ON SCHOENEBERG'S THEOREM

by C. MACLACHLAN

(Received 3 May, 1972; revised 15 August 1972)

Let S be a compact Riemann surface of genus $g \ge 2$ and σ an automorphism (conformal self-homeomorphism) of S of order n. Let $S^* = S/\langle \sigma \rangle$ have genus g^* . In [5], Schoeneberg gave a sufficient condition that a fixed point $P \in S$ of σ should be a Weierstrass point of S, i.e., that S should support a function that has a pole of order less than or equal to g at P and is elsewhere regular.

THEOREM (Schoeneberg). P is a Weierstrass point of S provided that $g^* \neq [g/n]$. ([x] denotes the integral part of x.)

By the uniformization theorem, S can be represented as a quotient surface U/K, where U denotes the upper half-plane and K a Fuchsian group isomorphic to the fundamental group of S. Furthermore, G will be a (finite) group of automorphisms of U/K if and only if $G \cong \Gamma/K$, where Γ is a Fuchsian group with compact quotient space U/Γ . Such groups are known to have a presentation of the following form:

Generators:
$$x_1, x_2, \dots, x_r, a_1, b_1, \dots, a_{g^*}, b_{g^*}$$
.
Relations: $x_i^{m_i} = 1 \ (i = 1, 2, \dots, r), \quad \prod_{j=1}^r x_j \prod_{k=1}^{g^*} [a_k, b_k] = 1.$
(1)

If the presentation is (1), the group is said to have signature $(g^*; m_1, \ldots, m_r)$. Such a group has a fundamental polygon F_{Γ} in U with hyperbolic area

$$\mu(F_{\Gamma}) = 2(g^* - 1) + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).$$
⁽²⁾

If K is of index n in Γ , then

$$n\mu(F_{\Gamma}) = \mu(F_{K}),\tag{3}$$

and combining (2) and (3) gives a form of the Riemann-Hurwitz relation.

Here we sharpen Schoeneberg's condition to criteria on the signature of the corresponding Fuchsian group. Our method uses results of Lewittes [3] which we have employed before [4]. (For other applications of similar methods, see [2].) In the proof of the theorem below we shall use the notation and results of [4].

THEOREM. Let σ be an automorphism of order n of a compact Riemann surface S = U/Kof genus $g \ge 2$. Let Γ be a Fuchsian group such that $\langle \sigma \rangle \cong \Gamma/K$. Let σ have a fixed point $P \in S$. If P is not a Weierstrass point, then Γ has signature of one of the following forms:

(i)
$$\left(\frac{g}{n}; n, n\right)$$
,
(ii) $\left(\frac{g-(n-1)}{n}; n, n, n, n\right)$,

(iii) $(g^*; n, m_1, m_2)$,

where $2ng^* = 2g - 1 - n + \frac{m_1 + m_2}{(m_1, m_2)}$ and the least common multiple of m_1, m_2 is n.

Proof. Let P have gap sequence $\{\gamma_1, \gamma_2, \dots, \gamma_g\}$ and choose a local parameter z at P such that locally σ^{-1} is $z \to \varepsilon z$, where ε is a primitive *n*th root of unity. Letting σ act on the g-dimensional space of abelian differentials on S of the first kind, one obtains, with respect to a suitable basis, a diagonal representation of σ with entries $\{\varepsilon^{\gamma_1}, \varepsilon^{\gamma_2}, \dots, \varepsilon^{\gamma_g}\}$ [3].

Assume that Γ has the presentation (1). Let $\pi: \Gamma \to Z_n$ be the natural projection combined with the isomorphism $\sigma \leftrightarrow 1$, where we write elements of Z_n as residues modulo n. Since the kernel of π contains no elements of finite order, each m_i divides n. Assume that $m_1 = n$ and adjust π so that, locally at P, σ^{-1} is $z \to \varepsilon z$ where $\varepsilon = \exp[(2\pi/n)i]$. Now suppose that $\pi(x_{\mu}) = \xi_{\mu} (\mu = 1, 2, ..., r)$. Then, if N_{ν} denotes the multiplicity of $\exp[2\pi\nu/n)i]$ as an eigenvalue of σ , we have

$$N_{0} = g^{*},$$

$$N_{v} = g^{*} - 1 + \sum_{\substack{\mu = 1 \\ v \cdot \xi_{\mu} \equiv 0 \pmod{n}}}^{r} \left(1 - \left\langle \frac{v \cdot \xi_{\mu}}{n} \right\rangle \right),$$
(4)

where $\langle x \rangle$ denotes the fractional part of x. (See [4].)

As already noted above, $\xi_1 = 1$. Also, from the relations (1), $\sum_{i=1}^{r} \xi_i \equiv 0 \pmod{n}$. Let $\sum_{i=1}^{r} \xi_i = an$. Then, from (4),

$$N_1 = g^* - 1 + r - a, \quad N_{n-1} = g^* - 1 + a.$$

Now suppose that P is not a Weierstrass point. Then σ has eigenvalues $\varepsilon^1, \varepsilon^2, \ldots, \varepsilon^g$ where $\varepsilon = \exp[(2\pi/n)i]$. Thus, writing g = nk+l, where $0 \le l < n$, we have $N_0 = k$, $N_1 = k+1$, $N_2 = k+1, \ldots, N_l = k+1$, $N_{l+1} = k, \ldots, N_{n-1} = k$. Hence $g^* = k$ and we consider three cases.

(i) l=0. Then $g^* = \frac{g}{n}$. $N_1 = N_{n-1} = g^*$. Thus a = 1 and r = 2 and, from the

Riemann-Hurwitz relation, $m_2 = n$.

(ii) l = n - 1. Then $g^* = \frac{g - (n - 1)}{n}$. $N_1 = N_{n-1} = g^* + 1$. Thus a = 2, r = 4 and,

from the Riemann-Hurwitz relation, $m_2 = m_3 = m_4 = n$.

(iii) $l \neq 0$, n-1. $N_1 = g^* + 1$, $N_{n-1} = g^*$. Thus a = 1, r = 3. By the Riemann-Hurwitz relation, we have

$$\frac{2(g-1)}{n} = 2(g^*-1) + \left(1 - \frac{1}{n}\right) + \left(1 - \frac{1}{m_2}\right) + \left(1 - \frac{1}{m_3}\right).$$

But the least common multiple of m_2 and m_3 must be n[1]. So $\frac{n}{m_2} = \frac{m_2}{(m_2, m_3)}$ and (iii) follows.

C. MACLACHLAN

Finally, we note that the conditions given in the theorem are, with a small number of exceptions for low values of g and n, not generally necessary for P to be a Weierstrass point.

REFERENCES

1. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97.

2. H. Larcher, Weierstrass points at the cusps of $\Gamma_0(16p)$ and the hyperellipticity of $\Gamma_0(n)$, Canad. J. Math. 22 (1971), 960–968.

3. J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 84 (1963), 734-752.

4. C. Maclachlan, Weierstrass points on compact Riemann surfaces, J. London Math. Soc. (2) 3 (1971), 722-724.

5. B. Schoeneberg, Über die Weierstrasspunkte in den Körpern den elliptischen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg 17 (1951), 104–111.

UNIVERSITY OF ABERDEEN

204