H�'\(C

E
nC

L
)

�r(g) < 0 and
X

g2H�'\C
L

�r(g) = 0:

Proof. Takeg 2 H'
. If f0 = 1, by Lemma 9.2(i) there exists a skew-symmetric

w 2 H such thatg = '(g) = w�1 tgw. Thusgw�1 is skew-symmetric. It follows
that there existsx 2 H such thatgw�1 = xw�1 tx. That isg = x'(x). If f0 = 2, a
similar argument shows thatg = x'(x) for somex 2 H, using hermitian matrices
rather than skew-symmetric matrices (see Lemma 9.2(ii)), and the fact that there is
one equivalence class of hermitian matrices inH ([C]). The sum in (i) is equal to
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jH�jPx2H �r(x'(x)), which by Lemma 9.8 is a positive multiple of�r(�)2. By
the remarks preceding Lemma 9.4, and Proposition 8.1

�r(�) = (�1)d�1RG
T (��r)(�)

= jT j�1jH�j�12
X

fx2Hjx'(x)2T �g
Q

(G�)�
((xT )�)�(1)

��r(x
�1'(x�1)�)

= 2jT j�1jH�j�1

0B@ X
fx2Hjx'(x)2T �g

Q
(G�)�
((xT )�)�(1)

1CA ��r(�): (9.10)

Here we have used the fact that forx 2 H; � 2 xT if and only if �2 x�T if and
only if x'(x) 2 T �. For suchx, x��r(�) = ��r(x

�1'(x�1)�), which equals��r(�)
since(T �)' = L

�
and ��r jL� � 1. The tori appearing in (9.10) are elliptic in

the semisimple group(G�)�, hence haveFq -rank zero. Therefore all of the above
Green functions take real values at the identity with sign determined by theFq -rank
of (G�)� (Theorem 7.1 of [DL]). This, together with��r(�) = �1, implies that
�r(�)

2 > 0. Hence (i).
Supposee0 = 2 andg 2 H�'

. Arguing as in the proof of Lemma 9.7(iii),gw�1

is symmetric, wherew is the skew-symmetric matrix given in Lemma 9.2(i). By
Lemma 9.7(iii), if g 2 CEnCL, theng = x

p
"'(x), for somex 2 H. So, using

Lemma 9.8

��r(
p
")

X
g2H�'\(C

E
nC

L
)

�r(g)

= ��r(
p
") j (G

p
"�)�j�1

X
x2H

�r(x
p
"'(x))

= ��r(
p
") j (G

p
"�)�j�1jHj�r(

p
"�)�r(�)�r(1)�1: (9.11)

By Lemma 9.7(i), theFq -rank of (G�)� is d=2. The tori ((xT )�)� are elliptic
and haveFq -rank zero. Therefore, by Theorem 7.1 of [DL], the sign of the
value at the identity of each Green function occurring in (9.10) is(�1)d=2.
So (�1)d=2��r(�)�r(�) > 0. Applying Proposition 8.1 to express�r(

p
"�) in

terms of ��r(
p
"�) and Green functions for elliptic tori in(G

p
"�)�, and then

using Lemma 9.7(ii) to determine the signs of the Green functions, we obtain
(�1)(d=2)�1��r(

p
"�)�r(

p
"�) > 0. We can now conclude that��r(

p
")�r(

p
"�)�r(�)

is a positive multiple of

��r(
p
")(�1)(d=2)�1��r(

p
"�)(�1)d=2��r(�) = �1:

The first part of (ii) now follows from (9.11).
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It remains to deal with the caseH
�'\CL 6= ;. Fix a symmetric matrixy which

is not in the same equivalence class as
p
"w�1. By Lemma 9.7(iii), ifg 2 H�'\CL,

theng = xy'(x), for somex 2 H. Applying Lemma 9.8X
g2H�'\C

L

�r(g) = j(Gy�)�j�1jH j�r(y�)�r(�)�r(1)�1:

By Lemma 9.7(iv), theG-conjugacy class ofy� does not intersectT . Since
y 2 H

�'
; (y�)2 = y'(y�1) = �1, which implies thaty� is semisimple. By

Proposition 8.1,�r(y�) = 0. 2

10. The casefE(�r) =1: part two

In this section, we consider the casefE(�r) = 1 and dim�i = 1 for 16 i 6 r�1.
We show that certain conditions on� imply that I(F) > 0 (Theorem 10.7). In
order to determineI(F) in this case, it suffices to consider the values of�� on
($j

E(H \P ))', j = 0, 1 (Lemma 10.1). Because dim�i = 1 for 16 i 6 r�1,�i
is easily expressed in terms of�i (Lemma 10.2). Lemma 10.3 and Proposition 10.5
combine results from Section 9 describing the map onH induced by' with
Lemma 10.2 to obtain relations betweenI(F) and sums of�r over certain subsets
ofH. The signs of these sums were determined in Proposition 9.9, as a consequence
of the expression of�r in terms of Green functions of finite reductive groups, and
of the results of Section 8.

