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We show that if G is a compact abelian group and U is a weakly continuous representation of G by means of
isometries on a Banach space X, then <r(;i(/i)) = /i(sp(t/)) holds for each measure ft in reg(M(G)), where rc(/i)
denotes the generalized convolution operator in B(X) defined by n(n)x = $GU{t)xdti{t)(xeX), a the usual
spectrum in B(X), sp(U) the Arveson spectrum of U, ft the Fourier-Stieltjes transform of/i and reg(M(G)) the
largest closed regular subalgebra of the convolution measure algebra M(G) of G. reg (M(G)) contains all the
absolutely continuous measures and discrete measures.

1980 Mathematics subject classification (1985 Revision): Primary 46H15; Secondary 47A10.

1. Introduction and main result

Let G be a locally compact abelian group and U a weakly continuous representation
of G by means of isometries on a Banach space X, i.e., a map U: G-*B(X) satisfying

(i) U(s +1) = U(s)U(t) for all s,teG, 1/(0) = /,
(ii) ||l/(s)x|| = ||x|| forseCxeX,
(iii) G-*X; s-*U(s)x is weakly continuous for each xeX.

Then this representation induces a continuous algebra homomorphism n of the
convolution algebra M(G) into B(X) and such a homomorphism is written by

) = fG U(t)dfi{t) (cf. [5]). Let sp(U) be the Arveson spectrum of U defined by

Here Z(f) denotes the set of zeros of the Fourier transform / of / . In this setting,
Connes [4] proved that for every Dirac measure fi the spectral mapping theorem
(SMT): <r(7t(//))=/i(sp(t/)) holds, where a denotes the usual spectrum in B(X) and \i
denotes the Fourier-Stieltjes transform of //. Furthermore D'Antoni, Longo and Zsido
[2] proved the SMT for the class of measures whose continuous part belongs to Ll(G),
the group algebra of G. Also, Eschmeier [5] proved the SMT in the case that U is the
translation group representation and X = L}(G) or M(G) and the convolution operator
induced by \i has the weak 2-SDP (see [5, Theorem 2]). Here M(G) denotes the Banach
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algebra of all bounded regular complex Borel measures on G. Also, since M(G) is a
semisimple commutative Banach algebra with identity, it follows from Albrecht's
theorem [1] that there exists a largest closed regular subalgebra of M(G), which we
denote by reg (M(G)).

With this notation, our main theorem can be stated as follows:

Theorem. / / G is a compact abelian group and fie reg (M(G)), we have a(n(n)) =

Remark. The group algebra Ll(G) and the discrete measures MJ^G) are regular
Banach subalgebras of M(G). Then L1(G) + Md(G)c reg (M(G)). In general, L\G) +
Md(G)jt reg (M(G)). In fact, let us denote by top(G) the class of all locally compact
group topologies on G which are equal to or stronger than the original topology on G
and denote by L*(G) the closed subalgebra of M(G) generated by {L1(G,T):T£top(G)} as
in [6]. Then we have that Ll(G) + Md(G)czL*(G)cz reg (M{G)) and L\G) + Md(G)*L*(G)
in general (cf. [6], [12]). Thus our result contains the Connes-D'Antoni-Longo-Zsido
spectral mapping theorem for the compact case.

2. Lemmas

We first present the following result obtained in [7], which plays an essential role in
the proof of the main theorem, and we include its proof for completeness.

Lemma 1. Let X be a commutative Banach algebra with identity and B a Banach
subalgebra of X. If B is regular, then for any beB the Gelfand transform of b as an
element of X is continuous on the carrier space 0>x of X in the hull-kernel topology.

Proof. We can assume without loss of generality that B contains the identity of X.
Then it is sufficient to show that the restriction map 6: Q>X-*<S>B; <p-Kl>\B is continuous
in the hull-kernel topology. To do this let F be a closed subset of Ofl in the hull-kernel
topology. Then {(pe<I>x:(p\kerF = 0} = 9~1(F). Also, since k e r F c k e r f l " 1 ^ ) , it follows
that hul(ker9-1(F))<={<pe<&x:<t>\keTF = 0}. Therefore 9~1{F) is closed in the hull-kernel
topology. In other words, 9 is continuous in this topology. •

We will next state the definition of BSE-algebras introduced by the first author and
Hatori [10]. Let A be a commutative Banach algebra without order and M(A) the
multiplier algebra of A. It is well-known that Te M(A) can be represented as a bounded
continuous complex-valued function T on <bA such that Ta(<p) = T(<£)a(</>) for all a eA
and <pe<bA (cf. [8]). Set M(A) = {f: TeM(A)}. We also denote by A* the dual space of
A and CBSE(<bA) the set of all continuous complex-valued functions a on <1>A which
satisfy the following condition: there exists a positive real number /? such that for every
finite sequence of complex numbers cu...,cn and elements <pl,...,<pn of <bA, the
inequality
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holds.

Definition. A commutative Banach algebra A without order is said to be BSE if it
satisfies the condition M(A) = CBSE(<bA).

By the Bochner-Schoenberg-Eberlein theorem, the group algebra of a locally
compact abelian group is BSE (cf. [10]). The following results can be observed in [10].

Lemma 2 ([10, Theorem 4, (ii)]). Let A be a commutative Banach algebra without
order, A** its second dual and Cb(Q>A) the set of all bounded continuous complex-valued
functions on <&A. Then C^O A) = <?{<!> A)n(A**\*A).

When a closed ideal / of a commutative Banach algebra A is essential as a Banach
^-module, that is, / equals the closed linear span of {ax: as A, xel}, we call / an
essential ideal.

