ON SCHOENEBERG'S THEOREM

by C. MACLACHLAN

(Received 3 May, 1972; revised 15 August 1972)
Let S be a compact Riemann surface of genus $g \geqq 2$ and σ an automorphism (conformal self-homeomorphism) of S of order n. Let $S^{*}=S /\langle\sigma\rangle$ have genus g^{*}. In [5], Schoeneberg gave a sufficient condition that a fixed point $P \in S$ of σ should be a Weierstrass point of S, i.e., that S should support a function that has a pole of order less than or equal to g at P and is elsewhere regular.

Theorem (Schoeneberg). P is a Weierstrass point of S provided that $g^{*} \neq[g / n] .([x]$ denotes the integral part of x.)

By the uniformization theorem, S can be represented as a quotient surface U / K, where U denotes the upper half-plane and K a Fuchsian group isomorphic to the fundamental group of S. Furthermore, G will be a (finite) group of automorphisms of U / K if and only if $G \cong \Gamma / K$, where Γ is a Fuchsian group with compact quotient space U / Γ. Such groups are known to have a presentation of the following form:

$$
\left.\begin{array}{l}
\text { Generators: } x_{1}, x_{2}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{g^{*}}, b_{g^{*}} \tag{1}\\
\text { Relations: } \quad x_{i}^{m_{1}}=1(i=1,2, \ldots, r), \prod_{j=1}^{r} x_{j} \prod_{k=1}^{g^{*}}\left[a_{k}, b_{k}\right]=1
\end{array}\right\}
$$

If the presentation is (1), the group is said to have signature ($g^{*} ; m_{1}, \ldots, m_{r}$). Such a group has a fundamental polygon F_{Γ} in U with hyperbolic area

$$
\begin{equation*}
\mu\left(F_{\Gamma}\right)=2\left(g^{*}-1\right)+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right) . \tag{2}
\end{equation*}
$$

If K is of index n in Γ, then

$$
\begin{equation*}
n \mu\left(F_{\Gamma}\right)=\mu\left(F_{K}\right), \tag{3}
\end{equation*}
$$

and combining (2) and (3) gives a form of the Riemann-Hurwitz relation.
Here we sharpen Schoeneberg's condition to criteria on the signature of the corresponding Fuchsian group. Our method uses results of Lewittes [3] which we have employed before [4]. (For other applications of similar methods, see [2].) In the proof of the theorem below we shall use the notation and results of [4].

Theorem. Let σ be an automorphism of order n of a compact Riemann surface $S=U / K$ of genus $g \geqq 2$. Let Γ be a Fuchsian group such that $\langle\sigma\rangle \cong \Gamma \mid K$. Let σ have a fixed point $P \in S$. If P is not a Weierstrass point, then Γ has signature of one of the following forms:
(i) $\left(\frac{g}{n} ; n, n\right)$,
(ii) $\left(\frac{g-(n-1)}{n} ; n, n, n, n\right)$,
(iii) $\left(g^{*} ; n, m_{1}, m_{2}\right)$,
where $2 n g^{*}=2 g-1-n+\frac{m_{1}+m_{2}}{\left(m_{1}, m_{2}\right)}$ and the least common multiple of m_{1}, m_{2} is n.
Proof. Let P have gap sequence $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g}\right\}$ and choose a local parameter z at P such that locally σ^{-1} is $z \rightarrow \varepsilon z$, where ε is a primitive nth root of unity. Letting σ act on the g-dimensional space of abelian differentials on S of the first kind, one obtains, with respect to a suitable basis, a diagonal representation of σ with entries $\left\{\varepsilon^{\gamma_{1}}, \varepsilon^{\gamma_{2}}, \ldots, \varepsilon^{\gamma_{s}}\right\}$ [3].