If C � G, let 1C be the characteristic function ofC. SetF0 = ��1H\P and
F1 = ��1$E(H\P ). Recall thate0 = e(Er�1=(Er�1 \ L)) andf0 = f(Er�1=
(Er�1 \ L)).
LEMMA 10.1. Suppose thatfE(�r) = 1 anddim�i = 1 for 1 6 i 6 r � 1. Then
I(F) = e(I(F0) + I(F1)).

Proof. Let x 2 H \ P . Recall that'($E) = �($E) = (�1)f0(e0�1)$E . It
follows that

$j
Ex'($

j
E) = $j

E�($
j
E)($

�j
E x$j

E) 2 $2j
E (H \ P ):

Thus the mapx 7! $j
Ex'($

j
E) is a measure-preserving bijection from(H \ P )'

to ($2j
E (H \ P ))'. Also

�r($
j
Ex'($

j
E)) = �r($E�($E))

j �r($
�j
E x$j

E):

Since$E 2 Er�1, conjugation by$E has no effect on GL[E:Er�1](Er�1), so the

image of$�j
E x$j

E in H is the same as the image ofx in H. By Lemma 2.5(ii),
�r(�($E)) = �r($E)

�1. We conclude that

�r($
j
Ex'($

j
E)) = �r(x); x 2 H \ P:
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For 16 i 6 r � 1, since�i is one dimensional,

�i($
j
Ex'($

j
E)) = �i($

j
E�($E)

jx)

= �i(NE=Ei($E�($E)
j))�i(x) = �i(x);

the last equality following from�i �NE=Ei � � = (�i �NE=Ei)
�1.

Consequently,F($j
Ex'($E)

j) = F(x) for x 2 H \ P and, given the above
remarks regarding measures,

I(��1$2j
E (H\P )

) = I(F0); 0 6 j 6 e� 1:

By a similar argument

I(��1$2j+1
E (H\P )

) = I(F1); 06 j 6 e� 1:

The lemma now follows fromF = ��1S and1S =
P2e�1

j=0 1
$j
E
(H\P )

, with S as

in Section 4. 2

Let SL, resp.SE�L, be the set ofx 2 H \ P whose image in(H \ P )=(H \ P1)
belongs toCL, resp.CE nCL. Recall that, if dim�i = 1, 16 i 6 r�1, thenmi = `i
and�i = !i, where!i is the character ofH defined in Section 5.

LEMMA 10.2. Suppose thatfE(�r) = 1. Fix 1 6 i 6 r � 1 and assume that
dim�i = 1.

(i) If x 2 (H \ P )' \ SL, then�i(x) = 1.
(ii) If x 2 ($E(H \ P ))' is such that$�1

E x 2 SL, then�i(x) = �i(NE=Ei
($E)).

(iii) If x 2 ($E(H \ P ))' is such that$�1
E x 2 SE�L, then�i(x) = �i(NE=Ei

(
p
"$E)).

Proof. As remarked above, dim�i = 1 implies that�i(x) = !i(x) for x 2 H.
Let x 2 (H \ P )' [ ($E(H \ P ))'. As shown in the proof of Lemma 5.2, there

existsy 2 ($
�(x)
E Ki)

' such thatx 2 yLi and!i(x) = !i(y). Therefore we may

assume thatx 2 ($
�(x)
E Ki)

'.