Lemma 3 ([10, Theorem 8, (i)]). Let A be a BSE-algebra with discrete carrier space
and I an essential closed ideal of A. Then M(A/I) = CBSE(<t>A/I), i.e., A/1 is BSE, where A/1
denotes the quotient algebra of A defined by I.

The following lemma also plays an essential role in the proof of the main theorem.

Lemma 4. Let A be a BSE-algebra with discrete carrier space and I a closed ideal of
A such that /~=ker(hul(/)) is essential. Then every multiplier on A/I" can be lifted as a
multiplier on A, that is, if veM(A/I~) and n is the canonical map of A onto A/I~, then
there exists fieM(A) such that n(fia) = vn(a) for all aeA.

Proof. Let veM(A/I~) and let n be the canonical map of A onto A/I". Note that
the algebra All" is semisimple. Then it is sufficient to show that there exists neM(A)
such that (n(fia))" =(vn(a))* for all aeA. Here A denotes the Gelfand transform on A/I".
We have

veM(A/r) = CBse(<J>A/l~) (by Lemma 3)

= (A/r)**\<S>At,~ (by Lemma 2),

so that there exists He(A/l~)** with v = H\<t>A/n. Then we can find an element FeA**
such that n**(F) = H, since n**: A**->(A/1")** is a surjection. We further have by the
BSE property of A and Lemma 2 that

Therefore we can find an element neM(A) such that fi = F\<t>A. Let <peQ>A be such that
<p\l~ =0 and 4>' the canonical image of <f> in ^>A/j~. Then we have
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W) = HW) = <<£', r,**(F)) = <

and hence for any aeA,

Consequently (>?(/xa))A =(v>/(a))A for all aeX. •

Lemma 5. / / fxeM(G), then <7(TC(M))<={^V(0):(/)6<DM(C), Ker7tcKer0}. Here /iv

denotes the Gelfand transform of neM(G).

Proof. Let fieM(G). Then we have that

)=(fi + Ker jt)v (<DM(G)/Ker J

Also, since M(G)/Ker7r^7i(M(G))<=B(Ar), it follows that

7t) = o

Therefore the desired inclusion follows. •

The following result was proved by D'Antoni, Longo and Zsido [2].

Lemma 6 ([2, Lemma 1]). o(n{n))=>(i{sp(U)) for all n e M{G).

In the next section we will show our main theorem using these lemmas.

3. Proof of theorem

Since p.(sp(U))<= <T(^(/I)) by Lemma 6, we have only to show the reverse inclusion. To
do this, let aea(n(n)). Then by Lemma 5, there exists 0oeOM ( G ) :a = /iv(0o) and

Let us consider the natural homomorphism Tn of M(G)/Kern into M(L1(G)//n)
defined by

(veM(G), feL\G)),
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where In = Ker(n| Ll(G)).
Since G is compact, it follows from [9, Corollary 8.3.2] that /n~ = /n. Note also that

Ll(G) is a BSE-algebra with discrete carrier space and it has an approximate identity;
hence /„ is an essential ideal of L'(G). Then Lemma 4 implies that Tn is surjective, since
M(G)^M(L1(G)). Furthermore, Tn is injective. In fact, let veM(G) be such that
T:(V*/) = 0 for all feLl(G). Given e>0, xeX and £eX*, the dual space of X, choose a
neighbourhood V of zero such that

Furthermore, choose a non-negative real-valued function uveLi(G) vanishing off V and
satisfying \Guv(t)dt= 1. Then we have

| <TT(V)X, OIS | <n(uv)x, (n(v))*O ~ <*, (*(v))*O | +1 <n(uv)x, (n(v))*O\

^ \y | < U(t)x, (TT(V))*O - <x, (T:(V))*O I uv(t) dt

<£.

Since e is arbitrary, it follows that <7r(v)x, O = 0 f° r aH xeX and £eAT*; hence 7t(v) = O.
In other words, Tn is injective.

Here we take the following convention: for each </>eOM(O) such that Ker7tcKer^>, 4>'
denotes the element of OM(G)/Kern defined by 0'(v + Ker7r) = <£(v)(veM(G)).

Since Tn is an isomorphism of M(G)/K.ern onto M(L}(G)/In), there exists an element
i/>0 of OM(L.(C)/;<) such that 4>'0 = (T^*^0. So we can find a net {i/^} in <6M(fio//.) such that
ipx\L

l(G)/In¥=0 for all A and hk-limil/x = ty0, where "/i/c-lim" denotes the hull-kernel
limit. Furthermore, we can find a net {</>,J in OM(G) such that Ker n c Ker </>A and
( T J * ! / ^ ^ for all 1 Set £,x = <t>,\L\G) for each A. Then each £ A / 0 . In fact, choose a
function /oeL^G) such that i/^C/o + Z J / O . Then for each k, we have

^ ( / o ) = Vxifo + /*) = < T,(/o + / , ) , </M > = ^ A(/O + '«) / 0,

so that ^A#0. Thus each ^A belongs to <DLl(C)(sG, the dual group of G) and hence must
belong to sp(U), since / „ c K e r £A and sp(l/) can be regarded as the hull of /„ in <DLi(C).

Of course (71J*|OM(Lt(C)/;j is continuous on OM(Li(C)/;.) in the hull-kernel topology and
hence

Mc-lim ft = Wc-lim ( T , ) * ^ = (T,)*^o = ^'0.

Therefore we have from [11, Theorem 2.6.6] that /i/c-lim^>A = < 0̂. Since ^ereg(M(G)), it
follows from Lemma 1 that nv is continuous on OM(C) in the hull-kernel topology, so
that
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Consequently we have that aefi(sp(U)) and the reverse inclusion is shown. •
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