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Let S be a compact Riemann surface of genus g ^ 2 and a an automorphism (conformal
self-homeomorphism) of S of order n. Let S* = S/<<7> have genus g*. In [5], Schoeneberg
gave a sufficient condition that a fixed point PeS of a should be a Weierstrass point of S,
i.e., that S should support a function that has a pole of order less than or equal to g at P and
is elsewhere regular.

THEOREM (Schoeneberg). P is a Weierstrass point of S provided that g* <£ [gin]. ([*]
denotes the integral part of x)

By the uniformization theorem, S can be represented as a quotient surface UjK, where U
denotes the upper half-plane and K a Fuchsian group isomorphic to the fundamental group
of S. Furthermore, G will be a (finite) group of automorphisms of U/K if and only if G s T/K,
where r is a Fuchsian group with compact quotient space UjT. Such groups are known to
have a presentation of the following form:

Generators: x1,x2>.. . , x r , a ^ b , , . ..,a.,b..

Relations: x?> = 1 (i = 1,2 r), f\ Xj ([ [ak, 6J = 1.
0)

If the presentation is (1), the group is said to have signature (g*; m , , . . . ,mr). Such a group
has a fundamental polygon Fr in U with hyperbolic area

(2)
i=i \ mij

If K is of index n in F, then
n/i(Fr) = n(FK), (3)

and combining (2) and (3) gives a form of the Riemann-Hurwitz relation.
Here we sharpen Schoeneberg's condition to criteria on the signature of the corresponding

Fuchsian group. Our method uses results of Lewittes [3] which we have employed before [4].
(For other applications of similar methods, see [2].) In the proof of the theorem below we
shall use the notation and results of [4].

THEOREM. Let a be an automorphism of order n of a compact Riemann surface S = U/K
of genus g^2. Let T be a Fuchsian group such that <a> ^ T\K. Let a have a fixed point
PeS. If P is not a Weierstrass point, then F has signature of one of the following forms:

( i ) (n ; "A

0 0 ; n,n,n,n),
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(iii) (g*; n,mv,m2),

where 2ng* = 2g—\—n-\ and the least common multiple ofmu m2 is n.
(mum2)

Proof. Let P have gap sequence {yr, y2,..., yg} and choose a local parameter z at P
such that locally a~l is z -> sz, where e is a primitive nth root of unity. Letting a act on the
^-dimensional space of abelian differentials on S of the first kind, one obtains, with respect
to a suitable basis, a diagonal representation of a with entries {eVl, eV2,..., e"9} [3].

Assume that F has the presentation (1). Let n : F -»Zn be the natural projection com-
bined with the isomorphism <X<->1, where we write elements of Zn as residues modulo n.
Since the kernel of n contains no elements of finite order, each mt divides n. Assume that
m, = n and adjust n so that, locally at P,a~l is z -»ez where e = exp [(2jr/n)/]. Now suppose
that K(JC,,) = £„(]* = 1, 2 , . . . , r). Then, if Nv denotes the multiplicity of exp [2nv/n)i] as
an eigenvalue of a, we have

No = 9*,

(4)

v . £M$O (mod n)

where <x> denotes the fractional part of x. (See [4].)
r

As already noted above, £i = 1. Also, from the relations (1), £ £, s 0(modn). Let
r i= 1

J] ^ = an. Then, from (4),

" JV, =g*-\+r- a, Nn_1=g*-l+a.

Now suppose that P is not a Weierstrass point. Then u has eigenvalues e1, e 2 , . . . , e9

where e = exp [(2nIri)i]. Thus, writing g = nk + l, where 0 ̂  / < n, we have No = k, Nt =
k+l, N2 = k+\,..., N, = k+l, Nl+l = k,..., iV,,-., = A\ Hence g* = k and we consider
three cases.

(i) / = 0. Then g* = - . Nx=Nn-x= g*. Thus a = 1 and r = 2 and, from the
n

Riemann-Hurwitz relation, m2 — n.

( i i ) / = « - l . Then g* = 3~(-n~l\ Nl=Nn_l= g* + \. Thus a = 2, r = 4 and,

from the Riemann-Hurwitz relation, w2 = m3 = m4 = n.
( i i i ) / # 0 , n - 1 . A?

1 = ^* + l, Nn^i=g*. Thus a = l , r = 3. By the Riemann-
Hurwitz relation, we have

But the least common multiple of w, and w3 must be n [1]. So — = —- and (iii) follows.
m2 (m2, m3)
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Finally, we note that the conditions given in the theorem are, with a small number of
exceptions for low values of g and n, not generally necessary for P to be a Weierstrass point.

REFERENCES

1. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J.
Math. Oxford Ser. (2) 17 (1966), 86-97.

2. H. Larcher, Weierstrass points at the cusps of ro(16/>) and the hyperellipticity of ro(n),
Canad. J. Math. 22 (1971), 960-968.

3. J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 84 (1963), 734-752.
4. C. Maclachlan, Weierstrass points on compact Riemann surfaces, / . London Math. Soc. (2) 3

(1971), 722-724.
5. B. Schoeneberg, Ober die Weierstrasspunkte in den Korpern den elliptischen Modulfunk-

tionen, Abh. Math. Sem. Univ. Hamburg 17 (1951), 104-111.

UNIVERSITY OF ABERDEEN

https://doi.org/10.1017/S001708950000197X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000197X