Suppose that$��(x)
E x 2 SL. Let � 2 O�

E be such that the semisimple part of

the image of$��(x)
E x in H is conjugate to the image ofNE=L(�) in L

�
. Then

deti($
��(x)
E x) 2 deti(NE=L(�))deti(P1(i)). Setg = $

��(x)
E NE=L(�

�1)x. Recall
that'($E) = (�1)f0(e0�1)$E . Thus, since'(x) = x,

'(g) = (�1)f0(e0�1)$
�(x)
E NE=L(�

�1) g NE=L(�)$
��(x)
E ;

which implies that

�(deti(g)) = deti '(g) = (�1)f0(e0�1)[E:Er�1] deti(g) = deti(g):
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That is, deti(g) 2 Ei \ L. Together with deti(g) 2 deti(P1(i)) 2 1 + pEi and
�i j (1 + pEi\L) � 1, this implies that�i(deti(g)) = 1. Therefore, using�i �
NE=(Ei\L) � 1 (Lemma 2.5(ii)),

�i(deti(x)) = �i(deti($
�(x)
E NE=L(�)))

= �i(NE=Ei($
�(x)
E )NE=(Ei\L)(�)) = �i(NE=Ei($

�(x)
E )):

By definition of!i, sincex 2 E�Ki, !i(x) = �i(deti(x)). Parts (i) and (ii) now
follow.

Let x be as in (iii). Then$�1
E x, the image of$�1

E x in H, is in H
c'

, where

c = (�1)f0(e0�1). If c = 1, then Lemma 9.4 implies that$�1
E x 2 CL. This forces

$�1
E x 2 SL, which is a contradiction. Thereforec = �1 and$�1

E x 2 CEnCL. By

Lemma 9.4,($�1
E x)2 2 H'

implies that($�1
E x)2 2 CL. From this it follows that

the semisimple part of$�1
E x is conjugate to some1 2 E�

such that�(1) = �1.

Thus there exists� 2 O�
E such that the image of

p
"NE=L(�) in E

�
is equal to1.

Now setg =
p
"
�1
$�1
E NE=L(�)

�1x and argue as for parts (i) and (ii). 2

LEMMA 10.3. Assume thatfE(�r) = 1.

(i) Suppose thatx 2 P (r � 1)'. Then there existsg 2 P (r � 1) such that
x = g'(g).

(ii) Suppose thatx 2 ($EP (r�1))'. If e0 = 2 and$�1
E x 2 SE�L, or if e0 = 1,

then there existsg 2 P (r � 1) such thatx = g$L'(g).
(iii) Suppose thate0 = 2 andf(L=(Er�1 \ L)) is even. Fix� 2 P (r � 1) \ SL

such that'($E�) = $E�. If x 2 ($EP (r � 1))' and$�1
E x 2 SL, then

there existsg 2 P (r � 1) such thatx = g$E�'(g).

REMARK. In (iii), the assumptionf(L=(Er�1 \ L)) even is necessary for($E

P (r � 1))' to intersect$ESL nontrivially.

Proof. Let� = 1,$L, and$E� in cases (i), (ii), and (iii), respectively. Suppose
that

There existsg1 2 P (r � 1) such thatg�1
1 x'(g�1

1 ) 2 (�P (r � 1))': (10.4)

Since� 2 (E�P (r � 1))', by Lemma 3.9 applied withj = 1 andi = r � 1,
there existsg2 2 P1(r � 1) such thatg�1

1 x'(g�1
1 ) = g2�'(g2). It follows that

x = g�'(g), for g = g1g2. Thus it suffices to prove (10.4).
Giveny 2 P (r � 1), let y denote the image ofy in H ' P (r � 1)=P1(r � 1).

As in previous sections, the map onH induced by' will also be denoted by'.
Let x 2 P (r� 1)'. If f0 = 1, by Lemma 9.2(i), there exists a skew-symmetric

W 2 H such thatx = '(x) = W�1 txW. ThusxW�1 is skew-symmetric. It
follows that there existsz 2 H such thatxW�1 = zW�1 tz. That is,x = z'(z).
Choosingg1 2 P (r�1) such thatg1 = z, we obtain (10.4). Iff0 = 2, the argument
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is similar, except that it involves hermitian matrices rather than skew-symmetric
matrices (see Lemma 9.2(ii)), and the fact that there is one equivalence class of
hermitian matrices inH ([C]).

Next, letx 2 ($EP (r�1))'. As$E was chosen to be inEr�1, and'($E) =
c$E , c = (�1)f0(e0�1), it follows that$�1

E x 2 P (r � 1)c'.
If e0 = 1, then$E = $L and$�1

L x 2 P (r � 1)', so it follows from (i) that
$�1
L x = g'(g) for someg 2 P (r � 1). Thusx = g$L'(g).

Let e0 = 2. Then, settingy = $�1
E x, we havey 2 H

�'
. By Lemma 9.2(i),

there exists a skew-symmetric matrixW 2 H such thatyW�1 is symmetric. As
[E :Er�1] is even, there are two equivalence classes of symmetric matrices inH,
and they can be distinguished by the coset of(E

�
r�1)

2 in E
�
r�1 in which their

determinants lie ([C]). Note that
p
"W�1 is symmetric.