Assume that Γ has the presentation (1). Let $\pi: \Gamma \rightarrow Z_{n}$ be the natural projection combined with the isomorphism $\sigma \leftrightarrow 1$, where we write elements of Z_{n} as residues modulo n. Since the kernel of π contains no elements of finite order, each m_{i} divides n. Assume that $m_{1}=n$ and adjust π so that, locally at P, σ^{-1} is $z \rightarrow \varepsilon z$ where $\varepsilon=\exp [(2 \pi / n) i]$. Now suppose that $\pi\left(x_{\mu}\right)=\xi_{\mu}(\mu=1,2, \ldots, r)$. Then, if N_{v} denotes the multiplicity of $\left.\exp [2 \pi v / n) i\right]$ as an eigenvalue of σ, we have

$$
\left.\begin{array}{l}
N_{0}=g^{*}, \tag{4}\\
N_{v}=g^{*}-1+\sum_{\substack{\mu=1 \\
v, \xi_{\mu} \neq 0(\bmod n)}}^{r}\left(1-\left\langle\frac{v \cdot \xi_{\mu}}{n}\right\rangle\right),
\end{array}\right\}
$$

where $\langle x\rangle$ denotes the fractional part of x. (See [4].)
As already noted above, $\xi_{1}=1$. Also, from the relations (1), $\sum_{i=1}^{r} \xi_{i} \equiv 0(\bmod n)$. Let $\sum_{i=1}^{r} \xi_{i}=a n$. Then, from (4),

$$
N_{1}=g^{*}-1+r-a, \quad N_{n-1}=g^{*}-1+a .
$$

Now suppose that P is not a Weierstrass point. Then σ has eigenvalues $\varepsilon^{1}, \varepsilon^{2}, \ldots, \varepsilon^{g}$ where $\varepsilon=\exp [(2 \pi / n) i]$. Thus, writing $g=n k+l$, where $0 \leqq l<n$, we have $N_{0}=k, N_{1}=$ $k+1, N_{2}=k+1, \ldots, N_{1}=k+1, N_{l+1}=k, \ldots, N_{n-1}=k$. Hence $g^{*}=k$ and we consider three cases.
(i) $l=0$. Then $g^{*}=\frac{g}{n} . \quad N_{1}=N_{n-1}=g^{*} . \quad$ Thus $a=1$ and $r=2$ and, from the Riemann-Hurwitz relation, $m_{2}=n$.
(ii) $l=n-1$. Then $g^{*}=\frac{g-(n-1)}{n} . \quad N_{1}=N_{n-1}=g^{*}+1 . \quad$ Thus $a=2, r=4$ and, from the Riemann-Hurwitz relation, $m_{2}=m_{3}=m_{4}=n$.
(iii) $l \neq 0, n-1 . \quad N_{1}=g^{*}+1, \quad N_{n-1}=g^{*}$. Thus $a=1, r=3$. By the RiemannHurwitz relation, we have

$$
\frac{2(g-1)}{n}=2\left(g^{*}-1\right)+\left(1-\frac{1}{n}\right)+\left(1-\frac{1}{m_{2}}\right)+\left(1-\frac{1}{m_{3}}\right)
$$

But the least common multiple of m_{2} and m_{3} must be $n[1]$. So $\frac{n}{m_{2}}=\frac{m_{2}}{\left(m_{2}, m_{3}\right)}$ and (iii) foltows.

Finally, we note that the conditions given in the theorem are, with a small number of exceptions for low values of g and n, not generally necessary for P to be a Weierstrass point.

REFERENCES

1. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97.
2. H. Larcher, Weierstrass points at the cusps of $\Gamma_{0}(16 p)$ and the hyperellipticity of $\Gamma_{0}(n)$, Canad. J. Math. 22 (1971), 960-968.
3. J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 84 (1963), 734-752.
4. C. Maclachlan, Weierstrass points on compact Riemann surfaces, J. London Math. Soc. (2) 3 (1971), 722-724.
5. B. Schoeneberg, Über die Weierstrasspunkte in den Körpern den elliptischen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg 17 (1951), 104-111.

University of Aberdeen