If y 2 SE�L, then as remarked in the proof of Lemma 10.2, the semisim-
ple part ofy is conjugate to an element in

p
" L

�
. This implies that det(y) 2

det(
p
")(E

�
r�1)

2, from which it follows thaty = z
p
"W�1 tz for somez 2 H.

Choosingg1 2 P (r�1) such thatg1 = z, we obtaing�1
1 y'(g�1

1 ) 2 p"P1(r�1).
That is, g�1

1 x'(g�1
1 ) 2 $E

p
"P1(r � 1) = $LP1(r � 1) and (10.4) holds in

case (ii).
If y 2 SL, then by definition of�, there existsz 2 H such thatyW�1 = z�tz.

The remainder of the argument is as for case (ii), with$L replaced by$E�. 2

As in Section 9, the notation�r is used for the character of�r and also for the
character of�r.

PROPOSITION 10.5.Suppose thatfE(�r) = 1. If f0 = 2, assume thatdim�i = 1
for 1 6 i 6 r � 1.

(i) I(F0) = I(1H\P1) (
P

x2H' �r(x)).

(ii) If e0 = 1, thenI(F1) = �($L)I(F0).

(iii) If e0 = 2 andf(L=(Er�1 \ L)) is odd, then

I(F1) = I(1$L(H\P1)) �($L) �r(
p
")�1

0B@ X
x2H�'

�r(x)

1CA :

(iv) If e0 = 2 andf(L=(Er�1 \ L)) is even, let� be as in Lemma10.3(iii). Then

I(F1) = I(1$L(H\P1))�($L)�r(
p
")�1

0B@ X
x2(C

E
nC

L
)\H�'

�r(x)

1CA
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+I(1$E�(H\P1)) �($E)

0B@ X
x2C

L
\H�'

�r(x)

1CA :
Proof. Note that ife0 = 2, then by Lemma 5.7, dim�i = 1 for 16 i 6 r � 1.

Thus Lemma 10.2 applies in every case.
Let x 2 (H \ P )' [ ($E(H \ P ))'. Then

�(x) = 1 =) '($
��(x)
E x) = c$E($

�1
E x)$E ; c = (�1)f0(e0�1)

and, since conjugation by$E 2 Er�1 has no effect on GL[E:Er�1](Er�1), the

image of$�1
E x in H belongs toH

c'
if �(x) = 1.

By (9.3) and Proposition 8.1,�r vanishes at points inH \ P which do not lie
in SL [ SE�L. Putting this together with�r(x) = �r($

�(x)
E )�r($

��(x)
E x) and

Lemma 10.2, we obtain

��(x) =

8>><>>:
�($

�(x)
E )�r($

��(x)
E x); if $

��(x)
E x 2 SL;

�($L) �r(
p
")�1�r($

�1
E x); if �(x) = 1 and$�1

E x2SE�L;
0; if $

��(x)
E x =2 SL [ SE�L:

By Corollary 3.8, there existsy 2 ($
�(x)
E (P (r � 1))' andz 2Lr�1 such that

x = yz. Note that

$
��(x)
E x(H \ P1) = $

��(x)
E y(H \ P1); and

$
��(x)
E y 2

(
P (r � 1)'; if �(x) = 0;

P (r � 1)c'; if �(x) = 1:

Thus, given a coset ofH \ P1 in H \ P which contains elementsu such that
'(u) = u or'(u) = c$Eu$

�1
E , we can (and do) choose a coset representative in

P (r � 1) which transforms the same way under'. Let fyi j i 2 Ijg, j = 1;2;3,
resp., be a set of such representatives of those cosets containing elementsu of
SL if j = 1;2, resp. ofSE�L if j = 3, which satisfy'(u) = u if j = 1 and
'(u) = c$�1

E u$E if j = 2;3. Observe that, by Lemma 9.4, there are no cosets
containing'-invariant elements ofSE�L. By definition of Ij , j = 1;2;3, and the
above formula for��(yi), i 2 I1 and��($Eyi), i 2 Ij , j = 2;3,

I(F0) =
X
i2I1

�r(yi)I(1yi(H\P1));

I(F1) = �($E)
X
i2I2

�r(yi)I(1$Eyi(H\P1))

+�($L) �r(
p
")�1

X
i2I3

�r(yi)I(1$Eyi(H\P1)): (10.6)
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Set �1 = 1, �2 = $L, and �3 = $E�. By Lemma 10.3, ifi 2 Ij , since

$
�(�j)
E yi 2 ($

�(�j)
E P (r � 1))', by definition of Ij , there existsgi(j) 2 P (r � 1)

such that$�(�j)
E yi = gi(j)�j'(gi(j)). It follows that v 7! gi(j)v'(gi(j)) from

�j(H \ P1))
' to ($

�(�j)
E yi(H \ P1))

' is a measure-preserving bijection. Thus,
giveni 2 Ij ,

I(1
$
�(�j)

E
yi(H\P1)

) =

8>>>><>>>>:
I(1H\P1); if j = 1;

I(1$L(H\P1));

if e0 = 2 and j = 3; or if e0 = 1 and j = 2;

I(1$E�(H\P1)); if e0 = 2 and j = 2:

Observe that ife0 = 1, thenc = 1,$E = $L and I2 is nonempty, and I3 is empty
(Lemma 9.4). Ife0 = 2 thenc = �1 and, iff(L=(Er�1 \ L)) is odd, I2 is empty
and I3 nonempty, otherwise both I2 and I3 are nonempty.

Now (10.6) can be rewritten as

I(F0) = I(1H\P1)

0@X
i2I1

�r(yi)

1A ;
I(F1) = �($L)I(1$L(H\P1))

0@X
i2I2

�r(yi)

1A ; if e0 = 1;

I(F1) = �($E)I(1$L(H\P1))

0@X
i2I3

�r(yi)

1A
+�($L)�r(

p
")�1I(1$E�(H\P1))

X
i2I2

�r(yi); if e0 = 2:

Identifying eachyi, i 2 Ij , with its image inH
'
, resp.H

c'
, if j = 1, resp.

j = 2 or 3, results in (i), (iii), (iv) and, ife0 = 1,

I(F1) = �($L)I(1$L(H\P1))

0@ X
x2H'

�r(x)

1A
= I(1$L(H\P1))I(1H\P1)

�1I(F0):

To finish the proof of (ii), note that ifr > 1 thenf0 = 2. If E1 is ramified
overE1\L, thenf(E=E1), hence[E :E1] is even, and by Lemma 7.13(i),f0 = 2
implies thatmi = `i+ 1 for somei 6 r�1. As we have assumed thatmi = `i for
1 6 i 6 r�1, it follows thatE1 is unramified overE1\L. Thus by Lemma 7.9(i),
e(E1=F ) is odd. Asm1 = `1, e(E=E1) is odd. Thus ifr > 1, e = e(E=F ) is
odd. If r = 1, then e(E=F ) = 1. As e = e(L=F ), there exists� 2 O�

L such
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that$e
L = �$F , where$F is a prime element inF . Choose� 2 O�

E such that
� = NE=L(�). Becausee+ 1 is even, the map

(H \ P1)
' ! ($e+1

L ��1(H \ P1))
' = ($F$L(H \ P1))

'

v 7! ��1$
(e+1)=2
L v'(��1$

(e+1)=2
L )

= $F$L ('(�$
�(e+1)=2
L )v'(��1$

(e+1)=2
L ))

is a measure-preserving bijection. Furthermore, by definition of the measure,v 7!
$F v is measure preserving. Thus

I(1H\P1) = I(1$F$L(H\P1)) = I(1$L(H\P1));

completing the proof of (ii). 2

THEOREM 10.7.Suppose thatfE(�r) = 1. If f0 = 2, assume thatmi = `i for
1 6 i 6 r � 1.

(i) If e0 = 1 and� jL� � 1, thenI(F) > 0.
(ii) If e0 = 2 and� jL� 6� 1, thenI(F) > 0.

Proof. Note that sinceE=L is unramified and� � � = ��1, the condition
� jL� � 1 is equivalent to�($L) = 1. By Lemma 10.1, it suffices to show that
I(Fi) > 0, i = 1;2.

If e0 = 1 and�($L) = 1, (i) is a consequence of Proposition 10.5(i) and (ii),
and Proposition 9.9.

If e0 = 2 and�($L) = �1, (ii) is a consequence of Proposition 10.5(i),(iii) and
(iv) and Proposition 9.9. 2

11. Main results

Recall thatE is a tamely ramified degree 2n extension ofF and� is a unitary
character ofE�, admissible overF , having the property that� �� = ��1 for some
involution� in Aut(E=F ). We continue to assume that the residue characteristicp
ofF is odd. The fixed field of� is denoted byL andE1 is a subfield ofE appearing
in the Howe factorization of� (see (2.1)). Ifr = 1 (that is,� is generic overF )
thenE1 = E. Let fE(�) be the conductoral exponent of�. If fE(�) > 1, letc1 be
as in (2.3). It follows from remarks preceding Lemma 2.5 thatc1 represents� on
1+ p

fE(�)�1
E , that is,�(1+ x) =  (trE=F (c1x)) for x 2 p

fE(�)�1
E . If c 2 E also

represents� on 1+p
fE(�)�1
E , thenF (c) � F (c1) = E1. ThusE1 is minimal among

those subfields ofE generated by elements which represent� on 1+ p
fE(�)�1
E . Our

main results are stated in terms of the values of� onL� and, ifE is unramified
overL, the degree[E :E1].

The functionF 2 C1
c (GL2n(F )) defined in Section 4 represents a finite sum

of matrix coefficients of the unitary supercuspidal representation� associated
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to �. Results of Shahidi state (see Section 4) that non-vanishing of the integral
I(F) defined in Section 4 is related to reducibility of the representation of a
classical group induced from the extension of� to a maximal parabolic subgroup.
In Theorem 11.1, we show that certain conditions on� jL� force I(F) to be
positive. In Theorem 11.4 this is translated into statements about reducibility.

THEOREM 11.1.If � satisfies one of the following conditions, thenI(F) > 0.

(i) E is ramified overL and� jL� � 1,
(ii) E is unramified overL and� jL� = (�1)�(�)([E:E1]�1), with the additional

assumption that ifr > 1 andfE(�r) = 1, thenmi = `i, 16 i 6 r � 1.

Proof. If (i) holds, the result follows from Proposition 5.3 and Lemma 5.5.
Suppose that (ii) holds. Becausef(E=L) = 2, � � � = ��1 implies that

�(�) = �($L)
�(�), � 2 E�, so

�($L) = (�1)[E:E1]�1 () � jL� = (�1)�(�)([E:E1]�1): (11.2)

If fE(�r) = 1, thenI(F) > 0 by Theorem 10.7. Thus we may assume that
fE(�r) > 1. Let 16 i 6 r. As shown in Lemma 5.2,

�i(x) = �i(x) = �i(NE=Ei(�(x))); if mi = `i: (11.3)

Suppose thatmi = `i + 1. Let Hi and H 0
i be as in Section 6. Because

fE(�r) > 1, we know thatHi = F�(1 + pE)Ki�1. By Corollary 3.8, there
existy2 (E�Ki�1)

' = (E�Hi)
' andz 2Li�1 such thatx = yz. As shown at

the beginning of Section 6,�i(x) = �i(y) and by Lemma 6.1,�i(y) 6= 0 implies
thaty is conjugate to an element ofE�H 0

i. By definition of the functions� and�,
�(x) = �(y) and�(x) = �(y).

By (11.3), Proposition 7.12, and Lemma 7.13, ifx2H' is such that��(x) 6= 0,
then there existsax > 0 such that

��(x) = ax (�1)�(x)([E:E1]�1)
rY
i=1

�i(NE=Ei(�(x)))

= (�1)�(x)([E:E1]�1) �(�(x)):

In view of (11.2), it follows from the assumption on� that if x2H' is such that
��(x) 6= 0, then ��(x) > 0. In particular, ��(x) > 0 for x2 ($j

E
Pmr(r � 1) : : : Pm1(0))

', j 2Z. The subset of'-invariant points in this set has
positive measure in($j

E(H \ P ))'. AsF = �� on
S 2e�1
j=0 $j

E(H \ P ), and zero
elsewhere, it follows thatI(F) > 0. 2

REMARKS. (i) If dim� = 1, or if � is generic, then� jL� � 1 implies that
I(F) > 0. If dim� = 1, this is Proposition 5.3, and when� is generic, it follows
from Theorem 11.1 sinceE = E1 andr = 1.
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(ii) The case excluded from the theorem,r > 1,fE(�r) = 1 andmi = `i+1 for
somei 6 r� 1 can occur only ifEr�1 is unramified overEr�1 \ L (Lemma 5.7).
In this case, the sign of�� on H' will be influenced by both the sign of the
cuspidal representation�r of the finite general linear group GL[E:Er�1](Er�1) and
by the signs of the characters of the Heisenberg representations for thosei 6 r�1
such thatmi = `i + 1. Therefore, in order to compute the sign of��, it would be
necessary to find a way to combine the techniques in Sections 6–10 in such a way
that sums of products��r ��i over certain sets could be computed.

Let� be the irreducible unitary self-contragredient supercuspidal representation
of G = GL2n(F ) associated to� via Howe’s construction ([H2]). Let I(�) be
the induced representation ofG0 defined in Section 4, whereG0 = SO4n(F ),
SO4n+1(F ) or Sp4n(F ). The following theorem is an immediate consequence of
Theorem 11.1 and results of Shahidi (see Theorem 4.1 and Lemma 4.2).

THEOREM 11.4.Suppose that the admissible character� associated to� satisfies
(i) or (ii) of Theorem11.1. Then the representationI(�) is irreducible ifG0 =
SO4n(F ) or Sp4n(F ) and reducible ifG0 = SO4n+1(F ).

A non-unitary irreducible self-contragredient supercuspidal representation of
G arising via the construction of Howe is of the form� 
 jdet(�)j�, for some
real number� and some� as above. The admissible character corresponding to
such a representation isjNE=F (�)j��. Given an admissible character�0 of E�

such that�0 � � = �0 for some involution� in Aut(E=F ), there exists a unitary
admissible� having the same property relative to� and a real number� such that
�0 = jNE=F (�)j��.
COROLLARY 11.5.Assume that� satisfies(i) or (ii) of Theorem11.1.

(i) If G0 = SO4n(F ) or Sp4n(F ), thenI(� 
 jdet(�)j�) is reducible for� = �1
2

and irreducible for other real values of�.

(ii) If G0 = SO4n+1(F ), thenI(� 
 jdet(�)j�) is irreducible for all non-zero real
values of�.

Proof. Both (i) and (ii) follow from Theorem 11.4 and [Sh], Theorem 5.3, which
relates reducibility of I(�) to reducibility of I(� 
 jdet(�)j�). 2

Given an irreducible unitary supercuspidal representation�0 ofG, let�(�0) denote
the conjectural irreducible 2n-dimensional representation of the Weil groupWF

parametrizing�0 ([B], [T]). Let � be as above (unitary and self-contragredient).
Henceforth, in order to avoid stating cases, we assume thatG0 = SO4n(F ) or
Sp4n(F ). As indicated by Shahidi ([Sh]), as a consequence of properties ofL-
functions attached to representations ofWF , it is expected that I(�) is irreducible
if and only if �(�) factors through Sp2n(C ). Otherwise,� should factor through
SO2n(C ) and I(�) should be reducible.
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From now on, we assume thatp does not divide 2n. In this case, Moy ([Mo2])
has shown that every irreducible supercuspidal representation�0 of G arises via
Howe’s construction ([H2]) from an admissible character�0 of the multiplicative
group of a tamely ramified degree 2n extension ofF . The map

�0 7! r(�0) = IndWF
WE

�0

induces a bijection between (equivalence classes of) admissible quasi-characters�0
as above and (equivalence classes of) irreducible 2n-dimensional representations
of WF ([Mo2], Theorem 2.2.2). Thus we have a bijection�0 $ r(�0).

Necessary and sufficient conditions forr(�0) to be symplectic or orthogonal are
known.

LEMMA 11.6 ([Mo1], Theorem 1).LetK=F be an extension of degree2n. Sup-
pose that�0 is a unitary character ofK�, admissible overF and of finite order.
Then the representationr(�0) is orthogonal, resp. symplectic, if and only if there
exists an involution� 2Aut(K=F ) such that�0 � � = �0�1 and�0jK� � 1, resp.
�0jK� 6� 1.

REMARK. Moy’s result is stated for Galois representations. Such representations
can be identified with a subset of the representations of the Weil groupWF ([T],
(2.2)). A representation ofWF is a Galois representation if and only if it has finite
order. Note that the condition� � � = ��1 guarantees that� has finite order.

Assuming that the conjectural representation�(�) does exist, it cannot be equal to
r(�)becauser(�)does not satisfy the required functoriality properties; in particular,
� and r(�) do not have the same local constants (see [Mo2], [R]). In Section 4
of [Mo2], Moy defines a character
 of E� (depending on�) such that that�
andr(
�) have the same local constants. (There is a misprint in Moy’s paper: the
ramification degree e(E1=F ), not e(E=E1), should appear in the definition of
).
We have checked that
 jL� = sgnaE=L(� jL�), wherea = 1 if f(E=L) = 1 and

a = [E :E1] if f(E=L) = 2. Here, sgnE=L denotes the character ofL� associated
by class field theory to the quadratic extensionE=L. Therefore if�(�) were
equal tor(�
), by Lemma 11.6 and remarks above, we would have a criterion
for reducibility of I(�) in terms of f(E=L), parity of [E:E1], and � jL�, as
follows.

CONJECTURE.

I(�) is irreducible, � jL�
(� 1; if f(E=L) = 1;

= (�1)�(�)([E:E1]�1); if f(E=L) = 2:
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Thus, as a complement to Theorem 11.4, we would like to prove

If � satisfies one of the following conditions,
then I(�) is reducible (forG0 = SO4n(F ) or Sp4n(F ))

(i)0 E is ramified overL and� jL� 6� 1.

(ii) 0 E is unramified overL and� jL� = (�1)�(�)[E:E1].

(11.7)

In order to to prove (11.7) using Shahidi’s theorem (Theorem 4.1), it would
be necessary to show thatI(f) = 0 for everyf 2 C1

c (G) representing a matrix
coefficient of�, for all choices of a matrix coefficient. We remark that if(i)0 is
satisfied andf(E=F ) = f(L=F ) is odd, or if (ii)0 is satisfied and e(E=F ) =
e(L=F ) is even, then (11.7) holds because in both these cases� jF� is non-trivial,
so I(�) must be reducible by Theorem 4.1.

In some cases, if we assume that�(�) does exist, then using Theorem 11.4 and
properties of�(�), we can see that (11.7) holds. Iff(E=L) = 2, or if f(E=L) = 1
and (q � 1)=gcd(e; q � 1) is even, there exists a character� of F� (of finite
order) such that� � NE=F jL� = sgnE=L. Thus� satisfies condition(ii)0 if and

only if (�1)�(�)� = (� � NE=F )� satisfies the first two parts of condition (ii) of
Theorem 11.1 (that is, drop the additional assumption on themi’s). Similarly, if
we assume that(q � 1)=gcd(e; q � 1) is even, then� satisfies condition(i)0 if and
only if �(NE=F (�))� satisfies (ii) of Theorem 11.1. One of the expected properties
of �$ �(�) is �(� 
 � � det) = �(�) 
 � ([Mo2]). Also, the supercuspidal
representation corresponding to(� �NE=F )� is �
� � det. Hence it follows from
the definition of� that�(�) is orthogonal if and only if�(�
��det) is symplectic.
In view of Theorem 11.4, we get the following result.

COROLLARY 11.8.Assume that the representation�(�) exists. Suppose that one
of the following holds

(a) (q � 1)=gcd(e; q � 1) is even and� satisfies(i)0;
(b) � satisfies(ii)0, together with the additional condition that ifr > 1 and

fE(�r) = 1, thenmi = `i for 1 6 i 6 r � 1.

ThenI(�) is reducible andI(� 
 jdet(�)j�) is irreducible for every nonzero real
number�.

In Section 7 of [Sh], Shahidi interprets the reducibility criterion of Theorem 4.1
in terms of the theory of twisted endoscopy ([KS1], [KS2]). The group SO2n+1 is
a twisted endoscopic group of GL2n ([Sh] Section 3) and has Sp2n(C ) �WF as
itsL-group. When�(�) factors through Sp2n(C ), which should correspond to I(�)
being irreducible ([Sb]), then�(�) should parametrize anL-packet of discrete series
representations of SO2n+1(F ). That is, theL-packetf�g of GL2n(F ) should come
via twisted endoscopic transfer from theL-packet of SO2n+1(F ) parametrized by
�(�). Thus if � is as in Theorem 11.4 andG0 = SO4n(F ) or Sp4n(F ), then�
should come from anL-packet of discrete series representations of SO2n+1(F ).
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Similarly ([Sh], Sections 3 and 7), a quasi-split SO2n is a twisted endoscopic
group of GL2n. If I (�) is reducible then, since�(�) should factor through SO2n(C ),
� should come via twisted endoscopic transfer from anL-packet of a quasi-split
SO2n(F ).

Therefore if the above conjecture holds, and the theory of twisted endoscopy
holds, then we have a criterion, in terms of�, for determining whether an irreducible
unitary self-contragredient representation� comes via twisted endoscopy from an
L-packet of SO2n+1(F ) or of a quasi-split SO2n(F ).
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